// SPDX-License-Identifier: GPL-2.0 /* * gc8034 driver * * Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd. * * V0.0X01.0X01 add poweron function. * V0.0X01.0X02 fix mclk issue when probe multiple camera. * V0.0X01.0X03 add enum_frame_interval function. * V0.0X01.0X04 add quick stream on/off * V0.0X01.0X05 add function g_mbus_config * V0.0X01.0X06 * 1. add 2lane support. * 2. add some debug info. * 3. adjust gc8034_g_mbus_config function. * V0.0X01.0X07 support get channel info * V0.0X01.0X08 * 1. default support 2lane full 30fps. * 2. default support rk otp spec. * V0.0X01.0X09 adjust supply sequence to suit spec */ //#define DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "otp_eeprom.h" #define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x09) #ifndef V4L2_CID_DIGITAL_GAIN #define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN #endif #define GC8034_LANES 4 #define GC8034_BITS_PER_SAMPLE 10 #define GC8034_MIPI_FREQ_336MHZ 336000000U #define GC8034_MIPI_FREQ_634MHZ 634000000U /* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */ #define GC8034_PIXEL_RATE 288000000 #define GC8034_XVCLK_FREQ 24000000 #define CHIP_ID 0x8044 #define GC8034_REG_CHIP_ID_H 0xf0 #define GC8034_REG_CHIP_ID_L 0xf1 #define GC8034_REG_SET_PAGE 0xfe #define GC8034_SET_PAGE_ZERO 0x00 #define GC8034_REG_CTRL_MODE 0x3f #define GC8034_MODE_SW_STANDBY 0x00 #define GC8034_MODE_STREAMING 0xd0 #define GC8034_REG_EXPOSURE_H 0x03 #define GC8034_REG_EXPOSURE_L 0x04 #define GC8034_FETCH_HIGH_BYTE_EXP(VAL) (((VAL) >> 8) & 0x7F) /* 4 Bits */ #define GC8034_FETCH_LOW_BYTE_EXP(VAL) ((VAL) & 0xFF) /* 8 Bits */ #define GC8034_EXPOSURE_MIN 4 #define GC8034_EXPOSURE_STEP 1 #define GC8034_VTS_MAX 0x1fff #define GC8034_REG_AGAIN 0xb6 #define GC8034_REG_DGAIN_INT 0xb1 #define GC8034_REG_DGAIN_FRAC 0xb2 #define GC8034_GAIN_MIN 64 #define GC8034_GAIN_MAX 1092 #define GC8034_GAIN_STEP 1 #define GC8034_GAIN_DEFAULT 64 #define GC8034_REG_VTS_H 0x07 #define GC8034_REG_VTS_L 0x08 #define REG_NULL 0xFF #define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default" #define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep" #define GC8034_NAME "gc8034" #define GC8034_MEDIA_BUS_FMT MEDIA_BUS_FMT_SRGGB10_1X10 /* use RK_OTP or old mode */ #define RK_OTP /* choose 2lane support full 30fps or 15fps */ #define GC8034_2LANE_30FPS static const char * const gc8034_supply_names[] = { "dovdd", /* Digital I/O power */ "dvdd", /* Digital core power */ "avdd", /* Analog power */ }; #define GC8034_NUM_SUPPLIES ARRAY_SIZE(gc8034_supply_names) #ifndef RK_OTP struct gc8034_dd { u16 x; u16 y; u16 t; }; struct gc8034_otp_info { int flag; //bit[7]: info bit[6]:wb bit[5]:vcm bit[4]:lenc //bit[3] dd bit[2] chip version u32 module_id; u32 lens_id; u32 year; u32 month; u32 day; u32 rg_ratio; u32 bg_ratio; u32 golden_rg; u32 golden_bg; u8 lsc[396]; u32 vcm_start; u32 vcm_end; u32 vcm_dir; u32 dd_cnt; struct gc8034_dd dd_param[160]; u16 reg_page[5]; u16 reg_addr[5]; u16 reg_value[5]; u16 reg_num; }; struct gc8034_id_name { u32 id; char name[RKMODULE_NAME_LEN]; }; static const struct gc8034_id_name gc8034_module_info[] = { {0x0d, "CameraKing"}, {0x00, "Unknown"} }; static const struct gc8034_id_name gc8034_lens_info[] = { {0xd0, "CK8401"}, {0x00, "Unknown"} }; #endif struct regval { u8 addr; u8 val; }; struct gc8034_mode { u32 width; u32 height; struct v4l2_fract max_fps; u32 hts_def; u32 vts_def; u32 exp_def; u32 mipi_freq_idx; const struct regval *global_reg_list; const struct regval *reg_list; u32 vc[PAD_MAX]; }; struct gc8034 { struct i2c_client *client; struct clk *xvclk; struct gpio_desc *power_gpio; struct gpio_desc *reset_gpio; struct gpio_desc *pwdn_gpio; struct regulator_bulk_data supplies[GC8034_NUM_SUPPLIES]; struct pinctrl *pinctrl; struct pinctrl_state *pins_default; struct pinctrl_state *pins_sleep; struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *exposure; struct v4l2_ctrl *anal_gain; struct v4l2_ctrl *digi_gain; struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; struct v4l2_ctrl *link_freq; struct mutex mutex; bool streaming; unsigned int lane_num; unsigned int cfg_num; unsigned int pixel_rate; bool power_on; const struct gc8034_mode *cur_mode; u32 module_index; const char *module_facing; const char *module_name; const char *len_name; u32 Dgain_ratio; #ifdef RK_OTP struct otp_info *otp; #else struct gc8034_otp_info *otp; #endif struct rkmodule_inf module_inf; struct rkmodule_awb_cfg awb_cfg; }; #define to_gc8034(sd) container_of(sd, struct gc8034, subdev) #undef GC8034_MIRROR_NORMAL #undef GC8034_MIRROR_H #undef GC8034_MIRROR_V #undef GC8034_MIRROR_HV /* If you use the otp function, keep the otp_drv -> * gc8034_common_otp_drv.h consistent. */ #define GC8034_MIRROR_NORMAL #if defined(GC8034_MIRROR_NORMAL) #define GC8034_MIRROR 0xc0 #define BINNING_STARTY 0x04 #define BINNING_STARTX 0x05 #define FULL_STARTY 0x08 #define FULL_STARTX 0x09 #elif defined(GC8034_MIRROR_H) #define GC8034_MIRROR 0xc1 #define BINNING_STARTY 0x04 #define BINNING_STARTX 0x04 #define FULL_STARTY 0x08 #define FULL_STARTX 0x08 #elif defined(GC8034_MIRROR_V) #define GC8034_MIRROR 0xc2 #define BINNING_STARTY 0x05 #define BINNING_STARTX 0x05 #define FULL_STARTY 0x09 #define FULL_STARTX 0x09 #elif defined(GC8034_MIRROR_HV) #define GC8034_MIRROR 0xc3 #define BINNING_STARTY 0x05 #define BINNING_STARTX 0x04 #define FULL_STARTY 0x09 #define FULL_STARTX 0x08 #else #define GC8034_MIRROR 0xc0 #define BINNING_STARTY 0x04 #define BINNING_STARTX 0x05 #define FULL_STARTY 0x08 #define FULL_STARTX 0x09 #endif /* * Xclk 24Mhz */ static const struct regval gc8034_global_regs_2lane[] = { #ifdef GC8034_2LANE_30FPS /* SYS */ {0xf2, 0x00}, {0xf4, 0x90}, {0xf5, 0x3d}, {0xf6, 0x44}, {0xf8, 0x63}, {0xfa, 0x42}, {0xf9, 0x00}, {0xf7, 0x95}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xea}, {0xfe, 0x03}, {0x03, 0x9a}, {0xfc, 0xee}, {0xfe, 0x00}, {0x88, 0x03}, /*Cisctl&Analog*/ {0xfe, 0x00}, {0x03, 0x08}, {0x04, 0xc6}, {0x05, 0x02}, {0x06, 0x16}, {0x07, 0x00}, {0x08, 0x10}, {0x0a, 0x3a}, //row start {0x0b, 0x00}, {0x0c, 0x04}, //col start {0x0d, 0x09}, {0x0e, 0xa0}, //win_height 2464 {0x0f, 0x0c}, {0x10, 0xd4}, //win_width 3284 {0x17, GC8034_MIRROR}, {0x18, 0x02}, {0x19, 0x17}, {0x1e, 0x50}, {0x1f, 0x80}, {0x21, 0x4c}, {0x25, 0x00}, {0x28, 0x4a}, {0x2d, 0x89}, {0xca, 0x02}, {0xcb, 0x00}, {0xcc, 0x39}, {0xce, 0xd0}, {0xcf, 0x93}, {0xd0, 0x1b}, {0xd1, 0xaa}, {0xd2, 0xcb}, {0xd8, 0x40}, {0xd9, 0xff}, {0xda, 0x0e}, {0xdb, 0xb0}, {0xdc, 0x0e}, {0xde, 0x08}, {0xe4, 0xc6}, {0xe5, 0x08}, {0xe6, 0x10}, {0xed, 0x2a}, {0xfe, 0x02}, {0x59, 0x02}, {0x5a, 0x04}, {0x5b, 0x08}, {0x5c, 0x20}, {0xfe, 0x00}, {0x1a, 0x09}, {0x1d, 0x13}, {0xfe, 0x10}, {0xfe, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, /* Gamma */ {0xfe, 0x00}, {0x20, 0x54}, {0x33, 0x82}, {0xfe, 0x01}, {0xdf, 0x06}, {0xe7, 0x18}, {0xe8, 0x20}, {0xe9, 0x16}, {0xea, 0x17}, {0xeb, 0x50}, {0xec, 0x6c}, {0xed, 0x9b}, {0xee, 0xd8}, /*ISP*/ {0xfe, 0x00}, {0x80, 0x13}, {0x84, 0x01}, {0x89, 0x03}, {0x8d, 0x03}, {0x8f, 0x14}, {0xad, 0x00}, {0x66, 0x0c}, {0xbc, 0x09}, {0xc2, 0x7f}, {0xc3, 0xff}, /*Crop window*/ {0x90, 0x01}, {0x92, FULL_STARTY}, {0x94, FULL_STARTX}, {0x95, 0x09}, {0x96, 0x90}, {0x97, 0x0c}, {0x98, 0xc0}, /*Gain*/ {0xb0, 0x90}, {0xb1, 0x01}, {0xb2, 0x00}, {0xb6, 0x00}, /*BLK*/ {0xfe, 0x00}, {0x40, 0x22}, {0x41, 0x20}, {0x42, 0x02}, {0x43, 0x08}, {0x4e, 0x0f}, {0x4f, 0xf0}, {0x58, 0x80}, {0x59, 0x80}, {0x5a, 0x80}, {0x5b, 0x80}, {0x5c, 0x00}, {0x5d, 0x00}, {0x5e, 0x00}, {0x5f, 0x00}, {0x6b, 0x01}, {0x6c, 0x00}, {0x6d, 0x0c}, /*WB offset*/ {0xfe, 0x01}, {0xbf, 0x40}, /*Dark Sun*/ {0xfe, 0x01}, {0x68, 0x77}, /*DPC*/ {0xfe, 0x01}, {0x60, 0x00}, {0x61, 0x10}, {0x62, 0x60}, {0x63, 0x30}, {0x64, 0x00}, /* LSC */ {0xfe, 0x01}, {0xa8, 0x60}, {0xa2, 0xd1}, {0xc8, 0x57}, {0xa1, 0xb8}, {0xa3, 0x91}, {0xc0, 0x50}, {0xd0, 0x05}, {0xd1, 0xb2}, {0xd2, 0x1f}, {0xd3, 0x00}, {0xd4, 0x00}, {0xd5, 0x00}, {0xd6, 0x00}, {0xd7, 0x00}, {0xd8, 