3287 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* gc8034 driver
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
*
* V0.0X01.0X01 add poweron function.
* V0.0X01.0X02 fix mclk issue when probe multiple camera.
* V0.0X01.0X03 add enum_frame_interval function.
* V0.0X01.0X04 add quick stream on/off
* V0.0X01.0X05 add function g_mbus_config
* V0.0X01.0X06
* 1. add 2lane support.
* 2. add some debug info.
* 3. adjust gc8034_g_mbus_config function.
* V0.0X01.0X07 support get channel info
* V0.0X01.0X08
* 1. default support 2lane full 30fps.
* 2. default support rk otp spec.
* V0.0X01.0X09 adjust supply sequence to suit spec
*/
//#define DEBUG
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/version.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-mediabus.h>
#include <media/v4l2-subdev.h>
#include <linux/pinctrl/consumer.h>
#include <linux/slab.h>
#include <linux/of_graph.h>
#include "otp_eeprom.h"
#define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x09)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
#define GC8034_LANES 4
#define GC8034_BITS_PER_SAMPLE 10
#define GC8034_MIPI_FREQ_336MHZ 336000000U
#define GC8034_MIPI_FREQ_634MHZ 634000000U
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
#define GC8034_PIXEL_RATE 288000000
#define GC8034_XVCLK_FREQ 24000000
#define CHIP_ID 0x8044
#define GC8034_REG_CHIP_ID_H 0xf0
#define GC8034_REG_CHIP_ID_L 0xf1
#define GC8034_REG_SET_PAGE 0xfe
#define GC8034_SET_PAGE_ZERO 0x00
#define GC8034_REG_CTRL_MODE 0x3f
#define GC8034_MODE_SW_STANDBY 0x00
#define GC8034_MODE_STREAMING 0xd0
#define GC8034_REG_EXPOSURE_H 0x03
#define GC8034_REG_EXPOSURE_L 0x04
#define GC8034_FETCH_HIGH_BYTE_EXP(VAL) (((VAL) >> 8) & 0x7F) /* 4 Bits */
#define GC8034_FETCH_LOW_BYTE_EXP(VAL) ((VAL) & 0xFF) /* 8 Bits */
#define GC8034_EXPOSURE_MIN 4
#define GC8034_EXPOSURE_STEP 1
#define GC8034_VTS_MAX 0x1fff
#define GC8034_REG_AGAIN 0xb6
#define GC8034_REG_DGAIN_INT 0xb1
#define GC8034_REG_DGAIN_FRAC 0xb2
#define GC8034_GAIN_MIN 64
#define GC8034_GAIN_MAX 1092
#define GC8034_GAIN_STEP 1
#define GC8034_GAIN_DEFAULT 64
#define GC8034_REG_VTS_H 0x07
#define GC8034_REG_VTS_L 0x08
#define REG_NULL 0xFF
#define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default"
#define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep"
#define GC8034_NAME "gc8034"
#define GC8034_MEDIA_BUS_FMT MEDIA_BUS_FMT_SRGGB10_1X10
/* use RK_OTP or old mode */
#define RK_OTP
/* choose 2lane support full 30fps or 15fps */
#define GC8034_2LANE_30FPS
static const char * const gc8034_supply_names[] = {
"dovdd", /* Digital I/O power */
"dvdd", /* Digital core power */
"avdd", /* Analog power */
};
#define GC8034_NUM_SUPPLIES ARRAY_SIZE(gc8034_supply_names)
#ifndef RK_OTP
struct gc8034_dd {
u16 x;
u16 y;
u16 t;
};
struct gc8034_otp_info {
int flag; //bit[7]: info bit[6]:wb bit[5]:vcm bit[4]:lenc
//bit[3] dd bit[2] chip version
u32 module_id;
u32 lens_id;
u32 year;
u32 month;
u32 day;
u32 rg_ratio;
u32 bg_ratio;
u32 golden_rg;
u32 golden_bg;
u8 lsc[396];
u32 vcm_start;
u32 vcm_end;
u32 vcm_dir;
u32 dd_cnt;
struct gc8034_dd dd_param[160];
u16 reg_page[5];
u16 reg_addr[5];
u16 reg_value[5];
u16 reg_num;
};
struct gc8034_id_name {
u32 id;
char name[RKMODULE_NAME_LEN];
};
static const struct gc8034_id_name gc8034_module_info[] = {
{0x0d, "CameraKing"},
{0x00, "Unknown"}
};
static const struct gc8034_id_name gc8034_lens_info[] = {
{0xd0, "CK8401"},
{0x00, "Unknown"}
};
#endif
struct regval {
u8 addr;
u8 val;
};
struct gc8034_mode {
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
u32 mipi_freq_idx;
const struct regval *global_reg_list;
const struct regval *reg_list;
u32 vc[PAD_MAX];
};
struct gc8034 {
struct i2c_client *client;
struct clk *xvclk;
struct gpio_desc *power_gpio;
struct gpio_desc *reset_gpio;
struct gpio_desc *pwdn_gpio;
struct regulator_bulk_data supplies[GC8034_NUM_SUPPLIES];
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *anal_gain;
struct v4l2_ctrl *digi_gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *link_freq;
struct mutex mutex;
bool streaming;
unsigned int lane_num;
unsigned int cfg_num;
unsigned int pixel_rate;
bool power_on;
const struct gc8034_mode *cur_mode;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
u32 Dgain_ratio;
#ifdef RK_OTP
struct otp_info *otp;
#else
struct gc8034_otp_info *otp;
#endif
struct rkmodule_inf module_inf;
struct rkmodule_awb_cfg awb_cfg;
};
#define to_gc8034(sd) container_of(sd, struct gc8034, subdev)
#undef GC8034_MIRROR_NORMAL
#undef GC8034_MIRROR_H
#undef GC8034_MIRROR_V
#undef GC8034_MIRROR_HV
/* If you use the otp function, keep the otp_drv ->
* gc8034_common_otp_drv.h consistent.
*/
#define GC8034_MIRROR_NORMAL
#if defined(GC8034_MIRROR_NORMAL)
#define GC8034_MIRROR 0xc0
#define BINNING_STARTY 0x04
#define BINNING_STARTX 0x05
#define FULL_STARTY 0x08
#define FULL_STARTX 0x09
#elif defined(GC8034_MIRROR_H)
#define GC8034_MIRROR 0xc1
#define BINNING_STARTY 0x04
#define BINNING_STARTX 0x04
#define FULL_STARTY 0x08
#define FULL_STARTX 0x08
#elif defined(GC8034_MIRROR_V)
#define GC8034_MIRROR 0xc2
#define BINNING_STARTY 0x05
#define BINNING_STARTX 0x05
#define FULL_STARTY 0x09
#define FULL_STARTX 0x09
#elif defined(GC8034_MIRROR_HV)
#define GC8034_MIRROR 0xc3
#define BINNING_STARTY 0x05
#define BINNING_STARTX 0x04
#define FULL_STARTY 0x09
#define FULL_STARTX 0x08
#else
#define GC8034_MIRROR 0xc0
#define BINNING_STARTY 0x04
#define BINNING_STARTX 0x05
#define FULL_STARTY 0x08
#define FULL_STARTX 0x09
#endif
/*
* Xclk 24Mhz
*/
static const struct regval gc8034_global_regs_2lane[] = {
#ifdef GC8034_2LANE_30FPS
/* SYS */
{0xf2, 0x00},
{0xf4, 0x90},
{0xf5, 0x3d},
{0xf6, 0x44},
{0xf8, 0x63},
{0xfa, 0x42},
{0xf9, 0x00},
{0xf7, 0x95},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xea},
{0xfe, 0x03},
{0x03, 0x9a},
{0xfc, 0xee},
{0xfe, 0x00},
{0x88, 0x03},
/*Cisctl&Analog*/
{0xfe, 0x00},
{0x03, 0x08},
{0x04, 0xc6},
{0x05, 0x02},
{0x06, 0x16},
{0x07, 0x00},
{0x08, 0x10},
{0x0a, 0x3a}, //row start
{0x0b, 0x00},
{0x0c, 0x04}, //col start
{0x0d, 0x09},
{0x0e, 0xa0}, //win_height 2464
{0x0f, 0x0c},
{0x10, 0xd4}, //win_width 3284
{0x17, GC8034_MIRROR},
{0x18, 0x02},
{0x19, 0x17},
{0x1e, 0x50},
{0x1f, 0x80},
{0x21, 0x4c},
{0x25, 0x00},
{0x28, 0x4a},
{0x2d, 0x89},
{0xca, 0x02},
{0xcb, 0x00},
{0xcc, 0x39},
{0xce, 0xd0},
{0xcf, 0x93},
{0xd0, 0x1b},
{0xd1, 0xaa},
{0xd2, 0xcb},
{0xd8, 0x40},
{0xd9, 0xff},
{0xda, 0x0e},
{0xdb, 0xb0},
{0xdc, 0x0e},
{0xde, 0x08},
{0xe4, 0xc6},
{0xe5, 0x08},
{0xe6, 0x10},
{0xed, 0x2a},
{0xfe, 0x02},
{0x59, 0x02},
{0x5a, 0x04},
{0x5b, 0x08},
{0x5c, 0x20},
{0xfe, 0x00},
{0x1a, 0x09},
{0x1d, 0x13},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
/* Gamma */
{0xfe, 0x00},
{0x20, 0x54},
{0x33, 0x82},
{0xfe, 0x01},
{0xdf, 0x06},
{0xe7, 0x18},
{0xe8, 0x20},
{0xe9, 0x16},
{0xea, 0x17},
{0xeb, 0x50},
{0xec, 0x6c},
{0xed, 0x9b},
{0xee, 0xd8},
/*ISP*/
{0xfe, 0x00},
{0x80, 0x13},
{0x84, 0x01},
{0x89, 0x03},
{0x8d, 0x03},
{0x8f, 0x14},
{0xad, 0x00},
{0x66, 0x0c},
{0xbc, 0x09},
{0xc2, 0x7f},
{0xc3, 0xff},
/*Crop window*/
{0x90, 0x01},
{0x92, FULL_STARTY},
{0x94, FULL_STARTX},
{0x95, 0x09},
{0x96, 0x90},
{0x97, 0x0c},
{0x98, 0xc0},
/*Gain*/
{0xb0, 0x90},
{0xb1, 0x01},
{0xb2, 0x00},
{0xb6, 0x00},
/*BLK*/
{0xfe, 0x00},
{0x40, 0x22},
{0x41, 0x20},
{0x42, 0x02},
{0x43, 0x08},
{0x4e, 0x0f},
{0x4f, 0xf0},
{0x58, 0x80},
{0x59, 0x80},
{0x5a, 0x80},
{0x5b, 0x80},
{0x5c, 0x00},
{0x5d, 0x00},
{0x5e, 0x00},
{0x5f, 0x00},
{0x6b, 0x01},
{0x6c, 0x00},
{0x6d, 0x0c},
/*WB offset*/
{0xfe, 0x01},
{0xbf, 0x40},
/*Dark Sun*/
{0xfe, 0x01},
{0x68, 0x77},
/*DPC*/
{0xfe, 0x01},
{0x60, 0x00},
{0x61, 0x10},
{0x62, 0x60},
{0x63, 0x30},
{0x64, 0x00},
/* LSC */
{0xfe, 0x01},
{0xa8, 0x60},
{0xa2, 0xd1},
{0xc8, 0x57},
{0xa1, 0xb8},
{0xa3, 0x91},
{0xc0, 0x50},
{0xd0, 0x05},
{0xd1, 0xb2},
{0xd2, 0x1f},
{0xd3, 0x00},
{0xd4, 0x00},
{0xd5, 0x00},
{0xd6, 0x00},
{0xd7, 0x00},
{0xd8, 0x00},
{0xd9, 0x00},
{0xa4, 0x10},
{0xa5, 0x20},
{0xa6, 0x60},
{0xa7, 0x80},
{0xab, 0x18},
{0xc7, 0xc0},
/*ABB*/
{0xfe, 0x01},
{0x20, 0x02},
{0x21, 0x02},
{0x23, 0x42},
/*MIPI*/
{0xfe, 0x03},
{0x01, 0x07},
{0x02, 0x04},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf0}, //lwc 3264*5/4
{0x13, 0x0f},
{0x15, 0x10}, //LP
{0x16, 0x29},
{0x17, 0xff},
{0x18, 0x01},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x0c},
{0x22, 0x0e},
{0x23, 0x45},
{0x24, 0x01},
{0x25, 0x1c},
{0x26, 0x0b},
{0x29, 0x0e},
{0x2a, 0x1d},
{0x2b, 0x0b},
{0xfe, 0x00},
//{0x3f, 0x91},
{0x3f, 0x00},
#else
/*SYS*/
{0xf2, 0x00},
{0xf4, 0x80},
{0xf5, 0x19},
{0xf6, 0x44},
{0xf7, 0x95}, //pll enable
{0xf8, 0x63}, //pll mode
{0xf9, 0x00},
{0xfa, 0x45},
{0xfc, 0xfe},
/*Cisctl&Analog*/
{0xfe, 0x00},
{0x03, 0x08},
{0x04, 0xc6},
{0x05, 0x02},
{0x06, 0x16},
{0x07, 0x00},
{0x08, 0x10},
{0x0a, 0x3a}, //row start
{0x0b, 0x00},
{0x0c, 0x04}, //col start
{0x0d, 0x09},
{0x0e, 0xa0}, //win_height 2464
{0x0f, 0x0c},
{0x10, 0xd4}, //win_width 3284
{0x17, GC8034_MIRROR},
{0x18, 0x02},
{0x19, 0x17},
{0x1e, 0x50},
{0x1f, 0x80},
{0x21, 0x4c},
{0x25, 0x00},
{0x28, 0x4a},
{0x2d, 0x89},
{0xca, 0x02},
{0xcb, 0x00},
{0xcc, 0x39},
{0xce, 0xd0},
{0xcf, 0x93},
{0xd0, 0x1b},
{0xd1, 0xaa},
{0xd2, 0xcb},
{0xd8, 0x40},
{0xd9, 0xff},
{0xda, 0x0e},
{0xdb, 0xb0},
{0xdc, 0x0e},
{0xde, 0x08},
{0xe4, 0xc6},
{0xe5, 0x08},
{0xe6, 0x10},
{0xed, 0x2a},
{0xfe, 0x02},
{0x59, 0x02},
{0x5a, 0x04},
{0x5b, 0x08},
{0x5c, 0x20},
{0xfe, 0x00},
{0x1a, 0x09},
{0x1d, 0x13},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
/* Gamma */
{0xfe, 0x00},
{0x20, 0x54},
{0x33, 0x82},
{0xfe, 0x01},
{0xdf, 0x06},
{0xe7, 0x18},
{0xe8, 0x20},
{0xe9, 0x16},
{0xea, 0x17},
{0xeb, 0x50},
{0xec, 0x6c},
{0xed, 0x9b},
{0xee, 0xd8},
/*ISP*/
{0xfe, 0x00},
{0x80, 0x13},
{0x84, 0x01},
{0x89, 0x03},
{0x8d, 0x03},
{0x8f, 0x14},
{0xad, 0x00},
/*Crop window*/
{0x90, 0x01},
{0x92, FULL_STARTY},
{0x94, FULL_STARTX},
{0x95, 0x09},
{0x96, 0x90},
{0x97, 0x0c},
{0x98, 0xc0},
/*Gain*/
{0xb0, 0x90},
{0xb1, 0x01},
{0xb2, 0x00},
{0xb6, 0x00},
/*BLK*/
{0xfe, 0x00},
{0x40, 0x22},
{0x43, 0x03}, //add_offset
{0x4e, 0x00}, //row_bits[15:8]
{0x4f, 0x3c}, //row_bits[7:0]
{0x58, 0x80}, //dark current ratio
{0x59, 0x80},
{0x5a, 0x80},
{0x5b, 0x80},
{0x5c, 0x00},
{0x5d, 0x00},
{0x5e, 0x00},
{0x5f, 0x00},
/*WB offset*/
{0xfe, 0x01},
{0xbf, 0x40},
/*Dark Sun*/
{0xfe, 0x01},
{0x68, 0x77},
/*DPC*/
{0xfe, 0x01},
{0x60, 0x15},
{0x61, 0x10},
{0x62, 0x60},
{0x63, 0x48},
{0x64, 0x02},
/*LSC*/
{0xfe, 0x01},
{0xa0, 0x10}, //[6]segment_width[8], 0x[5:4]segment_height[9:8]
{0xa8, 0x60}, //segment_height[7:0]
{0xa2, 0xd1}, //height_ratio[7:0]
{0xc8, 0x5b}, //[7:4]height_ratio[11:8]
{0xa1, 0xb8}, //segment_width[7:0]
{0xa3, 0x91}, //width_ratio[7:0]
{0xc0, 0x50}, //[7:4]width_ratio[11:8]
{0xd0, 0x05}, //segment_width_end[11:8]
{0xd1, 0xb2}, //segment_width_end[7:0]
{0xd2, 0x1f}, //col_segment
{0xd3, 0x00}, //row_num_start[7:0]
{0xd4, 0x00}, //[5:4]row_num_start[9:8] [3:0]col_seg_start
{0xd5, 0x00}, //[7:2]col_num_start[7:2]
{0xd6, 0x00}, //[2:0]col_num_start[10:8]
{0xd7, 0x00}, //row_seg_start
{0xd8, 0x00}, //col_cal_start[7:0]
{0xd9, 0x00}, //[2:0]col_cal_start[10:8]
/*ABB*/
{0xfe, 0x01},
{0x20, 0x02},
{0x21, 0x02},
{0x23, 0x43},
/*MIPI*/
{0xfe, 0x03},
{0x01, 0x07},
{0x02, 0x07},
{0x03, 0x92},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf0}, //lwc 3264*5/4
{0x13, 0x0f},
{0x15, 0x10}, //LP
{0x16, 0x29},
{0x17, 0xff},
{0x18, 0x01},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x05},
{0x22, 0x05},
{0x23, 0x16},
{0x24, 0x00},
{0x25, 0x12},
{0x26, 0x07},
{0x29, 0x07},
{0x2a, 0x08},
{0x2b, 0x07},
{0xfe, 0x00},
//{0x3f, 0x91},
{0x3f, 0x00},
#endif
{REG_NULL, 0x00},
};
#ifndef GC8034_2LANE_30FPS
/*
* Xclk 24Mhz
* max_framerate 30fps
* mipi_datarate per lane 672Mbps
*/
static const struct regval gc8034_1632x1224_regs_2lane[] = {
/*SYS*/
{0xf2, 0x00},
{0xf4, 0x80},
{0xf5, 0x19},
{0xf6, 0x44},
{0xf8, 0x63},
{0xfa, 0x45},
{0xf9, 0x00},
{0xf7, 0x95},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xea},
{0xfe, 0x03},
{0x03, 0x9a},
{0xfc, 0xee},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
/*ISP*/
{0xfe, 0x00},
{0x80, 0x10},
{0xad, 0x30},
{0x66, 0x2c},
{0xbc, 0x49},
/*Crop window*/
{0x90, 0x01},
{0x92, BINNING_STARTY}, //crop y
{0x94, BINNING_STARTX}, //crop x
{0x95, 0x04},
{0x96, 0xc8},
{0x97, 0x06},
{0x98, 0x60},
/*MIPI*/
{0xfe, 0x03},
{0x01, 0x07},
{0x02, 0x03},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf8},
{0x13, 0x07},
{0x15, 0x10}, //LP mode
{0x16, 0x29},
{0x17, 0xff},
{0x18, 0x01},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x05},
{0x22, 0x06},
{0x23, 0x16},
{0x24, 0x00},
{0x25, 0x12},
{0x26, 0x07},
{0x29, 0x07},
{0x2a, 0x08},
{0x2b, 0x07},
{0xfe, 0x00},
{0x3f, 0x00},
{REG_NULL, 0x00},
};
#endif
/*
* Xclk 24Mhz
* max_framerate 15fps
* mipi_datarate per lane 672Mbps
*/
static const struct regval gc8034_3264x2448_regs_2lane[] = {
#ifdef GC8034_2LANE_30FPS
/* SYS */
{0xf2, 0x00},
{0xf4, 0x90},
{0xf5, 0x3d},
{0xf6, 0x44},
{0xf8, 0x63},
{0xfa, 0x42},
{0xf9, 0x00},
{0xf7, 0x95},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xea},
{0xfe, 0x03},
{0x03, 0x9a},
{0xfc, 0xee},
{0xfe, 0x00},
{0x3f, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
/* ISP */
{0xfe, 0x00},
{0x80, 0x13},
{0xad, 0x00},
{0x66, 0x0c},
{0xbc, 0x06},
/* Crop window */
{0x90, 0x01},
{0x92, FULL_STARTY},
{0x94, FULL_STARTX},
{0x95, 0x09},
{0x96, 0x90},
{0x97, 0x0c},
{0x98, 0xc0},
/* MIPI */
{0xfe, 0x03},
{0x01, 0x07},
{0x02, 0x04},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf0}, //lwc 3264*5/4
{0x13, 0x0f},
{0x15, 0x10}, //LP
{0x16, 0x29},
{0x17, 0xff},
{0x18, 0x01},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x0c},
{0x22, 0x0c},
{0x23, 0x56},
{0x24, 0x00},
{0x25, 0x1c},
{0x26, 0x0b},
{0x29, 0x0e},
{0x2a, 0x1d},
{0x2b, 0x0b},
{0xfe, 0x00},
//{0x3f, 0x91},
{0x3f, 0x00},
#else
/*SYS*/
{0xf2, 0x00},
{0xf4, 0x80},
{0xf5, 0x19},
{0xf6, 0x44},
{0xf7, 0x95}, //pll enable
{0xf8, 0x63}, //pll mode
{0xf9, 0x00},
{0xfa, 0x45},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xfe},
/* ISP */
{0xfe, 0x00},
{0x80, 0x13},
{0xad, 0x00},
{0x66, 0x0c},
{0xbc, 0x09},
/* Crop window */
{0x90, 0x01},
{0x92, FULL_STARTY},
{0x94, FULL_STARTX},
{0x95, 0x09},
{0x96, 0x90},
{0x97, 0x0c},
{0x98, 0xc0},
/* MIPI */
{0xfe, 0x03},
{0x01, 0x07},
{0x02, 0x03},
{0x03, 0x92},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf0}, //lwc 3264*5/4
{0x13, 0x0f},
{0x15, 0x10}, //LP
{0x16, 0x29},
{0x17, 0xff},
{0x18, 0x01},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x05},
{0x22, 0x05},
{0x23, 0x16},
{0x24, 0x00},
{0x25, 0x12},
{0x26, 0x07},
{0x29, 0x07},
{0x2a, 0x08},
{0x2b, 0x07},
{0xfe, 0x00},
//{0x3f, 0x91},
{0x3f, 0x00},
#endif
{REG_NULL, 0x00},
};
/*
* Xclk 24Mhz
*/
static const struct regval gc8034_global_regs_4lane[] = {
/*SYS*/
{0xf2, 0x00},
{0xf4, 0x80},
{0xf5, 0x19},
{0xf6, 0x44},
{0xf8, 0x63},
{0xfa, 0x45},
{0xf9, 0x00},
{0xf7, 0x9d},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xea},
{0xfe, 0x03},
{0x03, 0x9a},
{0x18, 0x07},
{0x01, 0x07},
{0xfc, 0xee},
/*Cisctl&Analog*/
{0xfe, 0x00},
{0x03, 0x08},
{0x04, 0xc6},
{0x05, 0x02},
{0x06, 0x16},
{0x07, 0x00},
{0x08, 0x10},
{0x0a, 0x3a},
{0x0b, 0x00},
{0x0c, 0x04},
{0x0d, 0x09},
{0x0e, 0xa0},
{0x0f, 0x0c},
{0x10, 0xd4},
{0x17, 0xc0},
{0x18, 0x02},
{0x19, 0x17},
{0x1e, 0x50},
{0x1f, 0x80},
{0x21, 0x4c},
{0x25, 0x00},
{0x28, 0x4a},
{0x2d, 0x89},
{0xca, 0x02},
{0xcb, 0x00},
{0xcc, 0x39},
{0xce, 0xd0},
{0xcf, 0x93},
{0xd0, 0x19},
{0xd1, 0xaa},
{0xd2, 0xcb},
{0xd8, 0x40},
{0xd9, 0xff},
{0xda, 0x0e},
{0xdb, 0xb0},
{0xdc, 0x0e},
{0xde, 0x08},
{0xe4, 0xc6},
{0xe5, 0x08},
{0xe6, 0x10},
{0xed, 0x2a},
{0xfe, 0x02},
{0x59, 0x02},
{0x5a, 0x04},
{0x5b, 0x08},
{0x5c, 0x20},
{0xfe, 0x00},
{0x1a, 0x09},
{0x1d, 0x13},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
/*Gamma*/
{0xfe, 0x00},
{0x20, 0x55},
{0x33, 0x83},
{0xfe, 0x01},
{0xdf, 0x06},
{0xe7, 0x18},
{0xe8, 0x20},
{0xe9, 0x16},
{0xea, 0x17},
{0xeb, 0x50},
{0xec, 0x6c},
{0xed, 0x9b},
{0xee, 0xd8},
/*ISP*/
{0xfe, 0x00},
{0x80, 0x10},
{0x84, 0x01},
{0x88, 0x03},
{0x89, 0x03},
{0x8d, 0x03},
{0x8f, 0x14},
{0xad, 0x30},
{0x66, 0x2c},
{0xbc, 0x49},
{0xc2, 0x7f},
{0xc3, 0xff},
/*Crop window*/
{0x90, 0x01},
{0x92, 0x08},
{0x94, 0x09},
{0x95, 0x04},
{0x96, 0xc8},
{0x97, 0x06},
{0x98, 0x60},
/*Gain*/
{0xb0, 0x90},
{0xb1, 0x01},
{0xb2, 0x00},
{0xb6, 0x00},
/*BLK*/
{0xfe, 0x00},
{0x40, 0x22},
{0x41, 0x20},
{0x42, 0x02},
{0x43, 0x08},
{0x4e, 0x0f},
{0x4f, 0xf0},
{0x58, 0x80},
{0x59, 0x80},
{0x5a, 0x80},
{0x5b, 0x80},
{0x5c, 0x00},
{0x5d, 0x00},
{0x5e, 0x00},
{0x5f, 0x00},
{0x6b, 0x01},
{0x6c, 0x00},
{0x6d, 0x0c},
/*WB offset*/
{0xfe, 0x01},
{0xbf, 0x40},
/*Dark Sun*/
{0xfe, 0x01},
{0x68, 0x77},
/*DPC*/
{0xfe, 0x01},
{0x60, 0x00},
{0x61, 0x10},
{0x62, 0x28},
{0x63, 0x10},
{0x64, 0x02},
/*LSC*/
{0xfe, 0x01},
{0xa8, 0x60},
{0xa2, 0xd1},
{0xc8, 0x57},
{0xa1, 0xb8},
{0xa3, 0x91},
{0xc0, 0x50},
{0xd0, 0x05},
{0xd1, 0xb2},
{0xd2, 0x1f},