0x00}, {0xd9, 0x00}, {0xa4, 0x10}, {0xa5, 0x20}, {0xa6, 0x60}, {0xa7, 0x80}, {0xab, 0x18}, {0xc7, 0xc0}, /*ABB*/ {0xfe, 0x01}, {0x20, 0x02}, {0x21, 0x02}, {0x23, 0x42}, /*MIPI*/ {0xfe, 0x03}, {0x01, 0x07}, {0x02, 0x04}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf0}, //lwc 3264*5/4 {0x13, 0x0f}, {0x15, 0x10}, //LP {0x16, 0x29}, {0x17, 0xff}, {0x18, 0x01}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x0c}, {0x22, 0x0e}, {0x23, 0x45}, {0x24, 0x01}, {0x25, 0x1c}, {0x26, 0x0b}, {0x29, 0x0e}, {0x2a, 0x1d}, {0x2b, 0x0b}, {0xfe, 0x00}, //{0x3f, 0x91}, {0x3f, 0x00}, #else /*SYS*/ {0xf2, 0x00}, {0xf4, 0x80}, {0xf5, 0x19}, {0xf6, 0x44}, {0xf7, 0x95}, //pll enable {0xf8, 0x63}, //pll mode {0xf9, 0x00}, {0xfa, 0x45}, {0xfc, 0xfe}, /*Cisctl&Analog*/ {0xfe, 0x00}, {0x03, 0x08}, {0x04, 0xc6}, {0x05, 0x02}, {0x06, 0x16}, {0x07, 0x00}, {0x08, 0x10}, {0x0a, 0x3a}, //row start {0x0b, 0x00}, {0x0c, 0x04}, //col start {0x0d, 0x09}, {0x0e, 0xa0}, //win_height 2464 {0x0f, 0x0c}, {0x10, 0xd4}, //win_width 3284 {0x17, GC8034_MIRROR}, {0x18, 0x02}, {0x19, 0x17}, {0x1e, 0x50}, {0x1f, 0x80}, {0x21, 0x4c}, {0x25, 0x00}, {0x28, 0x4a}, {0x2d, 0x89}, {0xca, 0x02}, {0xcb, 0x00}, {0xcc, 0x39}, {0xce, 0xd0}, {0xcf, 0x93}, {0xd0, 0x1b}, {0xd1, 0xaa}, {0xd2, 0xcb}, {0xd8, 0x40}, {0xd9, 0xff}, {0xda, 0x0e}, {0xdb, 0xb0}, {0xdc, 0x0e}, {0xde, 0x08}, {0xe4, 0xc6}, {0xe5, 0x08}, {0xe6, 0x10}, {0xed, 0x2a}, {0xfe, 0x02}, {0x59, 0x02}, {0x5a, 0x04}, {0x5b, 0x08}, {0x5c, 0x20}, {0xfe, 0x00}, {0x1a, 0x09}, {0x1d, 0x13}, {0xfe, 0x10}, {0xfe, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, /* Gamma */ {0xfe, 0x00}, {0x20, 0x54}, {0x33, 0x82}, {0xfe, 0x01}, {0xdf, 0x06}, {0xe7, 0x18}, {0xe8, 0x20}, {0xe9, 0x16}, {0xea, 0x17}, {0xeb, 0x50}, {0xec, 0x6c}, {0xed, 0x9b}, {0xee, 0xd8}, /*ISP*/ {0xfe, 0x00}, {0x80, 0x13}, {0x84, 0x01}, {0x89, 0x03}, {0x8d, 0x03}, {0x8f, 0x14}, {0xad, 0x00}, /*Crop window*/ {0x90, 0x01}, {0x92, FULL_STARTY}, {0x94, FULL_STARTX}, {0x95, 0x09}, {0x96, 0x90}, {0x97, 0x0c}, {0x98, 0xc0}, /*Gain*/ {0xb0, 0x90}, {0xb1, 0x01}, {0xb2, 0x00}, {0xb6, 0x00}, /*BLK*/ {0xfe, 0x00}, {0x40, 0x22}, {0x43, 0x03}, //add_offset {0x4e, 0x00}, //row_bits[15:8] {0x4f, 0x3c}, //row_bits[7:0] {0x58, 0x80}, //dark current ratio {0x59, 0x80}, {0x5a, 0x80}, {0x5b, 0x80}, {0x5c, 0x00}, {0x5d, 0x00}, {0x5e, 0x00}, {0x5f, 0x00}, /*WB offset*/ {0xfe, 0x01}, {0xbf, 0x40}, /*Dark Sun*/ {0xfe, 0x01}, {0x68, 0x77}, /*DPC*/ {0xfe, 0x01}, {0x60, 0x15}, {0x61, 0x10}, {0x62, 0x60}, {0x63, 0x48}, {0x64, 0x02}, /*LSC*/ {0xfe, 0x01}, {0xa0, 0x10}, //[6]segment_width[8], 0x[5:4]segment_height[9:8] {0xa8, 0x60}, //segment_height[7:0] {0xa2, 0xd1}, //height_ratio[7:0] {0xc8, 0x5b}, //[7:4]height_ratio[11:8] {0xa1, 0xb8}, //segment_width[7:0] {0xa3, 0x91}, //width_ratio[7:0] {0xc0, 0x50}, //[7:4]width_ratio[11:8] {0xd0, 0x05}, //segment_width_end[11:8] {0xd1, 0xb2}, //segment_width_end[7:0] {0xd2, 0x1f}, //col_segment {0xd3, 0x00}, //row_num_start[7:0] {0xd4, 0x00}, //[5:4]row_num_start[9:8] [3:0]col_seg_start {0xd5, 0x00}, //[7:2]col_num_start[7:2] {0xd6, 0x00}, //[2:0]col_num_start[10:8] {0xd7, 0x00}, //row_seg_start {0xd8, 0x00}, //col_cal_start[7:0] {0xd9, 0x00}, //[2:0]col_cal_start[10:8] /*ABB*/ {0xfe, 0x01}, {0x20, 0x02}, {0x21, 0x02}, {0x23, 0x43}, /*MIPI*/ {0xfe, 0x03}, {0x01, 0x07}, {0x02, 0x07}, {0x03, 0x92}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf0}, //lwc 3264*5/4 {0x13, 0x0f}, {0x15, 0x10}, //LP {0x16, 0x29}, {0x17, 0xff}, {0x18, 0x01}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x05}, {0x22, 0x05}, {0x23, 0x16}, {0x24, 0x00}, {0x25, 0x12}, {0x26, 0x07}, {0x29, 0x07}, {0x2a, 0x08}, {0x2b, 0x07}, {0xfe, 0x00}, //{0x3f, 0x91}, {0x3f, 0x00}, #endif {REG_NULL, 0x00}, }; #ifndef GC8034_2LANE_30FPS /* * Xclk 24Mhz * max_framerate 30fps * mipi_datarate per lane 672Mbps */ static const struct regval gc8034_1632x1224_regs_2lane[] = { /*SYS*/ {0xf2, 0x00}, {0xf4, 0x80}, {0xf5, 0x19}, {0xf6, 0x44}, {0xf8, 0x63}, {0xfa, 0x45}, {0xf9, 0x00}, {0xf7, 0x95}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xea}, {0xfe, 0x03}, {0x03, 0x9a}, {0xfc, 0xee}, {0xfe, 0x10}, {0xfe, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, /*ISP*/ {0xfe, 0x00}, {0x80, 0x10}, {0xad, 0x30}, {0x66, 0x2c}, {0xbc, 0x49}, /*Crop window*/ {0x90, 0x01}, {0x92, BINNING_STARTY}, //crop y {0x94, BINNING_STARTX}, //crop x {0x95, 0x04}, {0x96, 0xc8}, {0x97, 0x06}, {0x98, 0x60}, /*MIPI*/ {0xfe, 0x03}, {0x01, 0x07}, {0x02, 0x03}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf8}, {0x13, 0x07}, {0x15, 0x10}, //LP mode {0x16, 0x29}, {0x17, 0xff}, {0x18, 0x01}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x05}, {0x22, 0x06}, {0x23, 0x16}, {0x24, 0x00}, {0x25, 0x12}, {0x26, 0x07}, {0x29, 0x07}, {0x2a, 0x08}, {0x2b, 0x07}, {0xfe, 0x00}, {0x3f, 0x00}, {REG_NULL, 0x00}, }; #endif /* * Xclk 24Mhz * max_framerate 15fps * mipi_datarate per lane 672Mbps */ static const struct regval gc8034_3264x2448_regs_2lane[] = { #ifdef GC8034_2LANE_30FPS /* SYS */ {0xf2, 0x00}, {0xf4, 0x90}, {0xf5, 0x3d}, {0xf6, 0x44}, {0xf8, 0x63}, {0xfa, 0x42}, {0xf9, 0x00}, {0xf7, 0x95}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xea}, {0xfe, 0x03}, {0x03, 0x9a}, {0xfc, 0xee}, {0xfe, 0x00}, {0x3f, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, /* ISP */ {0xfe, 0x00}, {0x80, 0x13}, {0xad, 0x00}, {0x66, 0x0c}, {0xbc, 0x06}, /* Crop window */ {0x90, 0x01}, {0x92, FULL_STARTY}, {0x94, FULL_STARTX}, {0x95, 0x09}, {0x96, 0x90}, {0x97, 0x0c}, {0x98, 0xc0}, /* MIPI */ {0xfe, 0x03}, {0x01, 0x07}, {0x02, 0x04}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf0}, //lwc 3264*5/4 {0x13, 0x0f}, {0x15, 0x10}, //LP {0x16, 0x29}, {0x17, 0xff}, {0x18, 0x01}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x0c}, {0x22, 0x0c}, {0x23, 0x56}, {0x24, 0x00}, {0x25, 0x1c}, {0x26, 0x0b}, {0x29, 0x0e}, {0x2a, 0x1d}, {0x2b, 0x0b}, {0xfe, 0x00}, //{0x3f, 0x91}, {0x3f, 0x00}, #else /*SYS*/ {0xf2, 0x00}, {0xf4, 0x80}, {0xf5, 0x19}, {0xf6, 0x44}, {0xf7, 0x95}, //pll enable {0xf8, 0x63}, //pll mode {0xf9, 0x00}, {0xfa, 0x45}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xfe}, /* ISP */ {0xfe, 0x00}, {0x80, 0x13}, {0xad, 0x00}, {0x66, 0x0c}, {0xbc, 0x09}, /* Crop window */ {0x90, 0x01}, {0x92, FULL_STARTY}, {0x94, FULL_STARTX}, {0x95, 0x09}, {0x96, 0x90}, {0x97, 0x0c}, {0x98, 0xc0}, /* MIPI */ {0xfe, 0x03}, {0x01, 0x07}, {0x02, 0x03}, {0x03, 0x92}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf0}, //lwc 3264*5/4 {0x13, 0x0f}, {0x15, 0x10}, //LP {0x16, 0x29}, {0x17, 0xff}, {0x18, 0x01}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x05}, {0x22, 0x05}, {0x23, 0x16}, {0x24, 0x00}, {0x25, 0x12}, {0x26, 0x07}, {0x29, 0x07}, {0x2a, 0x08}, {0x2b, 0x07}, {0xfe, 0x00}, //{0x3f, 0x91}, {0x3f, 0x00}, #endif {REG_NULL, 0x00}, }; /* * Xclk 24Mhz */ static const struct regval gc8034_global_regs_4lane[] = { /*SYS*/ {0xf2, 0x00}, {0xf4, 0x80}, {0xf5, 0x19}, {0xf6, 0x44}, {0xf8, 0x63}, {0xfa, 0x45}, {0xf9, 0x00}, {0xf7, 0x9d}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xea}, {0xfe, 0x03}, {0x03, 0x9a}, {0x18, 0x07}, {0x01, 0x07}, {0xfc, 0xee}, /*Cisctl&Analog*/ {0xfe, 0x00}, {0x03, 0x08}, {0x04, 0xc6}, {0x05, 0x02}, {0x06, 0x16}, {0x07, 0x00}, {0x08, 0x10}, {0x0a, 0x3a}, {0x0b, 0x00}, {0x0c, 0x04}, {0x0d, 0x09}, {0x0e, 0xa0}, {0x0f, 0x0c}, {0x10, 0xd4}, {0x17, 0xc0}, {0x18, 0x02}, {0x19, 0x17}, {0x1e, 0x50}, {0x1f, 0x80}, {0x21, 0x4c}, {0x25, 0x00}, {0x28, 0x4a}, {0x2d, 0x89}, {0xca, 0x02}, {0xcb, 0x00}, {0xcc, 0x39}, {0xce, 0xd0}, {0xcf, 0x93}, {0xd0, 0x19}, {0xd1, 0xaa}, {0xd2, 0xcb}, {0xd8, 0x40}, {0xd9, 0xff}, {0xda, 0x0e}, {0xdb, 0xb0}, {0xdc, 0x0e}, {0xde, 0x08}, {0xe4, 0xc6}, {0xe5, 0x08}, {0xe6, 0x10}, {0xed, 0x2a}, {0xfe, 0x02}, {0x59, 0x02}, {0x5a, 0x04}, {0x5b, 0x08}, {0x5c, 0x20}, {0xfe, 0x00}, {0x1a, 0x09}, {0x1d, 0x13}, {0xfe, 0x10}, {0xfe, 0x00}, {0xfe, 0x10}, {0xfe, 0x00}, /*Gamma*/ {0xfe, 0x00}, {0x20, 0x55}, {0x33, 0x83}, {0xfe, 0x01}, {0xdf, 0x06}, {0xe7, 0x18}, {0xe8, 0x20}, {0xe9, 0x16}, {0xea, 0x17}, {0xeb, 0x50}, {0xec, 0x6c}, {0xed, 0x9b}, {0xee, 0xd8}, /*ISP*/ {0xfe, 0x00}, {0x80, 0x10}, {0x84, 0x01}, {0x88, 0x03}, {0x89, 0x03}, {0x8d, 0x03}, {0x8f, 0x14}, {0xad, 0x30}, {0x66, 0x2c}, {0xbc, 0x49}, {0xc2, 0x7f}, {0xc3, 0xff}, /*Crop window*/ {0x90, 0x01}, {0x92, 0x08}, {0x94, 0x09}, {0x95, 0x04}, {0x96, 0xc8}, {0x97, 0x06}, {0x98, 0x60}, /*Gain*/ {0xb0, 0x90}, {0xb1, 0x01}, {0xb2, 0x00}, {0xb6, 0x00}, /*BLK*/ {0xfe, 0x00}, {0x40, 0x22}, {0x41, 0x20}, {0x42, 0x02}, {0x43, 0x08}, {0x4e, 0x0f}, {0x4f, 0xf0}, {0x58, 0x80}, {0x59, 0x80}, {0x5a, 0x80}, {0x5b, 0x80}, {0x5c, 0x00}, {0x5d, 0x00}, {0x5e, 0x00}, {0x5f, 0x00}, {0x6b, 0x01}, {0x6c, 0x00}, {0x6d, 0x0c}, /*WB offset*/ {0xfe, 0x01}, {0xbf, 0x40}, /*Dark Sun*/ {0xfe, 0x01}, {0x68, 0x77}, /*DPC*/ {0xfe, 0x01}, {0x60, 0x00}, {0x61, 0x10}, {0x62, 0x28}, {0x63, 0x10}, {0x64, 0x02}, /*LSC*/ {0xfe, 0x01}, {0xa8, 0x60}, {0xa2, 0xd1}, {0xc8, 0x57}, {0xa1, 0xb8}, {0xa3, 0x91}, {0xc0, 0x50}, {0xd0, 0x05}, {0xd1, 0xb2}, {0xd2, 0x1f}, {0xd3, 0x00}, {0xd4, 0x00}, {0xd5, 0x00}, {0xd6, 0x00}, {0xd7, 0x00}, {0xd8, 0x00}, {0xd9, 0x00}, {0xa4, 0x10}, {0xa5, 0x20}, {0xa6, 0x60}, {0xa7, 0x80}, {0xab, 0x18}, {0xc7, 0xc0}, /*ABB*/ {0xfe, 0x01}, {0x20, 0x02}, {0x21, 0x02}, {0x23, 0x42}, /*MIPI*/ {0xfe, 0x03}, {0x02, 0x03}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf8}, {0x13, 0x07}, {0x15, 0x10}, {0x16, 0x29}, {0x17, 0xff}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x02}, {0x22, 0x03}, {0x23, 0x0a}, {0x24, 0x00}, {0x25, 0x12}, {0x26, 0x04}, {0x29, 0x04}, {0x2a, 0x02}, {0x2b, 0x04}, {0xfe, 0x00}, {0x3f, 0x00}, /*SYS*/ {0xf2, 0x00}, {0xf4, 0x80}, {0xf5, 0x19}, {0xf6, 0x44}, {0xf8, 0x63}, {0xfa, 0x45}, {0xf9, 0x00}, {0xf7, 0x95}, {0xfc, 0x00}, {0xfc, 0x00}, {0xfc, 0xea}, {0xfe, 0x03}, {0x03, 0x9a}, {0x18, 0x07}, {0x01, 0x07}, {0xfc, 0xee}, /*ISP*/ {0xfe, 0x00}, {0x80, 0x13}, {0xad, 0x00}, /*Crop window*/ {0x90, 0x01}, {0x92, 0x08}, {0x94, 0x09}, {0x95, 0x09}, {0x96, 0x90}, {0x97, 0x0c}, {0x98, 0xc0}, /*DPC*/ {0xfe, 0x01}, {0x62, 0x60}, {0x63, 0x48}, /*MIPI*/ {0xfe, 0x03}, {0x02, 0x03}, {0x04, 0x80}, {0x11, 0x2b}, {0x12, 0xf0}, {0x13, 0x0f}, {0x15, 0x10}, {0x16, 0x29}, {0x17, 0xff}, {0x19, 0xaa}, {0x1a, 0x02}, {0x21, 0x05}, {0x22, 0x06}, {0x23, 0x2b}, {0x24, 0x00}, {0x25, 0x12}, {0x26, 0x07}, {0x29, 0x07}, {0x2a, 0x12}, {0x2b, 0x07}, {0xfe, 0x00}, {0x3f, 0x00}, {REG_NULL, 0x00}, }; /* * Xclk 24Mhz * max_framerate 30fps * mipi_datarate per lane 656Mbps */ static const struct regval gc8034_3264x2448_regs_4lane[] = { {REG_NULL, 0x00}, }; static const struct gc8034_mode supported_modes_2lane[] = { #ifdef GC8034_2LANE_30FPS { .width = 3264, .height = 2448, .max_fps = { .numerator = 10000, .denominator = 300000, }, .exp_def = 0x0900, .hts_def = 0x0858 * 2, .vts_def = 0x09c0, .mipi_freq_idx = 1, .global_reg_list = gc8034_global_regs_2lane, .reg_list = gc8034_3264x2448_regs_2lane, .vc[PAD0] = 0, }, #else { .width = 3264, .height = 2448, .max_fps = { .numerator = 10000, .denominator = 150000, }, .exp_def = 0x09a0, .hts_def = 0x0858 * 2, .vts_def = 0x09c4, .mipi_freq_idx = 0, .global_reg_list = gc8034_global_regs_2lane, .reg_list = gc8034_3264x2448_regs_2lane, .vc[PAD0] = 0, }, { .width = 1632, .height = 1224, .max_fps = { .numerator = 10000, .denominator = 300000, }, .exp_def = 0x09a0, .hts_def = 0x0858 * 2, .vts_def = 0x09c4, .mipi_freq_idx = 0, .global_reg_list = gc8034_global_regs_2lane, .reg_list = gc8034_1632x1224_regs_2lane, .vc[PAD0] = 0, }, #endif }; static const struct gc8034_mode supported_modes_4lane[] = { { .width = 3264, .height = 2448, .max_fps = { .numerator = 10000, .denominator = 300000, }, .exp_def = 0x08c6, .hts_def = 0x10b0, .vts_def = 0x09c0, .mipi_freq_idx = 0, .global_reg_list = gc8034_global_regs_4lane, .reg_list = gc8034_3264x2448_regs_4lane, .vc[PAD0] = 0, }, }; static const struct gc8034_mode *supported_modes; static const s64 link_freq_menu_items[] = { GC8034_MIPI_FREQ_336MHZ, GC8034_MIPI_FREQ_634MHZ }; /* Write registers up to 4 at a time */ static int gc8034_write_reg(struct i2c_client *client, u8 reg, u8 val) { struct i2c_msg msg; u8 buf[2]; int ret; buf[0] = reg & 0xFF; buf[1] = val; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret >= 0) return 0; dev_err(&client->dev, "gc8034 write reg(0x%x val:0x%x) failed !\n", reg, val); return ret; } static int gc8034_write_array(struct i2c_client *client, const struct regval *regs) { u32 i = 0; int ret = 0; for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++) ret = gc8034_write_reg(client, regs[i].addr, regs[i].val); return ret; } /* Read registers up to 4 at a time */ static int gc8034_read_reg(struct i2c_client *client, u8 reg, u8 *val) { struct i2c_msg msg[2]; u8 buf[1]; int ret; buf[0] = reg & 0xFF; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = buf; msg[1].len = 1; ret = i2c_transfer(client->adapter, msg, 2); if (ret >= 0) { *val = buf[0]; return 0; } dev_err(&client->dev, "gc8034 read reg:0x%x failed !\n", reg); return ret; } static int gc8034_get_reso_dist(const struct gc8034_mode *mode, struct v4l2_mbus_framefmt *framefmt) { return abs(mode->width - framefmt->width) + abs(mode->height - framefmt->height); } static const struct gc8034_mode * gc8034_find_best_fit(struct gc8034 *gc8034, struct v4l2_subdev_format *fmt) { struct v4l2_mbus_framefmt *framefmt = &fmt->format; int dist; int cur_best_fit = 0; int cur_best_fit_dist = -1; unsigned int i; for (i = 0; i < gc8034->cfg_num; i++) { dist = gc8034_get_reso_dist(&supported_modes[i], framefmt); if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) { cur_best_fit_dist = dist; cur_best_fit = i; } } return &supported_modes[cur_best_fit]; } static int gc8034_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct gc8034 *gc8034 = to_gc8034(sd); const struct gc8034_mode *mode; s64 h_blank, vblank_def; mutex_lock(&gc8034->mutex); mode = gc8034_find_best_fit(gc8034, fmt); fmt->format.code = GC8034_MEDIA_BUS_FMT; fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.field = V4L2_FIELD_NONE; if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format; #else mutex_unlock(&gc8034->mutex); return -ENOTTY; #endif } else { gc8034->cur_mode = mode; h_blank = mode->hts_def - mode->width; __v4l2_ctrl_modify_range(gc8034->hblank, h_blank, h_blank, 1, h_blank); vblank_def = mode->vts_def - mode->height; __v4l2_ctrl_modify_range(gc8034->vblank, vblank_def, GC8034_VTS_MAX - mode->height, 1, vblank_def); __v4l2_ctrl_s_ctrl(gc8034->vblank, vblank_def); __v4l2_ctrl_s_ctrl(gc8034->link_freq, mode->mipi_freq_idx); } mutex_unlock(&gc8034->mutex); return 0; } static int gc8034_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct gc8034 *gc8034 = to_gc8034(sd); const struct gc8034_mode *mode = gc8034->cur_mode; mutex_lock(&gc8034->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad); #else mutex_unlock(&gc8034->mutex); return -ENOTTY; #endif } else { fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.code = GC8034_MEDIA_BUS_FMT; fmt->format.field = V4L2_FIELD_NONE; } mutex_unlock(&gc8034->mutex); return 0; } static int gc8034_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index != 0) return -EINVAL; code->code = GC8034_MEDIA_BUS_FMT; return 0; } static int gc8034_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct gc8034 *gc8034 = to_gc8034(sd); if (fse->index >= gc8034->cfg_num) return -EINVAL; if (fse->code != GC8034_MEDIA_BUS_FMT) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = supported_modes[fse->index].width; fse->max_height = supported_modes[fse->index].height; fse->min_height = supported_modes[fse->index].height; return 0; } static int gc8034_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct gc8034 *gc8034 = to_gc8034(sd); const struct gc8034_mode *mode = gc8034->cur_mode; fi->interval = mode->max_fps; return 0; } #ifdef RK_OTP static void gc8034_get_otp(struct otp_info *otp, struct rkmodule_inf *inf) { u32 i, j; u32 w, h; /* awb */ if (otp->awb_data.flag) { inf->awb.flag = 1; inf->awb.r_value = otp->awb_data.r_ratio; inf->awb.b_value = otp->awb_data.b_ratio; inf->awb.gr_value = otp->awb_data.g_ratio; inf->awb.gb_value = 0x0; inf->awb.golden_r_value = otp->awb_data.r_golden; inf->awb.golden_b_value = otp->awb_data.b_golden; inf->awb.golden_gr_value = otp->awb_data.g_golden; inf->awb.golden_gb_value = 0x0; } /* lsc */ if (otp->lsc_data.flag) { inf->lsc.flag = 1; inf->lsc.width = otp->basic_data.size.width; inf->lsc.height = otp->basic_data.size.height; inf->lsc.table_size = otp->lsc_data.table_size; for (i = 0; i < 289; i++) { inf->lsc.lsc_r[i] = (otp->lsc_data.data[i * 2] << 8) | otp->lsc_data.data[i * 2 + 1]; inf->lsc.lsc_gr[i] = (otp->lsc_data.data[i * 2 + 578] << 8) | otp->lsc_data.data[i * 2 + 579]; inf->lsc.lsc_gb[i] = (otp->lsc_data.data[i * 2 + 1156] << 8) | otp->lsc_data.data[i * 2 + 1157]; inf->lsc.lsc_b[i] = (otp->lsc_data.data[i * 2 + 1734] << 8) | otp->lsc_data.data[i * 2 + 1735]; } } /* pdaf */ if (otp->pdaf_data.flag) { inf->pdaf.flag = 1; inf->pdaf.gainmap_width = otp->pdaf_data.gainmap_width; inf->pdaf.gainmap_height = otp->pdaf_data.gainmap_height; inf->pdaf.pd_offset = otp->pdaf_data.pd_offset; inf->pdaf.dcc_mode = otp->pdaf_data.dcc_mode; inf->pdaf.dcc_dir = otp->pdaf_data.dcc_dir; inf->pdaf.dccmap_width = otp->pdaf_data.dccmap_width; inf->pdaf.dccmap_height = otp->pdaf_data.dccmap_height; w = otp->pdaf_data.gainmap_width; h = otp->pdaf_data.gainmap_height; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { inf->pdaf.gainmap[i * w + j] = (otp->pdaf_data.gainmap[(i * w + j) * 2] << 8) | otp->pdaf_data.gainmap[(i * w + j) * 2 + 1]; } } w = otp->pdaf_data.dccmap_width; h = otp->pdaf_data.dccmap_height; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { inf->pdaf.dccmap[i * w + j] = (otp->pdaf_data.dccmap[(i * w + j) * 2] << 8) | otp->pdaf_data.dccmap[(i * w + j) * 2 + 1]; } } } /* af */ if (otp->af_data.flag) { inf->af.flag = 1; inf->af.dir_cnt = 1; inf->af.af_otp[0].vcm_start = otp->af_data.af_inf; inf->af.af_otp[0].vcm_end = otp->af_data.af_macro; inf->af.af_otp[0].vcm_dir = 0; } } #else #define DD_WIDTH 3284 #define DD_HEIGHT 2464 #define DD_PARAM_QTY 350 #define WINDOW_WIDTH 0x0cd4//3284 max effective pixels #define WINDOW_HEIGHT 0x09a0//2462 #define REG_ROM_START 0x4e #define INFO_ROM_START 0x70 #define INFO_WIDTH 0x08 #define WB_ROM_START 0x5f #define WB_WIDTH 0x04 #define GOLDEN_ROM_START 0x67//golden R/G ratio #define GOLDEN_WIDTH 0x04 #define LSC_NUM 99//0x63 //(7+2)*(9+2) #define VCM_START 0x3B #define VCM_WIDTH 0x04 static int gc8034_otp_read_reg(struct i2c_client *client, int page, int address) { int ret = 0; u8 val = 0; ret = gc8034_write_reg(client, 0xfe, 0x00); ret |= gc8034_write_reg(client, 0xD4, ((page << 2) & 0x3c) + ((address >> 5) & 0x03)); ret |= gc8034_write_reg(client, 0xD5, (address << 3) & 0xff); ret |= gc8034_write_reg(client, 0xF3, 0x20); ret |= gc8034_read_reg(client, 0xD7, &val); if (ret != 0) return ret; return val; } static int gc8034_otp_read_group(struct i2c_client *client, int page, int address, u8 *buf, int size) { int i = 0; int val = 0; for (i = 0; i < size; i++) { if ((address % 0x80) == 0) { page += 1; address = 0; } val = gc8034_otp_read_reg(client, page, address); if (val >= 0) buf[i] = val; else return val; address += 1; } return 0; } static int gc8034_otp_enable(struct gc8034 *gc8034) { struct i2c_client *client = gc8034->client; u8 otp_clk = 0; u8 otp_en = 0; int ret = 0; ret = gc8034_write_reg(client, 0xf2, 0x00); ret |= gc8034_write_reg(client, 0xf4, 0x80); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xf7, 0x97); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xfc, 0xee); ret |= gc8034_read_reg(client, 0xF2, &otp_clk); ret |= gc8034_read_reg(client, 0xF4, &otp_en); otp_clk |= 0x01; otp_en |= 0x08; ret |= gc8034_write_reg(client, 0xF2, otp_clk); ret |= gc8034_write_reg(client, 0xF4, otp_en); usleep_range(100, 200); return ret; } static int gc8034_otp_disable(struct gc8034 *gc8034) { struct i2c_client *client = gc8034->client; u8 otp_clk = 0; u8 otp_en = 0; int ret = 0; ret = gc8034_read_reg(client, 0xF2, &otp_clk); ret |= gc8034_read_reg(client, 0xF4, &otp_en); otp_clk &= 0xFE; otp_en &= 0xF7; ret |= gc8034_write_reg(client, 0xF2, otp_clk); ret |= gc8034_write_reg(client, 0xF4, otp_en); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xf7, 0x95); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xfc, 0x00); ret |= gc8034_write_reg(client, 0xfc, 0xee); return ret; } static void gc8034_check_prsel(struct gc8034 *gc8034) { struct i2c_client *client = gc8034->client; u8 product_level = 0; gc8034_write_reg(client, 0xfe, 0x02); gc8034_read_reg(client, 0x68, &product_level); product_level &= 0x07; if (product_level == 0x00 || product_level == 0x01) { gc8034_write_reg(client, 0xfe, 0x00); gc8034_write_reg(client, 0xd2, 0xcb); } else { gc8034_write_reg(client, 0xfe, 0x00); gc8034_write_reg(client, 0xd2, 0xc3); } } static int gc8034_otp_read(struct gc8034 *gc8034) { int otp_flag, i, j, index, temp; struct gc8034_otp_info *otp_ptr; struct device *dev = &gc8034->client->dev; struct i2c_client *client = gc8034->client; int ret = 0; int cnt = 0; int checksum = 0; u8 info[8] = {0}; u8 wb[4] = {0}; u8 vcm[4] = {0}; u8 golden[4] = {0}; int total_number = 0; u8 ddtempbuff[4 * 80] = { 0 }; otp_ptr = devm_kzalloc(dev, sizeof(*otp_ptr), GFP_KERNEL); if (!otp_ptr) return -ENOMEM; /* OTP base information*/ otp_flag = gc8034_otp_read_reg(client, 9, 0x6f); for (index = 0; index < 2; index++) { switch ((otp_flag << (2 * index)) & 0x0c) { case 0x00: dev_err(dev, "%s GC8034_OTP_INFO group %d is Empty!\n", __func__, index + 1); break; case 0x04: dev_err(dev, "%s GC8034_OTP_INFO group %d is Valid!\n", __func__, index + 1); checksum = 0; ret |= gc8034_otp_read_group(client, 9, (INFO_ROM_START + index * INFO_WIDTH), &info[0], INFO_WIDTH); if (ret < 0) { dev_err(dev, "%s read otp error!\n", __func__); return ret; } for (i = 0; i < INFO_WIDTH - 1; i++) checksum += info[i]; if ((checksum % 255 + 1) == info[INFO_WIDTH - 1]) { otp_ptr->flag = 0x80; otp_ptr->module_id = info[0]; otp_ptr->lens_id = info[1]; otp_ptr->year = info[4]; otp_ptr->month = info[5]; otp_ptr->day = info[6]; dev_err(dev, "fac info: module(0x%x) lens(0x%x) time(%d_%d_%d)!\n", otp_ptr->module_id, otp_ptr->lens_id, otp_ptr->year, otp_ptr->month, otp_ptr->day); } else { dev_err(dev, "%s GC8034_OTP_INFO Check sum %d Error!\n", __func__, index + 1); } break; case 0x08: case 0x0c: dev_err(dev, "%s GC8034_OTP_INFO group %d is Invalid !!\n", __func__, index + 1); break; default: break; } } /* OTP WB calibration data */ otp_flag = gc8034_otp_read_reg(client, 9, 0x5e); for (index = 0; index < 2; index++) { switch ((otp_flag << (2 * index)) & 0x0c) { case 0x00: dev_err(dev, "%s GC8034_OTP_WB group %d is Empty !\n", __func__, index + 1); break; case 0x04: dev_err(dev, "%s GC8034_OTP_WB group %d is Valid !!\n", __func__, index + 1); checksum = 0; ret |= gc8034_otp_read_group(client, 9, (WB_ROM_START + index * WB_WIDTH), &wb[0], WB_WIDTH); if (ret < 0) { dev_err(dev, "%s read otp error!\n", __func__); return ret; } for (i = 0; i < WB_WIDTH - 1; i++) checksum += wb[i]; if ((checksum % 255 + 1) == wb[WB_WIDTH - 1]) { otp_ptr->flag |= 0x40; /* valid AWB in OTP */ otp_ptr->rg_ratio = ((wb[1] & 0xf0) << 4) | wb[0]; otp_ptr->bg_ratio = ((wb[1] & 0x0f) << 8) | wb[2]; dev_err(dev, "otp:(rg_ratio 0x%x, bg_ratio 0x%x)\n", otp_ptr->rg_ratio, otp_ptr->bg_ratio); } else { dev_err(dev, "%s GC8034_OTP_WB Check sum %d Error !!\n", __func__, index + 1); } break; case 0x08: case 0x0c: dev_err(dev, "%s GC8034_OTP_WB group %d is Invalid !!\n", __func__, index + 1); break; default: break; } switch ((otp_flag << (2 * index)) & 0xc0) { case 0x00: dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Empty!\n", __func__, index + 1); break; case 0x40: dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Valid !!