{0xd3, 0x00},
{0xd4, 0x00},
{0xd5, 0x00},
{0xd6, 0x00},
{0xd7, 0x00},
{0xd8, 0x00},
{0xd9, 0x00},
{0xa4, 0x10},
{0xa5, 0x20},
{0xa6, 0x60},
{0xa7, 0x80},
{0xab, 0x18},
{0xc7, 0xc0},
/*ABB*/
{0xfe, 0x01},
{0x20, 0x02},
{0x21, 0x02},
{0x23, 0x42},
/*MIPI*/
{0xfe, 0x03},
{0x02, 0x03},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf8},
{0x13, 0x07},
{0x15, 0x10},
{0x16, 0x29},
{0x17, 0xff},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x02},
{0x22, 0x03},
{0x23, 0x0a},
{0x24, 0x00},
{0x25, 0x12},
{0x26, 0x04},
{0x29, 0x04},
{0x2a, 0x02},
{0x2b, 0x04},
{0xfe, 0x00},
{0x3f, 0x00},
/*SYS*/
{0xf2, 0x00},
{0xf4, 0x80},
{0xf5, 0x19},
{0xf6, 0x44},
{0xf8, 0x63},
{0xfa, 0x45},
{0xf9, 0x00},
{0xf7, 0x95},
{0xfc, 0x00},
{0xfc, 0x00},
{0xfc, 0xea},
{0xfe, 0x03},
{0x03, 0x9a},
{0x18, 0x07},
{0x01, 0x07},
{0xfc, 0xee},
/*ISP*/
{0xfe, 0x00},
{0x80, 0x13},
{0xad, 0x00},
/*Crop window*/
{0x90, 0x01},
{0x92, 0x08},
{0x94, 0x09},
{0x95, 0x09},
{0x96, 0x90},
{0x97, 0x0c},
{0x98, 0xc0},
/*DPC*/
{0xfe, 0x01},
{0x62, 0x60},
{0x63, 0x48},
/*MIPI*/
{0xfe, 0x03},
{0x02, 0x03},
{0x04, 0x80},
{0x11, 0x2b},
{0x12, 0xf0},
{0x13, 0x0f},
{0x15, 0x10},
{0x16, 0x29},
{0x17, 0xff},
{0x19, 0xaa},
{0x1a, 0x02},
{0x21, 0x05},
{0x22, 0x06},
{0x23, 0x2b},
{0x24, 0x00},
{0x25, 0x12},
{0x26, 0x07},
{0x29, 0x07},
{0x2a, 0x12},
{0x2b, 0x07},
{0xfe, 0x00},
{0x3f, 0x00},
{REG_NULL, 0x00},
};
/*
* Xclk 24Mhz
* max_framerate 30fps
* mipi_datarate per lane 656Mbps
*/
static const struct regval gc8034_3264x2448_regs_4lane[] = {
{REG_NULL, 0x00},
};
static const struct gc8034_mode supported_modes_2lane[] = {
#ifdef GC8034_2LANE_30FPS
{
.width = 3264,
.height = 2448,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x0900,
.hts_def = 0x0858 * 2,
.vts_def = 0x09c0,
.mipi_freq_idx = 1,
.global_reg_list = gc8034_global_regs_2lane,
.reg_list = gc8034_3264x2448_regs_2lane,
.vc[PAD0] = 0,
},
#else
{
.width = 3264,
.height = 2448,
.max_fps = {
.numerator = 10000,
.denominator = 150000,
},
.exp_def = 0x09a0,
.hts_def = 0x0858 * 2,
.vts_def = 0x09c4,
.mipi_freq_idx = 0,
.global_reg_list = gc8034_global_regs_2lane,
.reg_list = gc8034_3264x2448_regs_2lane,
.vc[PAD0] = 0,
},
{
.width = 1632,
.height = 1224,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x09a0,
.hts_def = 0x0858 * 2,
.vts_def = 0x09c4,
.mipi_freq_idx = 0,
.global_reg_list = gc8034_global_regs_2lane,
.reg_list = gc8034_1632x1224_regs_2lane,
.vc[PAD0] = 0,
},
#endif
};
static const struct gc8034_mode supported_modes_4lane[] = {
{
.width = 3264,
.height = 2448,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x08c6,
.hts_def = 0x10b0,
.vts_def = 0x09c0,
.mipi_freq_idx = 0,
.global_reg_list = gc8034_global_regs_4lane,
.reg_list = gc8034_3264x2448_regs_4lane,
.vc[PAD0] = 0,
},
};
static const struct gc8034_mode *supported_modes;
static const s64 link_freq_menu_items[] = {
GC8034_MIPI_FREQ_336MHZ,
GC8034_MIPI_FREQ_634MHZ
};
/* Write registers up to 4 at a time */
static int gc8034_write_reg(struct i2c_client *client, u8 reg, u8 val)
{
struct i2c_msg msg;
u8 buf[2];
int ret;
buf[0] = reg & 0xFF;
buf[1] = val;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret >= 0)
return 0;
dev_err(&client->dev,
"gc8034 write reg(0x%x val:0x%x) failed !\n", reg, val);
return ret;
}
static int gc8034_write_array(struct i2c_client *client,
const struct regval *regs)
{
u32 i = 0;
int ret = 0;
for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++)
ret = gc8034_write_reg(client, regs[i].addr, regs[i].val);
return ret;
}
/* Read registers up to 4 at a time */
static int gc8034_read_reg(struct i2c_client *client, u8 reg, u8 *val)
{
struct i2c_msg msg[2];
u8 buf[1];
int ret;
buf[0] = reg & 0xFF;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = buf;
msg[1].len = 1;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret >= 0) {
*val = buf[0];
return 0;
}
dev_err(&client->dev,
"gc8034 read reg:0x%x failed !\n", reg);
return ret;
}
static int gc8034_get_reso_dist(const struct gc8034_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct gc8034_mode *
gc8034_find_best_fit(struct gc8034 *gc8034,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
unsigned int i;
for (i = 0; i < gc8034->cfg_num; i++) {
dist = gc8034_get_reso_dist(&supported_modes[i], framefmt);
if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &supported_modes[cur_best_fit];
}
static int gc8034_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc8034 *gc8034 = to_gc8034(sd);
const struct gc8034_mode *mode;
s64 h_blank, vblank_def;
mutex_lock(&gc8034->mutex);
mode = gc8034_find_best_fit(gc8034, fmt);
fmt->format.code = GC8034_MEDIA_BUS_FMT;
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format;
#else
mutex_unlock(&gc8034->mutex);
return -ENOTTY;
#endif
} else {
gc8034->cur_mode = mode;
h_blank = mode->hts_def - mode->width;
__v4l2_ctrl_modify_range(gc8034->hblank, h_blank,
h_blank, 1, h_blank);
vblank_def = mode->vts_def - mode->height;
__v4l2_ctrl_modify_range(gc8034->vblank, vblank_def,
GC8034_VTS_MAX - mode->height,
1, vblank_def);
__v4l2_ctrl_s_ctrl(gc8034->vblank, vblank_def);
__v4l2_ctrl_s_ctrl(gc8034->link_freq, mode->mipi_freq_idx);
}
mutex_unlock(&gc8034->mutex);
return 0;
}
static int gc8034_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc8034 *gc8034 = to_gc8034(sd);
const struct gc8034_mode *mode = gc8034->cur_mode;
mutex_lock(&gc8034->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
#else
mutex_unlock(&gc8034->mutex);
return -ENOTTY;
#endif
} else {
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = GC8034_MEDIA_BUS_FMT;
fmt->format.field = V4L2_FIELD_NONE;
}
mutex_unlock(&gc8034->mutex);
return 0;
}
static int gc8034_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = GC8034_MEDIA_BUS_FMT;
return 0;
}
static int gc8034_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
struct gc8034 *gc8034 = to_gc8034(sd);
if (fse->index >= gc8034->cfg_num)
return -EINVAL;
if (fse->code != GC8034_MEDIA_BUS_FMT)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int gc8034_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct gc8034 *gc8034 = to_gc8034(sd);
const struct gc8034_mode *mode = gc8034->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
#ifdef RK_OTP
static void gc8034_get_otp(struct otp_info *otp,
struct rkmodule_inf *inf)
{
u32 i, j;
u32 w, h;
/* awb */
if (otp->awb_data.flag) {
inf->awb.flag = 1;
inf->awb.r_value = otp->awb_data.r_ratio;
inf->awb.b_value = otp->awb_data.b_ratio;
inf->awb.gr_value = otp->awb_data.g_ratio;
inf->awb.gb_value = 0x0;
inf->awb.golden_r_value = otp->awb_data.r_golden;
inf->awb.golden_b_value = otp->awb_data.b_golden;
inf->awb.golden_gr_value = otp->awb_data.g_golden;
inf->awb.golden_gb_value = 0x0;
}
/* lsc */
if (otp->lsc_data.flag) {
inf->lsc.flag = 1;
inf->lsc.width = otp->basic_data.size.width;
inf->lsc.height = otp->basic_data.size.height;
inf->lsc.table_size = otp->lsc_data.table_size;
for (i = 0; i < 289; i++) {
inf->lsc.lsc_r[i] = (otp->lsc_data.data[i * 2] << 8) |
otp->lsc_data.data[i * 2 + 1];
inf->lsc.lsc_gr[i] = (otp->lsc_data.data[i * 2 + 578] << 8) |
otp->lsc_data.data[i * 2 + 579];
inf->lsc.lsc_gb[i] = (otp->lsc_data.data[i * 2 + 1156] << 8) |
otp->lsc_data.data[i * 2 + 1157];
inf->lsc.lsc_b[i] = (otp->lsc_data.data[i * 2 + 1734] << 8) |
otp->lsc_data.data[i * 2 + 1735];
}
}
/* pdaf */
if (otp->pdaf_data.flag) {
inf->pdaf.flag = 1;
inf->pdaf.gainmap_width = otp->pdaf_data.gainmap_width;
inf->pdaf.gainmap_height = otp->pdaf_data.gainmap_height;
inf->pdaf.pd_offset = otp->pdaf_data.pd_offset;
inf->pdaf.dcc_mode = otp->pdaf_data.dcc_mode;
inf->pdaf.dcc_dir = otp->pdaf_data.dcc_dir;
inf->pdaf.dccmap_width = otp->pdaf_data.dccmap_width;
inf->pdaf.dccmap_height = otp->pdaf_data.dccmap_height;
w = otp->pdaf_data.gainmap_width;
h = otp->pdaf_data.gainmap_height;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
inf->pdaf.gainmap[i * w + j] =
(otp->pdaf_data.gainmap[(i * w + j) * 2] << 8) |
otp->pdaf_data.gainmap[(i * w + j) * 2 + 1];
}
}
w = otp->pdaf_data.dccmap_width;
h = otp->pdaf_data.dccmap_height;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
inf->pdaf.dccmap[i * w + j] =
(otp->pdaf_data.dccmap[(i * w + j) * 2] << 8) |
otp->pdaf_data.dccmap[(i * w + j) * 2 + 1];
}
}
}
/* af */
if (otp->af_data.flag) {
inf->af.flag = 1;
inf->af.dir_cnt = 1;
inf->af.af_otp[0].vcm_start = otp->af_data.af_inf;
inf->af.af_otp[0].vcm_end = otp->af_data.af_macro;
inf->af.af_otp[0].vcm_dir = 0;
}
}
#else
#define DD_WIDTH 3284
#define DD_HEIGHT 2464
#define DD_PARAM_QTY 350
#define WINDOW_WIDTH 0x0cd4//3284 max effective pixels
#define WINDOW_HEIGHT 0x09a0//2462
#define REG_ROM_START 0x4e
#define INFO_ROM_START 0x70
#define INFO_WIDTH 0x08
#define WB_ROM_START 0x5f
#define WB_WIDTH 0x04
#define GOLDEN_ROM_START 0x67//golden R/G ratio
#define GOLDEN_WIDTH 0x04
#define LSC_NUM 99//0x63 //(7+2)*(9+2)
#define VCM_START 0x3B
#define VCM_WIDTH 0x04
static int gc8034_otp_read_reg(struct i2c_client *client,
int page, int address)
{
int ret = 0;
u8 val = 0;
ret = gc8034_write_reg(client, 0xfe, 0x00);
ret |= gc8034_write_reg(client, 0xD4,
((page << 2) & 0x3c) + ((address >> 5) & 0x03));
ret |= gc8034_write_reg(client, 0xD5,
(address << 3) & 0xff);
ret |= gc8034_write_reg(client, 0xF3,
0x20);
ret |= gc8034_read_reg(client, 0xD7, &val);
if (ret != 0)
return ret;
return val;
}
static int gc8034_otp_read_group(struct i2c_client *client,
int page, int address, u8 *buf, int size)
{
int i = 0;
int val = 0;
for (i = 0; i < size; i++) {
if ((address % 0x80) == 0) {
page += 1;
address = 0;
}
val = gc8034_otp_read_reg(client, page, address);
if (val >= 0)
buf[i] = val;
else
return val;
address += 1;
}
return 0;
}
static int gc8034_otp_enable(struct gc8034 *gc8034)
{
struct i2c_client *client = gc8034->client;
u8 otp_clk = 0;
u8 otp_en = 0;
int ret = 0;
ret = gc8034_write_reg(client, 0xf2, 0x00);
ret |= gc8034_write_reg(client, 0xf4, 0x80);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xf7, 0x97);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xfc, 0xee);
ret |= gc8034_read_reg(client, 0xF2, &otp_clk);
ret |= gc8034_read_reg(client, 0xF4, &otp_en);
otp_clk |= 0x01;
otp_en |= 0x08;
ret |= gc8034_write_reg(client, 0xF2, otp_clk);
ret |= gc8034_write_reg(client, 0xF4, otp_en);
usleep_range(100, 200);
return ret;
}
static int gc8034_otp_disable(struct gc8034 *gc8034)
{
struct i2c_client *client = gc8034->client;
u8 otp_clk = 0;
u8 otp_en = 0;
int ret = 0;
ret = gc8034_read_reg(client, 0xF2, &otp_clk);
ret |= gc8034_read_reg(client, 0xF4, &otp_en);
otp_clk &= 0xFE;
otp_en &= 0xF7;
ret |= gc8034_write_reg(client, 0xF2, otp_clk);
ret |= gc8034_write_reg(client, 0xF4, otp_en);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xf7, 0x95);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xfc, 0x00);
ret |= gc8034_write_reg(client, 0xfc, 0xee);
return ret;
}
static void gc8034_check_prsel(struct gc8034 *gc8034)
{
struct i2c_client *client = gc8034->client;
u8 product_level = 0;
gc8034_write_reg(client, 0xfe, 0x02);
gc8034_read_reg(client, 0x68, &product_level);
product_level &= 0x07;
if (product_level == 0x00 || product_level == 0x01) {
gc8034_write_reg(client, 0xfe, 0x00);
gc8034_write_reg(client, 0xd2, 0xcb);
} else {
gc8034_write_reg(client, 0xfe, 0x00);
gc8034_write_reg(client, 0xd2, 0xc3);
}
}
static int gc8034_otp_read(struct gc8034 *gc8034)
{
int otp_flag, i, j, index, temp;
struct gc8034_otp_info *otp_ptr;
struct device *dev = &gc8034->client->dev;
struct i2c_client *client = gc8034->client;
int ret = 0;
int cnt = 0;
int checksum = 0;
u8 info[8] = {0};
u8 wb[4] = {0};
u8 vcm[4] = {0};
u8 golden[4] = {0};
int total_number = 0;
u8 ddtempbuff[4 * 80] = { 0 };
otp_ptr = devm_kzalloc(dev, sizeof(*otp_ptr), GFP_KERNEL);
if (!otp_ptr)
return -ENOMEM;
/* OTP base information*/
otp_flag = gc8034_otp_read_reg(client, 9, 0x6f);
for (index = 0; index < 2; index++) {
switch ((otp_flag << (2 * index)) & 0x0c) {
case 0x00:
dev_err(dev, "%s GC8034_OTP_INFO group %d is Empty!\n",
__func__, index + 1);
break;
case 0x04:
dev_err(dev, "%s GC8034_OTP_INFO group %d is Valid!\n",
__func__, index + 1);
checksum = 0;
ret |= gc8034_otp_read_group(client, 9,
(INFO_ROM_START + index * INFO_WIDTH),
&info[0], INFO_WIDTH);
if (ret < 0) {
dev_err(dev, "%s read otp error!\n", __func__);
return ret;
}
for (i = 0; i < INFO_WIDTH - 1; i++)
checksum += info[i];
if ((checksum % 255 + 1) == info[INFO_WIDTH - 1]) {
otp_ptr->flag = 0x80;
otp_ptr->module_id = info[0];
otp_ptr->lens_id = info[1];
otp_ptr->year = info[4];
otp_ptr->month = info[5];
otp_ptr->day = info[6];
dev_err(dev, "fac info: module(0x%x) lens(0x%x) time(%d_%d_%d)!\n",
otp_ptr->module_id,
otp_ptr->lens_id,
otp_ptr->year,
otp_ptr->month,
otp_ptr->day);
} else {
dev_err(dev, "%s GC8034_OTP_INFO Check sum %d Error!\n",
__func__, index + 1);
}
break;
case 0x08:
case 0x0c:
dev_err(dev, "%s GC8034_OTP_INFO group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP WB calibration data */
otp_flag = gc8034_otp_read_reg(client, 9, 0x5e);
for (index = 0; index < 2; index++) {
switch ((otp_flag << (2 * index)) & 0x0c) {
case 0x00:
dev_err(dev, "%s GC8034_OTP_WB group %d is Empty !\n",
__func__, index + 1);
break;
case 0x04:
dev_err(dev, "%s GC8034_OTP_WB group %d is Valid !!\n",
__func__, index + 1);
checksum = 0;
ret |= gc8034_otp_read_group(client,
9,
(WB_ROM_START + index * WB_WIDTH),
&wb[0],
WB_WIDTH);
if (ret < 0) {
dev_err(dev, "%s read otp error!\n", __func__);
return ret;
}
for (i = 0; i < WB_WIDTH - 1; i++)
checksum += wb[i];
if ((checksum % 255 + 1) == wb[WB_WIDTH - 1]) {
otp_ptr->flag |= 0x40; /* valid AWB in OTP */
otp_ptr->rg_ratio =
((wb[1] & 0xf0) << 4) | wb[0];
otp_ptr->bg_ratio =
((wb[1] & 0x0f) << 8) | wb[2];
dev_err(dev, "otp:(rg_ratio 0x%x, bg_ratio 0x%x)\n",
otp_ptr->rg_ratio, otp_ptr->bg_ratio);
} else {
dev_err(dev, "%s GC8034_OTP_WB Check sum %d Error !!\n",
__func__, index + 1);
}
break;
case 0x08:
case 0x0c:
dev_err(dev, "%s GC8034_OTP_WB group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
switch ((otp_flag << (2 * index)) & 0xc0) {
case 0x00:
dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Empty!\n",
__func__, index + 1);
break;
case 0x40:
dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Valid !!\n",
__func__, index + 1);
checksum = 0;
ret = gc8034_otp_read_group(client, 9,
(GOLDEN_ROM_START + index * GOLDEN_WIDTH),
&golden[0], GOLDEN_WIDTH);
if (ret < 0) {
dev_err(dev, "%s read otp error!\n", __func__);
return ret;
}
for (i = 0; i < GOLDEN_WIDTH - 1; i++)
checksum += golden[i];
if ((checksum % 255 + 1) == golden[GOLDEN_WIDTH - 1]) {
otp_ptr->golden_rg =
golden[0] | ((golden[1] & 0xf0) << 4);
otp_ptr->golden_bg =
((golden[1] & 0x0f) << 8) | golden[2];
dev_err(dev, "otp:(golden_rg 0x%x, golden_bg 0x%x)\n",
otp_ptr->golden_rg, otp_ptr->golden_bg);
} else {
dev_err(dev, "%s GC8034_OTP_GOLDEN Check sum %d Error !!\n",
__func__, index + 1);
}
break;
case 0x80:
case 0xc0:
dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP VCM calibration data */
otp_flag = gc8034_otp_read_reg(client, 3, 0x3A);
for (index = 0; index < 2; index++) {
switch ((otp_flag << (2 * index)) & 0x0c) {
case 0x00:
dev_err(dev, "%s GC8034_OTP_VCM group %d is Empty !\n",
__func__, index + 1);
break;
case 0x04:
dev_err(dev, "%s GC8034_OTP_VCM group %d is Valid !\n",
__func__, index + 1);
ret |= gc8034_otp_read_group(client,
3,
(VCM_START + index * VCM_WIDTH),
&vcm[0],
VCM_WIDTH);
if (ret < 0) {
dev_err(dev, "%s read otp error!\n", __func__);
return ret;
}
checksum = 0;
for (i = 0; i < 3; i++)
checksum += vcm[i];
if ((checksum % 255 + 1) == vcm[3]) {
otp_ptr->flag |= 0x20; /* valid LSC in OTP */
otp_ptr->vcm_dir = 0;//not dir register
otp_ptr->vcm_start =
((vcm[0] & 0x0f) << 8) + vcm[2];
otp_ptr->vcm_end =
((vcm[0] & 0xf0) << 4) + vcm[1];
dev_err(dev, "%s GC8034_OTP_VCM check sum success\n",
__func__);
dev_err(dev, "vcm_info: 0x%x, 0x%x, 0x%x!\n",
otp_ptr->vcm_start,
otp_ptr->vcm_end,
otp_ptr->vcm_dir);
} else {
dev_err(dev, "VCM check sum read: 0x%x, calculate:0x%x\n",
vcm[3], checksum % 255 + 1);
}
break;
case 0x08:
case 0x0c:
dev_err(dev, "%s GC8034_OTP_VCM group %d is Invalid !\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP LSC calibration data */
otp_flag = gc8034_otp_read_reg(client, 3, 0x43);
for (index = 0; index < 2; index++) {
switch ((otp_flag << (2 * index)) & 0x0c) {
case 0x00:
dev_err(dev, "%s GC8034_OTP_LSC group %d is Empty !\n",
__func__, index + 1);
break;
case 0x04:
dev_err(dev, "%s GC8034_OTP_LSC group %d is Valid !\n",
__func__, index + 1);
if (index == 0) {
ret |= gc8034_otp_read_group(client,
3, 0x44, otp_ptr->lsc, 396);
temp = gc8034_otp_read_reg(client, 6, 0x50);
} else {
ret |= gc8034_otp_read_group(client,
6, 0x51, otp_ptr->lsc, 396);
temp = gc8034_otp_read_reg(client, 9, 0x5d);
}
checksum = 0;
for (i = 0; i < 396; i++) {
checksum += otp_ptr->lsc[i];
usleep_range(100, 200);
dev_err(dev, "otp lsc[%d] = %d\n",