\n", __func__, index + 1); checksum = 0; ret = gc8034_otp_read_group(client, 9, (GOLDEN_ROM_START + index * GOLDEN_WIDTH), &golden[0], GOLDEN_WIDTH); if (ret < 0) { dev_err(dev, "%s read otp error!\n", __func__); return ret; } for (i = 0; i < GOLDEN_WIDTH - 1; i++) checksum += golden[i]; if ((checksum % 255 + 1) == golden[GOLDEN_WIDTH - 1]) { otp_ptr->golden_rg = golden[0] | ((golden[1] & 0xf0) << 4); otp_ptr->golden_bg = ((golden[1] & 0x0f) << 8) | golden[2]; dev_err(dev, "otp:(golden_rg 0x%x, golden_bg 0x%x)\n", otp_ptr->golden_rg, otp_ptr->golden_bg); } else { dev_err(dev, "%s GC8034_OTP_GOLDEN Check sum %d Error !!\n", __func__, index + 1); } break; case 0x80: case 0xc0: dev_err(dev, "%s GC8034_OTP_GOLDEN group %d is Invalid !!\n", __func__, index + 1); break; default: break; } } /* OTP VCM calibration data */ otp_flag = gc8034_otp_read_reg(client, 3, 0x3A); for (index = 0; index < 2; index++) { switch ((otp_flag << (2 * index)) & 0x0c) { case 0x00: dev_err(dev, "%s GC8034_OTP_VCM group %d is Empty !\n", __func__, index + 1); break; case 0x04: dev_err(dev, "%s GC8034_OTP_VCM group %d is Valid !\n", __func__, index + 1); ret |= gc8034_otp_read_group(client, 3, (VCM_START + index * VCM_WIDTH), &vcm[0], VCM_WIDTH); if (ret < 0) { dev_err(dev, "%s read otp error!\n", __func__); return ret; } checksum = 0; for (i = 0; i < 3; i++) checksum += vcm[i]; if ((checksum % 255 + 1) == vcm[3]) { otp_ptr->flag |= 0x20; /* valid LSC in OTP */ otp_ptr->vcm_dir = 0;//not dir register otp_ptr->vcm_start = ((vcm[0] & 0x0f) << 8) + vcm[2]; otp_ptr->vcm_end = ((vcm[0] & 0xf0) << 4) + vcm[1]; dev_err(dev, "%s GC8034_OTP_VCM check sum success\n", __func__); dev_err(dev, "vcm_info: 0x%x, 0x%x, 0x%x!\n", otp_ptr->vcm_start, otp_ptr->vcm_end, otp_ptr->vcm_dir); } else { dev_err(dev, "VCM check sum read: 0x%x, calculate:0x%x\n", vcm[3], checksum % 255 + 1); } break; case 0x08: case 0x0c: dev_err(dev, "%s GC8034_OTP_VCM group %d is Invalid !\n", __func__, index + 1); break; default: break; } } /* OTP LSC calibration data */ otp_flag = gc8034_otp_read_reg(client, 3, 0x43); for (index = 0; index < 2; index++) { switch ((otp_flag << (2 * index)) & 0x0c) { case 0x00: dev_err(dev, "%s GC8034_OTP_LSC group %d is Empty !\n", __func__, index + 1); break; case 0x04: dev_err(dev, "%s GC8034_OTP_LSC group %d is Valid !\n", __func__, index + 1); if (index == 0) { ret |= gc8034_otp_read_group(client, 3, 0x44, otp_ptr->lsc, 396); temp = gc8034_otp_read_reg(client, 6, 0x50); } else { ret |= gc8034_otp_read_group(client, 6, 0x51, otp_ptr->lsc, 396); temp = gc8034_otp_read_reg(client, 9, 0x5d); } checksum = 0; for (i = 0; i < 396; i++) { checksum += otp_ptr->lsc[i]; usleep_range(100, 200); dev_err(dev, "otp lsc[%d] = %d\n", i, otp_ptr->lsc[i]); } if ((checksum % 255 + 1) == temp) { otp_ptr->flag |= 0x10; /* valid LSC in OTP */ dev_err(dev, "%s GC8034_OTP_LSC check sum success\n", __func__); } else { dev_err(dev, "LSC check sum read: 0x%x, calculate:0x%x\n", temp, checksum % 255 + 1); } break; case 0x08: case 0x0c: dev_err(dev, "%s GC8034_OTP_LSC group %d is Invalid !\n", __func__, index + 1); break; default: break; } } /* OTP DD calibration data */ otp_flag = gc8034_otp_read_reg(client, 0, 0x0b); for (index = 0; index < 2; index++) { switch (otp_flag & 0x03) { case 0x00: dev_err(dev, "%s GC8034 OTP:flag_dd is EMPTY!\n", __func__); break; case 0x04: dev_err(dev, "%s GC8034_OTP_DD group %d is valid!\n", __func__, index + 1); total_number = gc8034_otp_read_reg(client, 0, 0x0c) + gc8034_otp_read_reg(client, 0, 0x0d); ret |= gc8034_otp_read_group(client, 0, 0x0e, &ddtempbuff[0], 4 * total_number); for (i = 0; i < total_number; i++) { if ((ddtempbuff[4 * i + 3] & 0x80) == 0x80) { if ((ddtempbuff[4 * i + 3] & 0x03) == 0x03) { otp_ptr->dd_param[cnt].x = (((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) + ddtempbuff[4 * i]; otp_ptr->dd_param[cnt].y = ((u16)ddtempbuff[4 * i + 2] << 4) + ((ddtempbuff[4 * i + 1] & 0xf0) >> 4); otp_ptr->dd_param[cnt++].t = 2; otp_ptr->dd_param[cnt].x = (((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) + ddtempbuff[4 * i]; otp_ptr->dd_param[cnt].y = ((u16)ddtempbuff[4 * i + 2] << 4) + ((ddtempbuff[4 * i + 1] & 0xf0) >> 4) + 1; otp_ptr->dd_param[cnt++].t = 2; } else { otp_ptr->dd_param[cnt].x = (((u16)ddtempbuff[4 * i + 1] & 0x0f) << 8) + ddtempbuff[4 * i]; otp_ptr->dd_param[cnt].y = ((u16)ddtempbuff[4 * i + 2] << 4) + ((ddtempbuff[4 * i + 1] & 0xf0) >> 4); otp_ptr->dd_param[cnt++].t = ddtempbuff[4 * i + 3] & 0x03; } } } otp_ptr->dd_cnt = total_number; otp_ptr->flag |= 0x08; dev_err(dev, "%s GC8034 OTP:total_number = %d!\n", __func__, total_number); break; case 0x08: case 0x0c: dev_err(dev, "%s GC8034_OTP_DD group %d is Invalid!\n", __func__, index + 1); break; default: break; } } /* OTP Chip Register*/ otp_flag = gc8034_otp_read_reg(client, 2, 0x4e); if (otp_flag == 1) { for (i = 0; i < 5; i++) { dev_err(dev, "%s GC8034 reg is valid!\n", __func__); temp = gc8034_otp_read_reg(client, 2, (0x4f + 5 * i)); for (j = 0; j < 2; j++) { if (((temp >> (4 * j + 3)) & 0x01) == 0x01) { otp_ptr->reg_page[otp_ptr->reg_num] = (temp >> (4 * j)) & 0x03; otp_ptr->reg_addr[otp_ptr->reg_num] = gc8034_otp_read_reg(client, 2, 0x50 + 5 * i + 2 * j); otp_ptr->reg_value[otp_ptr->reg_num] = gc8034_otp_read_reg(client, 2, 0x50 + 5 * i + 2 * j + 1); otp_ptr->reg_num++; } } } otp_ptr->flag |= 0x04; } if (otp_ptr->flag) { gc8034->otp = otp_ptr; } else { gc8034->otp = NULL; devm_kfree(dev, otp_ptr); } return 0; } static void gc8034_get_otp(struct gc8034_otp_info *otp, struct rkmodule_inf *inf) { u32 i; /* fac */ if (otp->flag & 0x80) { inf->fac.flag = 1; inf->fac.year = otp->year; inf->fac.month = otp->month; inf->fac.day = otp->day; for (i = 0; i < ARRAY_SIZE(gc8034_module_info) - 1; i++) { if (gc8034_module_info[i].id == otp->module_id) break; } strlcpy(inf->fac.module, gc8034_module_info[i].name, sizeof(inf->fac.module)); for (i = 0; i < ARRAY_SIZE(gc8034_lens_info) - 1; i++) { if (gc8034_lens_info[i].id == otp->lens_id) break; } strlcpy(inf->fac.lens, gc8034_lens_info[i].name, sizeof(inf->fac.lens)); } /* awb */ if (otp->flag & 0x40) { inf->awb.flag = 1; inf->awb.r_value = otp->rg_ratio; inf->awb.b_value = otp->bg_ratio; inf->awb.gr_value = 0; inf->awb.gb_value = 0; inf->awb.golden_r_value = 0; inf->awb.golden_b_value = 0; inf->awb.golden_gr_value = 0; inf->awb.golden_gb_value = 0; } /* af */ if (otp->flag & 0x20) { inf->af.flag = 1; inf->af.dir_cnt = 1; inf->af.af_otp[0].vcm_start = otp->vcm_start; inf->af.af_otp[0].vcm_end = otp->vcm_end; inf->af.af_otp[0].vcm_dir = otp->vcm_dir; } } #endif static void gc8034_get_module_inf(struct gc8034 *gc8034, struct rkmodule_inf *inf) { #ifdef RK_OTP struct otp_info *otp = gc8034->otp; #else struct gc8034_otp_info *otp = gc8034->otp; #endif strlcpy(inf->base.sensor, GC8034_NAME, sizeof(inf->base.sensor)); strlcpy(inf->base.module, gc8034->module_name, sizeof(inf->base.module)); strlcpy(inf->base.lens, gc8034->len_name, sizeof(inf->base.lens)); if (otp) gc8034_get_otp(otp, inf); } static void gc8034_set_module_inf(struct gc8034 *gc8034, struct rkmodule_awb_cfg *cfg) { mutex_lock(&gc8034->mutex); memcpy(&gc8034->awb_cfg, cfg, sizeof(*cfg)); mutex_unlock(&gc8034->mutex); } static int gc8034_get_channel_info(struct gc8034 *gc8034, struct rkmodule_channel_info *ch_info) { if (ch_info->index < PAD0 || ch_info->index >= PAD_MAX) return -EINVAL; ch_info->vc = gc8034->cur_mode->vc[ch_info->index]; ch_info->width = gc8034->cur_mode->width; ch_info->height = gc8034->cur_mode->height; ch_info->bus_fmt = GC8034_MEDIA_BUS_FMT; return 0; } static long gc8034_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { struct gc8034 *gc8034 = to_gc8034(sd); long ret = 0; u32 stream = 0; struct rkmodule_channel_info *ch_info; switch (cmd) { case RKMODULE_GET_MODULE_INFO: gc8034_get_module_inf(gc8034, (struct rkmodule_inf *)arg); break; case RKMODULE_AWB_CFG: gc8034_set_module_inf(gc8034, (struct rkmodule_awb_cfg *)arg); break; case RKMODULE_SET_QUICK_STREAM: stream = *((u32 *)arg); if (stream) { ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); if (2 == gc8034->lane_num) { ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, 0x91); } else { ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, GC8034_MODE_STREAMING); } } else { ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, GC8034_MODE_SW_STANDBY); } break; case RKMODULE_GET_CHANNEL_INFO: ch_info = (struct rkmodule_channel_info *)arg; ret = gc8034_get_channel_info(gc8034, ch_info); break; default: ret = -ENOTTY; break; } return ret; } #ifdef CONFIG_COMPAT static long gc8034_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd, unsigned long arg) { void __user *up = compat_ptr(arg); struct rkmodule_inf *inf; struct rkmodule_awb_cfg *cfg; long ret = 0; u32 stream = 0; struct rkmodule_channel_info *ch_info; switch (cmd) { case RKMODULE_GET_MODULE_INFO: inf = kzalloc(sizeof(*inf), GFP_KERNEL); if (!inf) { ret = -ENOMEM; return ret; } ret = gc8034_ioctl(sd, cmd, inf); if (!ret) { ret = copy_to_user(up, inf, sizeof(*inf)); if (ret) ret = -EFAULT; } kfree(inf); break; case RKMODULE_AWB_CFG: cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { ret = -ENOMEM; return ret; } ret = copy_from_user(cfg, up, sizeof(*cfg)); if (!ret) ret = gc8034_ioctl(sd, cmd, cfg); else ret = -EFAULT; kfree(cfg); break; case RKMODULE_SET_QUICK_STREAM: ret = copy_from_user(&stream, up, sizeof(u32)); if (!ret) ret = gc8034_ioctl(sd, cmd, &stream); else ret = -EFAULT; break; case RKMODULE_GET_CHANNEL_INFO: ch_info = kzalloc(sizeof(*ch_info), GFP_KERNEL); if (!ch_info) { ret = -ENOMEM; return ret; } ret = gc8034_ioctl(sd, cmd, ch_info); if (!ret) { ret = copy_to_user(up, ch_info, sizeof(*ch_info)); if (ret) ret = -EFAULT; } kfree(ch_info); break; default: ret = -ENOTTY; break; } return ret; } #endif #ifndef RK_OTP /*--------------------------------------------------------------------------*/ static int gc8034_apply_otp(struct gc8034 *gc8034) { int R_gain, G_gain, B_gain, base_gain; struct i2c_client *client = gc8034->client; struct gc8034_otp_info *otp_ptr = gc8034->otp; struct rkmodule_awb_cfg *awb_cfg = &gc8034->awb_cfg; u32 golden_bg_ratio; u32 golden_rg_ratio; u32 golden_g_value; u32 i, j; u16 base = 0; u32 dd_cnt = 0; u8 temp_val0 = 0; u8 temp_val1 = 0; u8 temp_val2 = 0; struct gc8034_dd dd_temp = {0, 0, 0}; if (!gc8034->awb_cfg.enable) return 0; golden_g_value = (awb_cfg->golden_gb_value + awb_cfg->golden_gr_value) / 2; golden_bg_ratio = awb_cfg->golden_b_value * 0x400 / golden_g_value; golden_rg_ratio = awb_cfg->golden_r_value * 0x400 / golden_g_value; /* apply OTP WB Calibration */ if ((otp_ptr->flag & 0x40) && golden_bg_ratio && golden_rg_ratio) { /* calculate G gain */ R_gain = golden_rg_ratio * 1000 / otp_ptr->rg_ratio; B_gain = golden_bg_ratio * 1000 / otp_ptr->bg_ratio; G_gain = 1000; base_gain = (R_gain < B_gain) ? R_gain : B_gain; base_gain = (base_gain < G_gain) ? base_gain : G_gain; R_gain = 0x400 * R_gain / (base_gain); B_gain = 0x400 * B_gain / (base_gain); G_gain = 0x400 * G_gain / (base_gain); /* update sensor WB gain */ gc8034_write_reg(client, 0xfe, 0x01); gc8034_write_reg(client, 0x84, G_gain >> 3); gc8034_write_reg(client, 0x85, R_gain >> 3); gc8034_write_reg(client, 0x86, B_gain >> 3); gc8034_write_reg(client, 0x87, G_gain >> 3); gc8034_write_reg(client, 0x88, ((G_gain & 0X07) << 4) + (R_gain & 0x07)); gc8034_write_reg(client, 0x89, ((B_gain & 0X07) << 4) + (G_gain & 0x07)); gc8034_write_reg(client, 0xfe, 0x00); dev_dbg(&client->dev, "apply awb gain: 0x%x, 0x%x, 0x%x\n", R_gain, G_gain, B_gain); } /* apply OTP Lenc Calibration */ if (otp_ptr->flag & 0x10) { gc8034_write_reg(client, 0xfe, 0x01); gc8034_write_reg(client, 0xcf, 0x00); gc8034_write_reg(client, 0xc9, 0x01); for (i = 0; i < 9; i++) { gc8034_write_reg(client, 0xca, i * 0x0c); for (j = 0; j < 11; j++) { #if defined(GC8034_MIRROR_NORMAL) base = 4 * (11 * i + j); #elif defined(GC8034_MIRROR_H) base = 4 * (11 * i + 10 - j); #elif defined(GC8034_MIRROR_V) base = 4 * (11 * (8 - i) + j); #elif defined(GC8034_MIRROR_HV) base = 4 * (11 * (8 - i) + 10 - j); #endif gc8034_write_reg(client, 0xcc, otp_ptr->lsc[base + 0]); gc8034_write_reg(client, 0xcc, otp_ptr->lsc[base + 1]); gc8034_write_reg(client, 0xcc, otp_ptr->lsc[base + 2]); gc8034_write_reg(client, 0xcc, otp_ptr->lsc[base + 3]); dev_dbg(&client->dev, "apply lsc otp_ptr->lsc[%d]=%d\n", base + 0, otp_ptr->lsc[base + 0]); dev_dbg(&client->dev, "apply lsc otp_ptr->lsc[%d]=%d\n", base + 1, otp_ptr->lsc[base + 1]); dev_dbg(&client->dev, "apply lsc otp_ptr->lsc[%d]=%d\n", base + 2, otp_ptr->lsc[base + 2]); dev_dbg(&client->dev, "apply lsc otp_ptr->lsc[%d]=%d\n", base + 3, otp_ptr->lsc[base + 3]); } } gc8034_write_reg(client, 0xcf, 0x01); gc8034_write_reg(client, 0xa0, 0x13); gc8034_write_reg(client, 0xfe, 0x00); dev_err(&client->dev, "apply lsc\n"); } /* apply OTP DD Calibration */ if (otp_ptr->flag & 0x08) { dd_cnt = otp_ptr->dd_cnt; for (i = 0; i < dd_cnt; i++) { #if defined(GC8034_MIRROR_H) || defined(GC8034_MIRROR_HV) switch (otp_ptr->dd_param[i].t) { case 0: otp_ptr->dd_param[i].x = DD_WIDTH - otp_ptr->dd_param[i].x + 1; break; case 1: otp_ptr->dd_param[i].x = DD_WIDTH - otp_ptr->dd_param[i].x - 1; break; default: otp_ptr->dd_param[i].x = DD_WIDTH - otp_ptr->dd_param[i].x; break; } #endif #if defined(GC8034_MIRROR_V) || defined(GC8034_MIRROR_HV) otp_ptr->dd_param[i].y = DD_HEIGHT - otp_ptr->dd_param[i].y + 1; #endif } for (i = 0; i < dd_cnt - 1; i++) { for (j = i + 1; j < dd_cnt; j++) { if (otp_ptr->dd_param[i].y * DD_WIDTH + otp_ptr->dd_param[i].x > otp_ptr->dd_param[j].y * DD_WIDTH + otp_ptr->dd_param[j].x) { dd_temp.x = otp_ptr->dd_param[i].x; dd_temp.y = otp_ptr->dd_param[i].y; dd_temp.t = otp_ptr->dd_param[i].t; otp_ptr->dd_param[i].x = otp_ptr->dd_param[j].x; otp_ptr->dd_param[i].y = otp_ptr->dd_param[j].y; otp_ptr->dd_param[i].t = otp_ptr->dd_param[j].t; otp_ptr->dd_param[j].x = dd_temp.x; otp_ptr->dd_param[j].y = dd_temp.y; otp_ptr->dd_param[j].t = dd_temp.t; } } } gc8034_write_reg(client, 0xfe, 0x01); gc8034_write_reg(client, 0xbe, 0x00); gc8034_write_reg(client, 0xa9, 0x01); for (i = 0; i < dd_cnt; i++) { temp_val0 = otp_ptr->dd_param[i].x & 0x00ff; temp_val1 = ((otp_ptr->dd_param[i].y & 0x000f) << 4) + ((otp_ptr->dd_param[i].x & 0x0f00) >> 8); temp_val2 = (otp_ptr->dd_param[i].y & 0x0ff0) >> 4; gc8034_write_reg(client, 0xaa, i); gc8034_write_reg(client, 0xac, temp_val0); gc8034_write_reg(client, 0xac, temp_val1); gc8034_write_reg(client, 0xac, temp_val2); gc8034_write_reg(client, 0xac, otp_ptr->dd_param[i].t); } gc8034_write_reg(client, 0xbe, 0x01); gc8034_write_reg(client, 0xfe, 0x00); dev_err(&client->dev, "apply dd\n"); } if (otp_ptr->flag & 0x04) { gc8034_write_reg(client, 0xfe, 0x00); for (i = 0; i < otp_ptr->reg_num; i++) { gc8034_write_reg(client, 0xfe, otp_ptr->reg_page[i]); gc8034_write_reg(client, otp_ptr->reg_addr[i], otp_ptr->reg_value[i]); } dev_err(&client->dev, "apply chip reg\n"); } return 0; } #endif static int __gc8034_start_stream(struct gc8034 *gc8034) { int ret; #ifndef RK_OTP if (gc8034->otp) { ret = gc8034_otp_enable(gc8034); gc8034_check_prsel(gc8034); ret |= gc8034_apply_otp(gc8034); usleep_range(1000, 2000); ret |= gc8034_otp_disable(gc8034); if (ret) return ret; } #endif ret = gc8034_write_array(gc8034->client, gc8034->cur_mode->reg_list); if (ret) return ret; /* In case these controls are set before streaming */ mutex_unlock(&gc8034->mutex); ret = v4l2_ctrl_handler_setup(&gc8034->ctrl_handler); mutex_lock(&gc8034->mutex); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); if (2 == gc8034->lane_num) { ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, 0x91); } else { ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, GC8034_MODE_STREAMING); } return ret; } static int __gc8034_stop_stream(struct gc8034 *gc8034) { int ret; ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_CTRL_MODE, GC8034_MODE_SW_STANDBY); return ret; } static int gc8034_s_stream(struct v4l2_subdev *sd, int on) { struct gc8034 *gc8034 = to_gc8034(sd); struct i2c_client *client = gc8034->client; int ret = 0; dev_info(&client->dev, "%s: on: %d, %dx%d@%d\n", __func__, on, gc8034->cur_mode->width, gc8034->cur_mode->height, DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator, gc8034->cur_mode->max_fps.numerator)); mutex_lock(&gc8034->mutex); on = !!on; if (on == gc8034->streaming) goto unlock_and_return; if (on) { ret = pm_runtime_get_sync(&client->dev); if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ret = __gc8034_start_stream(gc8034); if (ret) { v4l2_err(sd, "start stream failed while write regs\n"); pm_runtime_put(&client->dev); goto unlock_and_return; } } else { __gc8034_stop_stream(gc8034); pm_runtime_put(&client->dev); } gc8034->streaming = on; unlock_and_return: mutex_unlock(&gc8034->mutex); return ret; } static int gc8034_s_power(struct v4l2_subdev *sd, int on) { struct gc8034 *gc8034 = to_gc8034(sd); struct i2c_client *client = gc8034->client; const struct gc8034_mode *mode = gc8034->cur_mode; int ret = 0; dev_info(&client->dev, "%s(%d) on(%d)\n", __func__, __LINE__, on); mutex_lock(&gc8034->mutex); /* If the power state is not modified - no work to do. */ if (gc8034->power_on == !!on) goto unlock_and_return; if (on) { ret = pm_runtime_get_sync(&client->dev); if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ret = gc8034_write_array(gc8034->client, mode->global_reg_list); if (ret) { v4l2_err(sd, "could not set init registers\n"); pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } gc8034->power_on = true; } else { pm_runtime_put(&client->dev); gc8034->power_on = false; } unlock_and_return: mutex_unlock(&gc8034->mutex); return ret; } /* Calculate the delay in us by clock rate and clock cycles */ static inline u32 gc8034_cal_delay(u32 cycles) { return DIV_ROUND_UP(cycles, GC8034_XVCLK_FREQ / 1000 / 1000); } static int gc8034_enable_regulators(struct gc8034 *gc8034, struct regulator_bulk_data *consumers) { int i, j; int ret = 0; struct device *dev = &gc8034->client->dev; int num_consumers = GC8034_NUM_SUPPLIES; for (i = 0; i < num_consumers; i++) { ret = regulator_enable(consumers[i].consumer); if (ret < 0) { dev_err(dev, "Failed to enable regulator: %s\n", consumers[i].supply); goto err; } } return 0; err: for (j = 0; j < i; j++) regulator_disable(consumers[j].consumer); return ret; } static int __gc8034_power_on(struct gc8034 *gc8034) { int ret; u32 delay_us; struct device *dev = &gc8034->client->dev; if (!IS_ERR(gc8034->power_gpio)) gpiod_set_value_cansleep(gc8034->power_gpio, 1); usleep_range(1000, 2000); if (!IS_ERR_OR_NULL(gc8034->pins_default)) { ret = pinctrl_select_state(gc8034->pinctrl, gc8034->pins_default); if (ret < 0) dev_err(dev, "could not set pins\n"); } ret = clk_set_rate(gc8034->xvclk, GC8034_XVCLK_FREQ); if (ret < 0) dev_warn(dev, "Failed to set xvclk rate (24MHz)\n"); if (clk_get_rate(gc8034->xvclk) != GC8034_XVCLK_FREQ) dev_warn(dev, "xvclk mismatched, modes are based on 24MHz\n"); if (!IS_ERR(gc8034->reset_gpio)) gpiod_set_value_cansleep(gc8034->reset_gpio, 1); ret = gc8034_enable_regulators(gc8034, gc8034->supplies); if (ret < 0) { dev_err(dev, "Failed to enable regulators\n"); goto disable_clk; } usleep_range(100, 200); ret = clk_prepare_enable(gc8034->xvclk); if (ret < 0) { dev_err(dev, "Failed to enable xvclk\n"); return ret; } usleep_range(1000, 1100); if (!IS_ERR(gc8034->pwdn_gpio)) gpiod_set_value_cansleep(gc8034->pwdn_gpio, 0); usleep_range(500, 1000); if (!IS_ERR(gc8034->reset_gpio)) gpiod_set_value_cansleep(gc8034->reset_gpio, 0); usleep_range(6000, 7000); /* 8192 cycles prior to first SCCB transaction */ delay_us = gc8034_cal_delay(8192); usleep_range(delay_us, delay_us * 2); return 0; disable_clk: clk_disable_unprepare(gc8034->xvclk); return ret; } static void __gc8034_power_off(struct gc8034 *gc8034) { int ret; if (!IS_ERR(gc8034->pwdn_gpio)) gpiod_set_value_cansleep(gc8034->pwdn_gpio, 1); if (!IS_ERR(gc8034->reset_gpio)) gpiod_set_value_cansleep(gc8034->reset_gpio, 1); clk_disable_unprepare(gc8034->xvclk); if (!IS_ERR_OR_NULL(gc8034->pins_sleep)) { ret = pinctrl_select_state(gc8034->pinctrl, gc8034->pins_sleep); if (ret < 0) dev_dbg(&gc8034->client->dev, "could not set pins\n"); } if (!IS_ERR(gc8034->power_gpio)) gpiod_set_value_cansleep(gc8034->power_gpio, 0); regulator_bulk_disable(GC8034_NUM_SUPPLIES, gc8034->supplies); } static int __maybe_unused gc8034_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc8034 *gc8034 = to_gc8034(sd); return __gc8034_power_on(gc8034); } static int __maybe_unused gc8034_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc8034 *gc8034 = to_gc8034(sd); __gc8034_power_off(gc8034); return 0; } #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static int gc8034_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct gc8034 *gc8034 = to_gc8034(sd); struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, fh->state, 0); const struct gc8034_mode *def_mode = &supported_modes[0]; mutex_lock(&gc8034->mutex); /* Initialize try_fmt */ try_fmt->width = def_mode->width; try_fmt->height = def_mode->height; try_fmt->code = GC8034_MEDIA_BUS_FMT; try_fmt->field = V4L2_FIELD_NONE; mutex_unlock(&gc8034->mutex); /* No crop or compose */ return 0; } #endif static int gc8034_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct gc8034 *gc8034 = to_gc8034(sd); if (fie->index >= gc8034->cfg_num) return -EINVAL; fie->code = GC8034_MEDIA_BUS_FMT; fie->width = supported_modes[fie->index].width; fie->height = supported_modes[fie->index].height; fie->interval = supported_modes[fie->index].max_fps; return 0; } static int gc8034_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id, struct v4l2_mbus_config *config) { struct gc8034 *sensor = to_gc8034(sd); struct device *dev = &sensor->client->dev; dev_info(dev, "%s(%d) enter!\n", __func__, __LINE__); if (2 == sensor->lane_num || 4 == sensor->lane_num) { config->type = V4L2_MBUS_CSI2_DPHY; config->bus.mipi_csi2.num_data_lanes = sensor->lane_num; } else { dev_err(&sensor->client->dev, "unsupported lane_num(%d)\n", sensor->lane_num); } return 0; } static const struct dev_pm_ops gc8034_pm_ops = { SET_RUNTIME_PM_OPS(gc8034_runtime_suspend, gc8034_runtime_resume, NULL) }; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static const struct v4l2_subdev_internal_ops gc8034_internal_ops = { .open = gc8034_open, }; #endif static const struct v4l2_subdev_core_ops gc8034_core_ops = { .s_power = gc8034_s_power, .ioctl = gc8034_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl32 = gc8034_compat_ioctl32, #endif }; static const struct v4l2_subdev_video_ops gc8034_video_ops = { .s_stream = gc8034_s_stream, .g_frame_interval = gc8034_g_frame_interval, }; static const struct v4l2_subdev_pad_ops gc8034_pad_ops = { .enum_mbus_code = gc8034_enum_mbus_code, .enum_frame_size = gc8034_enum_frame_sizes, .enum_frame_interval = gc8034_enum_frame_interval, .get_fmt = gc8034_get_fmt, .set_fmt = gc8034_set_fmt, .get_mbus_config = gc8034_g_mbus_config, }; static const struct v4l2_subdev_ops gc8034_subdev_ops = { .core = &gc8034_core_ops, .video = &gc8034_video_ops, .pad = &gc8034_pad_ops, }; static int gc8034_set_exposure_reg(struct gc8034 *gc8034, u32 exposure) { int ret = 0; u32 cal_shutter = 0; cal_shutter = exposure >> 1; cal_shutter = cal_shutter << 1; gc8034->Dgain_ratio = 256 * exposure / cal_shutter; ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_EXPOSURE_H, GC8034_FETCH_HIGH_BYTE_EXP(cal_shutter)); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_EXPOSURE_L, GC8034_FETCH_LOW_BYTE_EXP(cal_shutter)); return ret; } #define MAX_AG_INDEX 9 #define AGC_REG_NUM 14 #define MEAG_INDEX 7 u16 gain_level[MAX_AG_INDEX] = { 0x0040, /* 1.000*/ 0x0058, /* 1.375*/ 0x007d, /* 1.950*/ 0x00ad, /* 2.700*/ 0x00f3, /* 3.800*/ 0x0159, /* 5.400*/ 0x01ea, /* 7.660*/ 0x02ac, /*10.688*/ 0x03c2, /*15.030*/ }; u8 agc_register[MAX_AG_INDEX][AGC_REG_NUM] = { /* fullsize */ { 0x00, 0x55, 0x83, 0x01, 0x06, 0x18, 0x20, 0x16, 0x17, 0x50, 