i, otp_ptr->lsc[i]);
}
if ((checksum % 255 + 1) == temp) {
otp_ptr->flag |= 0x10; /* valid LSC in OTP */
dev_err(dev, "%s GC8034_OTP_LSC check sum success\n",
__func__);
} else {
dev_err(dev, "LSC check sum read: 0x%x, calculate:0x%x\n",
temp, checksum % 255 + 1);
}
break;
case 0x08:
case 0x0c:
dev_err(dev, "%s GC8034_OTP_LSC group %d is Invalid !\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP DD calibration data */
otp_flag = gc8034_otp_read_reg(client, 0, 0x0b);
for (index = 0; index < 2; index++) {
switch (otp_flag & 0x03) {
case 0x00:
dev_err(dev, "%s GC8034 OTP:flag_dd is EMPTY!\n",
__func__);
break;
case 0x04:
dev_err(dev, "%s GC8034_OTP_DD group %d is valid!\n",
__func__, index + 1);
total_number = gc8034_otp_read_reg(client, 0, 0x0c) +
gc8034_otp_read_reg(client, 0, 0x0d);
ret |= gc8034_otp_read_group(client, 0, 0x0e,
&ddtempbuff[0], 4 * total_number);
for (i = 0; i < total_number; i++) {
if ((ddtempbuff[4 * i + 3] & 0x80) == 0x80) {
if ((ddtempbuff[4 * i + 3] & 0x03) == 0x03) {
otp_ptr->dd_param[cnt].x =
(((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) +
ddtempbuff[4 * i];
otp_ptr->dd_param[cnt].y =
((u16)ddtempbuff[4 * i + 2] << 4) +
((ddtempbuff[4 * i + 1] & 0xf0) >> 4);
otp_ptr->dd_param[cnt++].t = 2;
otp_ptr->dd_param[cnt].x =
(((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) +
ddtempbuff[4 * i];
otp_ptr->dd_param[cnt].y =
((u16)ddtempbuff[4 * i + 2] << 4) +
((ddtempbuff[4 * i + 1] & 0xf0) >> 4) + 1;
otp_ptr->dd_param[cnt++].t = 2;
} else {
otp_ptr->dd_param[cnt].x =
(((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) +
ddtempbuff[4 * i];
otp_ptr->dd_param[cnt].y =
((u16)ddtempbuff[4 * i + 2] << 4) +
((ddtempbuff[4 * i + 1] & 0xf0) >> 4);
otp_ptr->dd_param[cnt++].t =
ddtempbuff[4 * i + 3] & 0x03;
}
}
}
otp_ptr->dd_cnt = total_number;
otp_ptr->flag |= 0x08;
dev_err(dev, "%s GC8034 OTP:total_number = %d!\n",
__func__, total_number);
break;
case 0x08:
case 0x0c:
dev_err(dev, "%s GC8034_OTP_DD group %d is Invalid!\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP Chip Register*/
otp_flag = gc8034_otp_read_reg(client, 2, 0x4e);
if (otp_flag == 1) {
for (i = 0; i < 5; i++) {
dev_err(dev, "%s GC8034 reg is valid!\n", __func__);
temp = gc8034_otp_read_reg(client, 2, (0x4f + 5 * i));
for (j = 0; j < 2; j++) {
if (((temp >> (4 * j + 3)) & 0x01) == 0x01) {
otp_ptr->reg_page[otp_ptr->reg_num] =
(temp >> (4 * j)) & 0x03;
otp_ptr->reg_addr[otp_ptr->reg_num] =
gc8034_otp_read_reg(client,
2,
0x50 + 5 * i + 2 * j);
otp_ptr->reg_value[otp_ptr->reg_num] =
gc8034_otp_read_reg(client,
2,
0x50 + 5 * i + 2 * j + 1);
otp_ptr->reg_num++;
}
}
}
otp_ptr->flag |= 0x04;
}
if (otp_ptr->flag) {
gc8034->otp = otp_ptr;
} else {
gc8034->otp = NULL;
devm_kfree(dev, otp_ptr);
}
return 0;
}
static void gc8034_get_otp(struct gc8034_otp_info *otp,
struct rkmodule_inf *inf)
{
u32 i;
/* fac */
if (otp->flag & 0x80) {
inf->fac.flag = 1;
inf->fac.year = otp->year;
inf->fac.month = otp->month;
inf->fac.day = otp->day;
for (i = 0; i < ARRAY_SIZE(gc8034_module_info) - 1; i++) {
if (gc8034_module_info[i].id == otp->module_id)
break;
}
strlcpy(inf->fac.module, gc8034_module_info[i].name,
sizeof(inf->fac.module));
for (i = 0; i < ARRAY_SIZE(gc8034_lens_info) - 1; i++) {
if (gc8034_lens_info[i].id == otp->lens_id)
break;
}
strlcpy(inf->fac.lens, gc8034_lens_info[i].name,
sizeof(inf->fac.lens));
}
/* awb */
if (otp->flag & 0x40) {
inf->awb.flag = 1;
inf->awb.r_value = otp->rg_ratio;
inf->awb.b_value = otp->bg_ratio;
inf->awb.gr_value = 0;
inf->awb.gb_value = 0;
inf->awb.golden_r_value = 0;
inf->awb.golden_b_value = 0;
inf->awb.golden_gr_value = 0;
inf->awb.golden_gb_value = 0;
}
/* af */
if (otp->flag & 0x20) {
inf->af.flag = 1;
inf->af.dir_cnt = 1;
inf->af.af_otp[0].vcm_start = otp->vcm_start;
inf->af.af_otp[0].vcm_end = otp->vcm_end;
inf->af.af_otp[0].vcm_dir = otp->vcm_dir;
}
}
#endif
static void gc8034_get_module_inf(struct gc8034 *gc8034,
struct rkmodule_inf *inf)
{
#ifdef RK_OTP
struct otp_info *otp = gc8034->otp;
#else
struct gc8034_otp_info *otp = gc8034->otp;
#endif
strlcpy(inf->base.sensor,
GC8034_NAME,
sizeof(inf->base.sensor));
strlcpy(inf->base.module,
gc8034->module_name,
sizeof(inf->base.module));
strlcpy(inf->base.lens,
gc8034->len_name,
sizeof(inf->base.lens));
if (otp)
gc8034_get_otp(otp, inf);
}
static void gc8034_set_module_inf(struct gc8034 *gc8034,
struct rkmodule_awb_cfg *cfg)
{
mutex_lock(&gc8034->mutex);
memcpy(&gc8034->awb_cfg, cfg, sizeof(*cfg));
mutex_unlock(&gc8034->mutex);
}
static int gc8034_get_channel_info(struct gc8034 *gc8034, struct rkmodule_channel_info *ch_info)
{
if (ch_info->index < PAD0 || ch_info->index >= PAD_MAX)
return -EINVAL;
ch_info->vc = gc8034->cur_mode->vc[ch_info->index];
ch_info->width = gc8034->cur_mode->width;
ch_info->height = gc8034->cur_mode->height;
ch_info->bus_fmt = GC8034_MEDIA_BUS_FMT;
return 0;
}
static long gc8034_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct gc8034 *gc8034 = to_gc8034(sd);
long ret = 0;
u32 stream = 0;
struct rkmodule_channel_info *ch_info;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
gc8034_get_module_inf(gc8034, (struct rkmodule_inf *)arg);
break;
case RKMODULE_AWB_CFG:
gc8034_set_module_inf(gc8034, (struct rkmodule_awb_cfg *)arg);
break;
case RKMODULE_SET_QUICK_STREAM:
stream = *((u32 *)arg);
if (stream) {
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE,
GC8034_SET_PAGE_ZERO);
if (2 == gc8034->lane_num) {
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
0x91);
} else {
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
GC8034_MODE_STREAMING);
}
} else {
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE,
GC8034_SET_PAGE_ZERO);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
GC8034_MODE_SW_STANDBY);
}
break;
case RKMODULE_GET_CHANNEL_INFO:
ch_info = (struct rkmodule_channel_info *)arg;
ret = gc8034_get_channel_info(gc8034, ch_info);
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long gc8034_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
struct rkmodule_awb_cfg *cfg;
long ret = 0;
u32 stream = 0;
struct rkmodule_channel_info *ch_info;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = gc8034_ioctl(sd, cmd, inf);
if (!ret) {
ret = copy_to_user(up, inf, sizeof(*inf));
if (ret)
ret = -EFAULT;
}
kfree(inf);
break;
case RKMODULE_AWB_CFG:
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(cfg, up, sizeof(*cfg));
if (!ret)
ret = gc8034_ioctl(sd, cmd, cfg);
else
ret = -EFAULT;
kfree(cfg);
break;
case RKMODULE_SET_QUICK_STREAM:
ret = copy_from_user(&stream, up, sizeof(u32));
if (!ret)
ret = gc8034_ioctl(sd, cmd, &stream);
else
ret = -EFAULT;
break;
case RKMODULE_GET_CHANNEL_INFO:
ch_info = kzalloc(sizeof(*ch_info), GFP_KERNEL);
if (!ch_info) {
ret = -ENOMEM;
return ret;
}
ret = gc8034_ioctl(sd, cmd, ch_info);
if (!ret) {
ret = copy_to_user(up, ch_info, sizeof(*ch_info));
if (ret)
ret = -EFAULT;
}
kfree(ch_info);
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
#endif
#ifndef RK_OTP
/*--------------------------------------------------------------------------*/
static int gc8034_apply_otp(struct gc8034 *gc8034)
{
int R_gain, G_gain, B_gain, base_gain;
struct i2c_client *client = gc8034->client;
struct gc8034_otp_info *otp_ptr = gc8034->otp;
struct rkmodule_awb_cfg *awb_cfg = &gc8034->awb_cfg;
u32 golden_bg_ratio;
u32 golden_rg_ratio;
u32 golden_g_value;
u32 i, j;
u16 base = 0;
u32 dd_cnt = 0;
u8 temp_val0 = 0;
u8 temp_val1 = 0;
u8 temp_val2 = 0;
struct gc8034_dd dd_temp = {0, 0, 0};
if (!gc8034->awb_cfg.enable)
return 0;
golden_g_value = (awb_cfg->golden_gb_value +
awb_cfg->golden_gr_value) / 2;
golden_bg_ratio = awb_cfg->golden_b_value * 0x400 / golden_g_value;
golden_rg_ratio = awb_cfg->golden_r_value * 0x400 / golden_g_value;
/* apply OTP WB Calibration */
if ((otp_ptr->flag & 0x40) && golden_bg_ratio && golden_rg_ratio) {
/* calculate G gain */
R_gain = golden_rg_ratio * 1000 / otp_ptr->rg_ratio;
B_gain = golden_bg_ratio * 1000 / otp_ptr->bg_ratio;
G_gain = 1000;
base_gain = (R_gain < B_gain) ? R_gain : B_gain;
base_gain = (base_gain < G_gain) ? base_gain : G_gain;
R_gain = 0x400 * R_gain / (base_gain);
B_gain = 0x400 * B_gain / (base_gain);
G_gain = 0x400 * G_gain / (base_gain);
/* update sensor WB gain */
gc8034_write_reg(client, 0xfe, 0x01);
gc8034_write_reg(client, 0x84, G_gain >> 3);
gc8034_write_reg(client, 0x85, R_gain >> 3);
gc8034_write_reg(client, 0x86, B_gain >> 3);
gc8034_write_reg(client, 0x87, G_gain >> 3);
gc8034_write_reg(client, 0x88,
((G_gain & 0X07) << 4) + (R_gain & 0x07));
gc8034_write_reg(client, 0x89,
((B_gain & 0X07) << 4) + (G_gain & 0x07));
gc8034_write_reg(client, 0xfe, 0x00);
dev_dbg(&client->dev, "apply awb gain: 0x%x, 0x%x, 0x%x\n",
R_gain, G_gain, B_gain);
}
/* apply OTP Lenc Calibration */
if (otp_ptr->flag & 0x10) {
gc8034_write_reg(client, 0xfe, 0x01);
gc8034_write_reg(client, 0xcf, 0x00);
gc8034_write_reg(client, 0xc9, 0x01);
for (i = 0; i < 9; i++) {
gc8034_write_reg(client, 0xca, i * 0x0c);
for (j = 0; j < 11; j++) {
#if defined(GC8034_MIRROR_NORMAL)
base = 4 * (11 * i + j);
#elif defined(GC8034_MIRROR_H)
base = 4 * (11 * i + 10 - j);
#elif defined(GC8034_MIRROR_V)
base = 4 * (11 * (8 - i) + j);
#elif defined(GC8034_MIRROR_HV)
base = 4 * (11 * (8 - i) + 10 - j);
#endif
gc8034_write_reg(client, 0xcc,
otp_ptr->lsc[base + 0]);
gc8034_write_reg(client, 0xcc,
otp_ptr->lsc[base + 1]);
gc8034_write_reg(client, 0xcc,
otp_ptr->lsc[base + 2]);
gc8034_write_reg(client, 0xcc,
otp_ptr->lsc[base + 3]);
dev_dbg(&client->dev,
"apply lsc otp_ptr->lsc[%d]=%d\n",
base + 0,
otp_ptr->lsc[base + 0]);
dev_dbg(&client->dev,
"apply lsc otp_ptr->lsc[%d]=%d\n",
base + 1,
otp_ptr->lsc[base + 1]);
dev_dbg(&client->dev,
"apply lsc otp_ptr->lsc[%d]=%d\n",
base + 2,
otp_ptr->lsc[base + 2]);
dev_dbg(&client->dev,
"apply lsc otp_ptr->lsc[%d]=%d\n",
base + 3,
otp_ptr->lsc[base + 3]);
}
}
gc8034_write_reg(client, 0xcf, 0x01);
gc8034_write_reg(client, 0xa0, 0x13);
gc8034_write_reg(client, 0xfe, 0x00);
dev_err(&client->dev, "apply lsc\n");
}
/* apply OTP DD Calibration */
if (otp_ptr->flag & 0x08) {
dd_cnt = otp_ptr->dd_cnt;
for (i = 0; i < dd_cnt; i++) {
#if defined(GC8034_MIRROR_H) || defined(GC8034_MIRROR_HV)
switch (otp_ptr->dd_param[i].t) {
case 0:
otp_ptr->dd_param[i].x =
DD_WIDTH - otp_ptr->dd_param[i].x + 1;
break;
case 1:
otp_ptr->dd_param[i].x =
DD_WIDTH - otp_ptr->dd_param[i].x - 1;
break;
default:
otp_ptr->dd_param[i].x =
DD_WIDTH - otp_ptr->dd_param[i].x;
break;
}
#endif
#if defined(GC8034_MIRROR_V) || defined(GC8034_MIRROR_HV)
otp_ptr->dd_param[i].y =
DD_HEIGHT - otp_ptr->dd_param[i].y + 1;
#endif
}
for (i = 0; i < dd_cnt - 1; i++) {
for (j = i + 1; j < dd_cnt; j++) {
if (otp_ptr->dd_param[i].y *
DD_WIDTH + otp_ptr->dd_param[i].x >
otp_ptr->dd_param[j].y * DD_WIDTH +
otp_ptr->dd_param[j].x) {
dd_temp.x = otp_ptr->dd_param[i].x;
dd_temp.y = otp_ptr->dd_param[i].y;
dd_temp.t = otp_ptr->dd_param[i].t;
otp_ptr->dd_param[i].x =
otp_ptr->dd_param[j].x;
otp_ptr->dd_param[i].y =
otp_ptr->dd_param[j].y;
otp_ptr->dd_param[i].t =
otp_ptr->dd_param[j].t;
otp_ptr->dd_param[j].x = dd_temp.x;
otp_ptr->dd_param[j].y = dd_temp.y;
otp_ptr->dd_param[j].t = dd_temp.t;
}
}
}
gc8034_write_reg(client, 0xfe, 0x01);
gc8034_write_reg(client, 0xbe, 0x00);
gc8034_write_reg(client, 0xa9, 0x01);
for (i = 0; i < dd_cnt; i++) {
temp_val0 = otp_ptr->dd_param[i].x & 0x00ff;
temp_val1 = ((otp_ptr->dd_param[i].y & 0x000f) << 4) +
((otp_ptr->dd_param[i].x & 0x0f00) >> 8);
temp_val2 = (otp_ptr->dd_param[i].y & 0x0ff0) >> 4;
gc8034_write_reg(client, 0xaa, i);
gc8034_write_reg(client, 0xac, temp_val0);
gc8034_write_reg(client, 0xac, temp_val1);
gc8034_write_reg(client, 0xac, temp_val2);
gc8034_write_reg(client, 0xac, otp_ptr->dd_param[i].t);
}
gc8034_write_reg(client, 0xbe, 0x01);
gc8034_write_reg(client, 0xfe, 0x00);
dev_err(&client->dev, "apply dd\n");
}
if (otp_ptr->flag & 0x04) {
gc8034_write_reg(client, 0xfe, 0x00);
for (i = 0; i < otp_ptr->reg_num; i++) {
gc8034_write_reg(client, 0xfe, otp_ptr->reg_page[i]);
gc8034_write_reg(client,
otp_ptr->reg_addr[i],
otp_ptr->reg_value[i]);
}
dev_err(&client->dev, "apply chip reg\n");
}
return 0;
}
#endif
static int __gc8034_start_stream(struct gc8034 *gc8034)
{
int ret;
#ifndef RK_OTP
if (gc8034->otp) {
ret = gc8034_otp_enable(gc8034);
gc8034_check_prsel(gc8034);
ret |= gc8034_apply_otp(gc8034);
usleep_range(1000, 2000);
ret |= gc8034_otp_disable(gc8034);
if (ret)
return ret;
}
#endif
ret = gc8034_write_array(gc8034->client, gc8034->cur_mode->reg_list);
if (ret)
return ret;
/* In case these controls are set before streaming */
mutex_unlock(&gc8034->mutex);
ret = v4l2_ctrl_handler_setup(&gc8034->ctrl_handler);
mutex_lock(&gc8034->mutex);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE,
GC8034_SET_PAGE_ZERO);
if (2 == gc8034->lane_num) {
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
0x91);
} else {
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
GC8034_MODE_STREAMING);
}
return ret;
}
static int __gc8034_stop_stream(struct gc8034 *gc8034)
{
int ret;
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE,
GC8034_SET_PAGE_ZERO);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_CTRL_MODE,
GC8034_MODE_SW_STANDBY);
return ret;
}
static int gc8034_s_stream(struct v4l2_subdev *sd, int on)
{
struct gc8034 *gc8034 = to_gc8034(sd);
struct i2c_client *client = gc8034->client;
int ret = 0;
dev_info(&client->dev, "%s: on: %d, %dx%d@%d\n", __func__, on,
gc8034->cur_mode->width,
gc8034->cur_mode->height,
DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator,
gc8034->cur_mode->max_fps.numerator));
mutex_lock(&gc8034->mutex);
on = !!on;
if (on == gc8034->streaming)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = __gc8034_start_stream(gc8034);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__gc8034_stop_stream(gc8034);
pm_runtime_put(&client->dev);
}
gc8034->streaming = on;
unlock_and_return:
mutex_unlock(&gc8034->mutex);
return ret;
}
static int gc8034_s_power(struct v4l2_subdev *sd, int on)
{
struct gc8034 *gc8034 = to_gc8034(sd);
struct i2c_client *client = gc8034->client;
const struct gc8034_mode *mode = gc8034->cur_mode;
int ret = 0;
dev_info(&client->dev, "%s(%d) on(%d)\n", __func__, __LINE__, on);
mutex_lock(&gc8034->mutex);
/* If the power state is not modified - no work to do. */
if (gc8034->power_on == !!on)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = gc8034_write_array(gc8034->client, mode->global_reg_list);
if (ret) {
v4l2_err(sd, "could not set init registers\n");
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
gc8034->power_on = true;
} else {
pm_runtime_put(&client->dev);
gc8034->power_on = false;
}
unlock_and_return:
mutex_unlock(&gc8034->mutex);
return ret;
}
/* Calculate the delay in us by clock rate and clock cycles */
static inline u32 gc8034_cal_delay(u32 cycles)
{
return DIV_ROUND_UP(cycles, GC8034_XVCLK_FREQ / 1000 / 1000);
}
static int gc8034_enable_regulators(struct gc8034 *gc8034,
struct regulator_bulk_data *consumers)
{
int i, j;
int ret = 0;
struct device *dev = &gc8034->client->dev;
int num_consumers = GC8034_NUM_SUPPLIES;
for (i = 0; i < num_consumers; i++) {
ret = regulator_enable(consumers[i].consumer);
if (ret < 0) {
dev_err(dev, "Failed to enable regulator: %s\n",
consumers[i].supply);
goto err;
}
}
return 0;
err:
for (j = 0; j < i; j++)
regulator_disable(consumers[j].consumer);
return ret;
}
static int __gc8034_power_on(struct gc8034 *gc8034)
{
int ret;
u32 delay_us;
struct device *dev = &gc8034->client->dev;
if (!IS_ERR(gc8034->power_gpio))
gpiod_set_value_cansleep(gc8034->power_gpio, 1);
usleep_range(1000, 2000);
if (!IS_ERR_OR_NULL(gc8034->pins_default)) {
ret = pinctrl_select_state(gc8034->pinctrl,
gc8034->pins_default);
if (ret < 0)
dev_err(dev, "could not set pins\n");
}
ret = clk_set_rate(gc8034->xvclk, GC8034_XVCLK_FREQ);
if (ret < 0)
dev_warn(dev, "Failed to set xvclk rate (24MHz)\n");
if (clk_get_rate(gc8034->xvclk) != GC8034_XVCLK_FREQ)
dev_warn(dev, "xvclk mismatched, modes are based on 24MHz\n");
if (!IS_ERR(gc8034->reset_gpio))
gpiod_set_value_cansleep(gc8034->reset_gpio, 1);
ret = gc8034_enable_regulators(gc8034, gc8034->supplies);
if (ret < 0) {
dev_err(dev, "Failed to enable regulators\n");
goto disable_clk;
}
usleep_range(100, 200);
ret = clk_prepare_enable(gc8034->xvclk);
if (ret < 0) {
dev_err(dev, "Failed to enable xvclk\n");
return ret;
}
usleep_range(1000, 1100);
if (!IS_ERR(gc8034->pwdn_gpio))
gpiod_set_value_cansleep(gc8034->pwdn_gpio, 0);
usleep_range(500, 1000);
if (!IS_ERR(gc8034->reset_gpio))
gpiod_set_value_cansleep(gc8034->reset_gpio, 0);
usleep_range(6000, 7000);
/* 8192 cycles prior to first SCCB transaction */
delay_us = gc8034_cal_delay(8192);
usleep_range(delay_us, delay_us * 2);
return 0;
disable_clk:
clk_disable_unprepare(gc8034->xvclk);
return ret;
}
static void __gc8034_power_off(struct gc8034 *gc8034)
{
int ret;
if (!IS_ERR(gc8034->pwdn_gpio))
gpiod_set_value_cansleep(gc8034->pwdn_gpio, 1);
if (!IS_ERR(gc8034->reset_gpio))
gpiod_set_value_cansleep(gc8034->reset_gpio, 1);
clk_disable_unprepare(gc8034->xvclk);
if (!IS_ERR_OR_NULL(gc8034->pins_sleep)) {
ret = pinctrl_select_state(gc8034->pinctrl,
gc8034->pins_sleep);
if (ret < 0)
dev_dbg(&gc8034->client->dev, "could not set pins\n");
}
if (!IS_ERR(gc8034->power_gpio))
gpiod_set_value_cansleep(gc8034->power_gpio, 0);
regulator_bulk_disable(GC8034_NUM_SUPPLIES, gc8034->supplies);
}
static int __maybe_unused gc8034_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc8034 *gc8034 = to_gc8034(sd);
return __gc8034_power_on(gc8034);
}
static int __maybe_unused gc8034_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc8034 *gc8034 = to_gc8034(sd);
__gc8034_power_off(gc8034);
return 0;
}
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int gc8034_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct gc8034 *gc8034 = to_gc8034(sd);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
const struct gc8034_mode *def_mode = &supported_modes[0];
mutex_lock(&gc8034->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = GC8034_MEDIA_BUS_FMT;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&gc8034->mutex);
/* No crop or compose */
return 0;
}
#endif
static int gc8034_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct gc8034 *gc8034 = to_gc8034(sd);
if (fie->index >= gc8034->cfg_num)
return -EINVAL;
fie->code = GC8034_MEDIA_BUS_FMT;
fie->width = supported_modes[fie->index].width;
fie->height = supported_modes[fie->index].height;
fie->interval = supported_modes[fie->index].max_fps;
return 0;
}
static int gc8034_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
struct v4l2_mbus_config *config)
{
struct gc8034 *sensor = to_gc8034(sd);
struct device *dev = &sensor->client->dev;
dev_info(dev, "%s(%d) enter!\n", __func__, __LINE__);
if (2 == sensor->lane_num || 4 == sensor->lane_num) {
config->type = V4L2_MBUS_CSI2_DPHY;
config->bus.mipi_csi2.num_data_lanes = sensor->lane_num;
} else {
dev_err(&sensor->client->dev,
"unsupported lane_num(%d)\n", sensor->lane_num);
}
return 0;
}
static const struct dev_pm_ops gc8034_pm_ops = {
SET_RUNTIME_PM_OPS(gc8034_runtime_suspend,
gc8034_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops gc8034_internal_ops = {
.open = gc8034_open,
};
#endif
static const struct v4l2_subdev_core_ops gc8034_core_ops = {
.s_power = gc8034_s_power,
.ioctl = gc8034_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = gc8034_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops gc8034_video_ops = {
.s_stream = gc8034_s_stream,
.g_frame_interval = gc8034_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops gc8034_pad_ops = {
.enum_mbus_code = gc8034_enum_mbus_code,
.enum_frame_size = gc8034_enum_frame_sizes,
.enum_frame_interval = gc8034_enum_frame_interval,
.get_fmt = gc8034_get_fmt,
.set_fmt = gc8034_set_fmt,
.get_mbus_config = gc8034_g_mbus_config,
};
static const struct v4l2_subdev_ops gc8034_subdev_ops = {
.core = &gc8034_core_ops,
.video = &gc8034_video_ops,
.pad = &gc8034_pad_ops,
};
static int gc8034_set_exposure_reg(struct gc8034 *gc8034, u32 exposure)
{
int ret = 0;
u32 cal_shutter = 0;
cal_shutter = exposure >> 1;
cal_shutter = cal_shutter << 1;
gc8034->Dgain_ratio = 256 * exposure / cal_shutter;
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_EXPOSURE_H,
GC8034_FETCH_HIGH_BYTE_EXP(cal_shutter));
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_EXPOSURE_L,
GC8034_FETCH_LOW_BYTE_EXP(cal_shutter));
return ret;
}
#define MAX_AG_INDEX 9
#define AGC_REG_NUM 14
#define MEAG_INDEX 7
u16 gain_level[MAX_AG_INDEX] = {
0x0040, /* 1.000*/
0x0058, /* 1.375*/
0x007d, /* 1.950*/
0x00ad, /* 2.700*/
0x00f3, /* 3.800*/
0x0159, /* 5.400*/
0x01ea, /* 7.660*/
0x02ac, /*10.688*/
0x03c2, /*15.030*/
};
u8 agc_register[MAX_AG_INDEX][AGC_REG_NUM] = {
/* fullsize */
{ 0x00, 0x55, 0x83, 0x01, 0x06, 0x18, 0x20,
0x16, 0x17, 0x50, 0x6c, 0x9b, 0xd8, 0x00 },
{ 0x00, 0x55, 0x83, 0x01, 0x06, 0x18, 0x20,
0x16, 0x17, 0x50, 0x6c, 0x9b, 0xd8, 0x00 },
{ 0x00, 0x4e, 0x84, 0x01, 0x0c, 0x2e, 0x2d,
0x15, 0x19, 0x47, 0x70, 0x9f, 0xd8, 0x00 },
{ 0x00, 0x51, 0x80, 0x01, 0x07, 0x28, 0x32,
0x22, 0x20, 0x49, 0x70, 0x91, 0xd9, 0x00 },
{ 0x00, 0x4d, 0x83, 0x01, 0x0f, 0x3b, 0x3b,
0x1c, 0x1f, 0x47, 0x6f, 0x9b, 0xd3, 0x00 },
{ 0x00, 0x50, 0x83, 0x01, 0x08, 0x35, 0x46,
0x1e, 0x22, 0x4c, 0x70, 0x9a, 0xd2, 0x00 },
{ 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a,
0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 },
{ 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a,
0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 },
{ 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a,
0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 }
};
static int gc8034_set_gain_reg(struct gc8034 *gc8034, u32 a_gain)
{
int ret = 0;
u32 temp_gain = 0;
int gain_index = 0;
u32 Dgain_ratio = 0;
Dgain_ratio = gc8034->Dgain_ratio;
for (gain_index = MEAG_INDEX - 1; gain_index >= 0; gain_index--) {
if (a_gain >= gain_level[gain_index]) {
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO);
ret |= gc8034_write_reg(gc8034->client,
0xb6, gain_index);
temp_gain = 256 * a_gain / gain_level[gain_index];
temp_gain = temp_gain * Dgain_ratio / 256;
ret |= gc8034_write_reg(gc8034->client,
0xb1, temp_gain >> 8);
ret |= gc8034_write_reg(gc8034->client,
0xb2, temp_gain & 0xff);
ret |= gc8034_write_reg(gc8034->client, 0xfe,
agc_register[gain_index][0]);
ret |= gc8034_write_reg(gc8034->client, 0x20,
agc_register[gain_index][1]);
ret |= gc8034_write_reg(gc8034->client, 0x33,
agc_register[gain_index][2]);
ret |= gc8034_write_reg(gc8034->client, 0xfe,
agc_register[gain_index][3]);
ret |= gc8034_write_reg(gc8034->client, 0xdf,
agc_register[gain_index][4]);
ret |= gc8034_write_reg(gc8034->client, 0xe7,
agc_register[gain_index][5]);
ret |= gc8034_write_reg(gc8034->client, 0xe8,
agc_register[gain_index][6]);
ret |= gc8034_write_reg(gc8034->client, 0xe9,
agc_register[gain_index][7]);
ret |= gc8034_write_reg(gc8034->client, 0xea,
agc_register[gain_index][8]);
ret |= gc8034_write_reg(gc8034->client, 0xeb,
agc_register[gain_index][9]);
ret |= gc8034_write_reg(gc8034->client, 0xec,
agc_register[gain_index][10]);
ret |= gc8034_write_reg(gc8034->client, 0xed,
agc_register[gain_index][11]);
ret |= gc8034_write_reg(gc8034->client, 0xee,
agc_register[gain_index][12]);
ret |= gc8034_write_reg(gc8034->client, 0xfe,
agc_register[gain_index][13]);
break;
}
}
return ret;
}
static int gc8034_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct gc8034 *gc8034 = container_of(ctrl->handler,
struct gc8034, ctrl_handler);
struct i2c_client *client = gc8034->client;
s64 max;
int ret = 0;
s32 temp;
/* Propagate change of current control to all related controls */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
/* Update max exposure while meeting expected vblanking */
max = gc8034->cur_mode->height + ctrl->val - 4;
__v4l2_ctrl_modify_range(gc8034->exposure,
gc8034->exposure->minimum, max,
gc8034->exposure->step,
gc8034->exposure->default_value);
break;
}
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* 4 least significant bits of expsoure are fractional part */
dev_dbg(&client->dev, "set exposure value 0x%x\n", ctrl->val);
ret = gc8034_set_exposure_reg(gc8034, ctrl->val);
break;
case V4L2_CID_ANALOGUE_GAIN:
dev_dbg(&client->dev, "set analog gain value 0x%x\n", ctrl->val);
ret = gc8034_set_gain_reg(gc8034, ctrl->val);
break;
case V4L2_CID_VBLANK:
dev_dbg(&client->dev, "set vb value 0x%x\n", ctrl->val);
/* VB = VTS - 2448 -36, according android8.1 driver */
temp = ctrl->val + gc8034->cur_mode->height - 2448 - 36;
ret = gc8034_write_reg(gc8034->client,
GC8034_REG_SET_PAGE,
GC8034_SET_PAGE_ZERO);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_VTS_H,
(temp >> 8) & 0xff);
ret |= gc8034_write_reg(gc8034->client,
GC8034_REG_VTS_L,
temp & 0xff);
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops gc8034_ctrl_ops = {
.s_ctrl = gc8034_set_ctrl,
};
static int gc8034_initialize_controls(struct gc8034 *gc8034)
{
const struct gc8034_mode *mode;
struct v4l2_ctrl_handler *handler;
s64 exposure_max, vblank_def;
u32 h_blank;
int ret;
handler = &gc8034->ctrl_handler;
mode = gc8034->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 8);
if (ret)
return ret;
handler->lock = &gc8034->mutex;
gc8034->link_freq = v4l2_ctrl_new_int_menu(handler, NULL,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE(link_freq_menu_items) - 1, 0,
link_freq_menu_items);
v4l2_ctrl_s_ctrl(gc8034->link_freq, mode->mipi_freq_idx);
v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE,
0, gc8034->pixel_rate, 1, gc8034->pixel_rate);
h_blank = mode->hts_def - mode->width;
gc8034->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (gc8034->hblank)
gc8034->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
vblank_def = mode->vts_def - mode->height;
gc8034->vblank = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops,
V4L2_CID_VBLANK, vblank_def,
GC8034_VTS_MAX - mode->height,
1, vblank_def);
exposure_max = mode->vts_def - 4;
gc8034->exposure = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops,
V4L2_CID_EXPOSURE, GC8034_EXPOSURE_MIN,
exposure_max, GC8034_EXPOSURE_STEP,
mode->exp_def);
gc8034->anal_gain = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, GC8034_GAIN_MIN,
GC8034_GAIN_MAX, GC8034_GAIN_STEP,
GC8034_GAIN_DEFAULT);
if (handler->error) {
ret = handler->error;
dev_err(&gc8034->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
gc8034->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int gc8034_check_sensor_id(struct gc8034 *gc8034,
struct i2c_client *client)
{
struct device *dev = &gc8034->client->dev;
u16 id = 0;
u8 reg_H = 0;
u8 reg_L = 0;
int ret;
ret = gc8034_read_reg(client, GC8034_REG_CHIP_ID_H, &reg_H);
ret |= gc8034_read_reg(client, GC8034_REG_CHIP_ID_L, &reg_L);
id = ((reg_H << 8) & 0xff00) | (reg_L & 0xff);
if (id != CHIP_ID) {
dev_err(dev, "Unexpected sensor id(%06x), ret(%d)\n", id, ret);
return -ENODEV;
}
dev_info(dev, "detected gc%04x sensor\n", id);
return ret;
}
static int gc8034_configure_regulators(struct gc8034 *gc8034)
{
unsigned int i;
for (i = 0; i < GC8034_NUM_SUPPLIES; i++)
gc8034->supplies[i].supply = gc8034_supply_names[i];
return devm_regulator_bulk_get(&gc8034->client->dev,
GC8034_NUM_SUPPLIES,
gc8034->supplies);
}
static int gc8034_parse_of(struct gc8034 *gc8034)
{
struct device *dev = &gc8034->client->dev;
struct device_node *endpoint;
struct fwnode_handle *fwnode;
int rval;
unsigned int fps;
endpoint = of_graph_get_next_endpoint(dev->of_node, NULL);
if (!endpoint) {
dev_err(dev, "Failed to get endpoint\n");
return -EINVAL;
}
fwnode = of_fwnode_handle(endpoint);
rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0);
if (rval <= 0) {
dev_warn(dev, " Get mipi lane num failed!\n");
return -1;
}
gc8034->lane_num = rval;
if (4 == gc8034->lane_num) {
gc8034->cur_mode = &supported_modes_4lane[0];
supported_modes = supported_modes_4lane;
gc8034->cfg_num = ARRAY_SIZE(supported_modes_4lane);
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
fps = DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator,
gc8034->cur_mode->max_fps.numerator);
gc8034->pixel_rate = gc8034->cur_mode->vts_def *
gc8034->cur_mode->hts_def * fps;
dev_info(dev, "lane_num(%d) pixel_rate(%u)\n",
gc8034->lane_num, gc8034->pixel_rate);
} else if (2 == gc8034->lane_num) {
gc8034->cur_mode = &supported_modes_2lane[0];
supported_modes = supported_modes_2lane;
gc8034->cfg_num = ARRAY_SIZE(supported_modes_2lane);
/*pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
fps = DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator,
gc8034->cur_mode->max_fps.numerator);
gc8034->pixel_rate = gc8034->cur_mode->vts_def *
gc8034->cur_mode->hts_def * fps;
dev_info(dev, "lane_num(%d) pixel_rate(%u)\n",
gc8034->lane_num, gc8034->pixel_rate);
} else {
dev_err(dev, "unsupported lane_num(%d)\n", gc8034->lane_num);
return -1;
}
return 0;
}
static int gc8034_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct gc8034 *gc8034;
struct v4l2_subdev *sd;
char facing[2];
int ret;
struct device_node *eeprom_ctrl_node;
struct i2c_client *eeprom_ctrl_client;
struct v4l2_subdev *eeprom_ctrl;
struct otp_info *otp_ptr;
dev_info(dev, "driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
gc8034 = devm_kzalloc(dev, sizeof(*gc8034), GFP_KERNEL);
if (!gc8034)
return -ENOMEM;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&gc8034->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&gc8034->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&gc8034->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&gc8034->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
gc8034->client = client;
gc8034->xvclk = devm_clk_get(dev, "xvclk");
if (IS_ERR(gc8034->xvclk)) {
dev_err(dev, "Failed to get xvclk\n");
return -EINVAL;
}
gc8034->power_gpio = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
if (IS_ERR(gc8034->power_gpio))
dev_warn(dev, "Failed to get power-gpios, maybe no use\n");
gc8034->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(gc8034->reset_gpio))
dev_warn(dev, "Failed to get reset-gpios\n");
gc8034->pwdn_gpio = devm_gpiod_get(dev, "pwdn", GPIOD_OUT_LOW);
if (IS_ERR(gc8034->pwdn_gpio))
dev_warn(dev, "Failed to get pwdn-gpios\n");
ret = gc8034_configure_regulators(gc8034);
if (ret) {
dev_err(dev, "Failed to get power regulators\n");
return ret;
}
ret = gc8034_parse_of(gc8034);
if (ret != 0)
return -EINVAL;
gc8034->pinctrl = devm_pinctrl_get(dev);
if (!IS_ERR(gc8034->pinctrl)) {
gc8034->pins_default =
pinctrl_lookup_state(gc8034->pinctrl,
OF_CAMERA_PINCTRL_STATE_DEFAULT);
if (IS_ERR(gc8034->pins_default))
dev_err(dev, "could not get default pinstate\n");
gc8034->pins_sleep =
pinctrl_lookup_state(gc8034->pinctrl,
OF_CAMERA_PINCTRL_STATE_SLEEP);
if (IS_ERR(gc8034->pins_sleep))
dev_err(dev, "could not get sleep pinstate\n");
}
mutex_init(&gc8034->mutex);
sd = &gc8034->subdev;
v4l2_i2c_subdev_init(sd, client, &gc8034_subdev_ops);
ret = gc8034_initialize_controls(gc8034);
if (ret)
goto err_destroy_mutex;
ret = __gc8034_power_on(gc8034);
if (ret)
goto err_free_handler;
ret = gc8034_check_sensor_id(gc8034, client);
if (ret)
goto err_power_off;
#ifdef RK_OTP
eeprom_ctrl_node = of_parse_phandle(node, "eeprom-ctrl", 0);
if (eeprom_ctrl_node) {
eeprom_ctrl_client =
of_find_i2c_device_by_node(eeprom_ctrl_node);
of_node_put(eeprom_ctrl_node);
if (IS_ERR_OR_NULL(eeprom_ctrl_client)) {
dev_err(dev, "can not get node\n");
goto continue_probe;
}
eeprom_ctrl = i2c_get_clientdata(eeprom_ctrl_client);
if (IS_ERR_OR_NULL(eeprom_ctrl)) {
dev_err(dev, "can not get eeprom i2c client\n");
} else {
otp_ptr = devm_kzalloc(dev, sizeof(*otp_ptr), GFP_KERNEL);
if (!otp_ptr)
return -ENOMEM;
ret = v4l2_subdev_call(eeprom_ctrl,
core, ioctl, 0, otp_ptr);
if (!ret) {
gc8034->otp = otp_ptr;
} else {
gc8034->otp = NULL;
devm_kfree(dev, otp_ptr);
dev_warn(dev, "can not get otp info, skip!\n");
}
}
}
continue_probe:
#else
gc8034_otp_enable(gc8034);
gc8034_otp_read(gc8034);
gc8034_otp_disable(gc8034);
#endif
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &gc8034_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
gc8034->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &gc8034->pad);
if (ret < 0)
goto err_power_off;
#endif
memset(facing, 0, sizeof(facing));
if (strcmp(gc8034->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
gc8034->module_index, facing,
GC8034_NAME, dev_name(sd->dev));
ret = v4l2_async_register_subdev_sensor(sd);
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_power_off:
__gc8034_power_off(gc8034);
err_free_handler:
v4l2_ctrl_handler_free(&gc8034->ctrl_handler);
err_destroy_mutex:
mutex_destroy(&gc8034->mutex);
return ret;
}
static void gc8034_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc8034 *gc8034 = to_gc8034(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&gc8034->ctrl_handler);
mutex_destroy(&gc8034->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__gc8034_power_off(gc8034);
pm_runtime_set_suspended(&client->dev);
}
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id gc8034_of_match[] = {
{ .compatible = "galaxycore,gc8034" },
{},
};
MODULE_DEVICE_TABLE(of, gc8034_of_match);
#endif
static const struct i2c_device_id gc8034_match_id[] = {
{ "galaxycore,gc8034", 0},
{ },
};
static struct i2c_driver gc8034_i2c_driver = {
.driver = {
.name = GC8034_NAME,
.pm = &gc8034_pm_ops,
.of_match_table = of_match_ptr(gc8034_of_match),
},
.probe = &gc8034_probe,
.remove = &gc8034_remove,
.id_table = gc8034_match_id,
};
static int __init sensor_mod_init(void)
{
return i2c_add_driver(&gc8034_i2c_driver);
}
static void __exit sensor_mod_exit(void)
{
i2c_del_driver(&gc8034_i2c_driver);
}
device_initcall_sync(sensor_mod_init);
module_exit(sensor_mod_exit);
MODULE_DESCRIPTION("GalaxyCore gc8034 sensor driver");
MODULE_LICENSE("GPL v2");