0x6c, 0x9b, 0xd8, 0x00 }, { 0x00, 0x55, 0x83, 0x01, 0x06, 0x18, 0x20, 0x16, 0x17, 0x50, 0x6c, 0x9b, 0xd8, 0x00 }, { 0x00, 0x4e, 0x84, 0x01, 0x0c, 0x2e, 0x2d, 0x15, 0x19, 0x47, 0x70, 0x9f, 0xd8, 0x00 }, { 0x00, 0x51, 0x80, 0x01, 0x07, 0x28, 0x32, 0x22, 0x20, 0x49, 0x70, 0x91, 0xd9, 0x00 }, { 0x00, 0x4d, 0x83, 0x01, 0x0f, 0x3b, 0x3b, 0x1c, 0x1f, 0x47, 0x6f, 0x9b, 0xd3, 0x00 }, { 0x00, 0x50, 0x83, 0x01, 0x08, 0x35, 0x46, 0x1e, 0x22, 0x4c, 0x70, 0x9a, 0xd2, 0x00 }, { 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a, 0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 }, { 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a, 0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 }, { 0x00, 0x52, 0x80, 0x01, 0x0c, 0x35, 0x3a, 0x2b, 0x2d, 0x4c, 0x67, 0x8d, 0xc0, 0x00 } }; static int gc8034_set_gain_reg(struct gc8034 *gc8034, u32 a_gain) { int ret = 0; u32 temp_gain = 0; int gain_index = 0; u32 Dgain_ratio = 0; Dgain_ratio = gc8034->Dgain_ratio; for (gain_index = MEAG_INDEX - 1; gain_index >= 0; gain_index--) { if (a_gain >= gain_level[gain_index]) { ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); ret |= gc8034_write_reg(gc8034->client, 0xb6, gain_index); temp_gain = 256 * a_gain / gain_level[gain_index]; temp_gain = temp_gain * Dgain_ratio / 256; ret |= gc8034_write_reg(gc8034->client, 0xb1, temp_gain >> 8); ret |= gc8034_write_reg(gc8034->client, 0xb2, temp_gain & 0xff); ret |= gc8034_write_reg(gc8034->client, 0xfe, agc_register[gain_index][0]); ret |= gc8034_write_reg(gc8034->client, 0x20, agc_register[gain_index][1]); ret |= gc8034_write_reg(gc8034->client, 0x33, agc_register[gain_index][2]); ret |= gc8034_write_reg(gc8034->client, 0xfe, agc_register[gain_index][3]); ret |= gc8034_write_reg(gc8034->client, 0xdf, agc_register[gain_index][4]); ret |= gc8034_write_reg(gc8034->client, 0xe7, agc_register[gain_index][5]); ret |= gc8034_write_reg(gc8034->client, 0xe8, agc_register[gain_index][6]); ret |= gc8034_write_reg(gc8034->client, 0xe9, agc_register[gain_index][7]); ret |= gc8034_write_reg(gc8034->client, 0xea, agc_register[gain_index][8]); ret |= gc8034_write_reg(gc8034->client, 0xeb, agc_register[gain_index][9]); ret |= gc8034_write_reg(gc8034->client, 0xec, agc_register[gain_index][10]); ret |= gc8034_write_reg(gc8034->client, 0xed, agc_register[gain_index][11]); ret |= gc8034_write_reg(gc8034->client, 0xee, agc_register[gain_index][12]); ret |= gc8034_write_reg(gc8034->client, 0xfe, agc_register[gain_index][13]); break; } } return ret; } static int gc8034_set_ctrl(struct v4l2_ctrl *ctrl) { struct gc8034 *gc8034 = container_of(ctrl->handler, struct gc8034, ctrl_handler); struct i2c_client *client = gc8034->client; s64 max; int ret = 0; s32 temp; /* Propagate change of current control to all related controls */ switch (ctrl->id) { case V4L2_CID_VBLANK: /* Update max exposure while meeting expected vblanking */ max = gc8034->cur_mode->height + ctrl->val - 4; __v4l2_ctrl_modify_range(gc8034->exposure, gc8034->exposure->minimum, max, gc8034->exposure->step, gc8034->exposure->default_value); break; } if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE: /* 4 least significant bits of expsoure are fractional part */ dev_dbg(&client->dev, "set exposure value 0x%x\n", ctrl->val); ret = gc8034_set_exposure_reg(gc8034, ctrl->val); break; case V4L2_CID_ANALOGUE_GAIN: dev_dbg(&client->dev, "set analog gain value 0x%x\n", ctrl->val); ret = gc8034_set_gain_reg(gc8034, ctrl->val); break; case V4L2_CID_VBLANK: dev_dbg(&client->dev, "set vb value 0x%x\n", ctrl->val); /* VB = VTS - 2448 -36, according android8.1 driver */ temp = ctrl->val + gc8034->cur_mode->height - 2448 - 36; ret = gc8034_write_reg(gc8034->client, GC8034_REG_SET_PAGE, GC8034_SET_PAGE_ZERO); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_VTS_H, (temp >> 8) & 0xff); ret |= gc8034_write_reg(gc8034->client, GC8034_REG_VTS_L, temp & 0xff); break; default: dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n", __func__, ctrl->id, ctrl->val); break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops gc8034_ctrl_ops = { .s_ctrl = gc8034_set_ctrl, }; static int gc8034_initialize_controls(struct gc8034 *gc8034) { const struct gc8034_mode *mode; struct v4l2_ctrl_handler *handler; s64 exposure_max, vblank_def; u32 h_blank; int ret; handler = &gc8034->ctrl_handler; mode = gc8034->cur_mode; ret = v4l2_ctrl_handler_init(handler, 8); if (ret) return ret; handler->lock = &gc8034->mutex; gc8034->link_freq = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ, ARRAY_SIZE(link_freq_menu_items) - 1, 0, link_freq_menu_items); v4l2_ctrl_s_ctrl(gc8034->link_freq, mode->mipi_freq_idx); v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE, 0, gc8034->pixel_rate, 1, gc8034->pixel_rate); h_blank = mode->hts_def - mode->width; gc8034->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (gc8034->hblank) gc8034->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; vblank_def = mode->vts_def - mode->height; gc8034->vblank = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops, V4L2_CID_VBLANK, vblank_def, GC8034_VTS_MAX - mode->height, 1, vblank_def); exposure_max = mode->vts_def - 4; gc8034->exposure = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops, V4L2_CID_EXPOSURE, GC8034_EXPOSURE_MIN, exposure_max, GC8034_EXPOSURE_STEP, mode->exp_def); gc8034->anal_gain = v4l2_ctrl_new_std(handler, &gc8034_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, GC8034_GAIN_MIN, GC8034_GAIN_MAX, GC8034_GAIN_STEP, GC8034_GAIN_DEFAULT); if (handler->error) { ret = handler->error; dev_err(&gc8034->client->dev, "Failed to init controls(%d)\n", ret); goto err_free_handler; } gc8034->subdev.ctrl_handler = handler; return 0; err_free_handler: v4l2_ctrl_handler_free(handler); return ret; } static int gc8034_check_sensor_id(struct gc8034 *gc8034, struct i2c_client *client) { struct device *dev = &gc8034->client->dev; u16 id = 0; u8 reg_H = 0; u8 reg_L = 0; int ret; ret = gc8034_read_reg(client, GC8034_REG_CHIP_ID_H, ®_H); ret |= gc8034_read_reg(client, GC8034_REG_CHIP_ID_L, ®_L); id = ((reg_H << 8) & 0xff00) | (reg_L & 0xff); if (id != CHIP_ID) { dev_err(dev, "Unexpected sensor id(%06x), ret(%d)\n", id, ret); return -ENODEV; } dev_info(dev, "detected gc%04x sensor\n", id); return ret; } static int gc8034_configure_regulators(struct gc8034 *gc8034) { unsigned int i; for (i = 0; i < GC8034_NUM_SUPPLIES; i++) gc8034->supplies[i].supply = gc8034_supply_names[i]; return devm_regulator_bulk_get(&gc8034->client->dev, GC8034_NUM_SUPPLIES, gc8034->supplies); } static int gc8034_parse_of(struct gc8034 *gc8034) { struct device *dev = &gc8034->client->dev; struct device_node *endpoint; struct fwnode_handle *fwnode; int rval; unsigned int fps; endpoint = of_graph_get_next_endpoint(dev->of_node, NULL); if (!endpoint) { dev_err(dev, "Failed to get endpoint\n"); return -EINVAL; } fwnode = of_fwnode_handle(endpoint); rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0); if (rval <= 0) { dev_warn(dev, " Get mipi lane num failed!\n"); return -1; } gc8034->lane_num = rval; if (4 == gc8034->lane_num) { gc8034->cur_mode = &supported_modes_4lane[0]; supported_modes = supported_modes_4lane; gc8034->cfg_num = ARRAY_SIZE(supported_modes_4lane); /* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */ fps = DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator, gc8034->cur_mode->max_fps.numerator); gc8034->pixel_rate = gc8034->cur_mode->vts_def * gc8034->cur_mode->hts_def * fps; dev_info(dev, "lane_num(%d) pixel_rate(%u)\n", gc8034->lane_num, gc8034->pixel_rate); } else if (2 == gc8034->lane_num) { gc8034->cur_mode = &supported_modes_2lane[0]; supported_modes = supported_modes_2lane; gc8034->cfg_num = ARRAY_SIZE(supported_modes_2lane); /*pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */ fps = DIV_ROUND_CLOSEST(gc8034->cur_mode->max_fps.denominator, gc8034->cur_mode->max_fps.numerator); gc8034->pixel_rate = gc8034->cur_mode->vts_def * gc8034->cur_mode->hts_def * fps; dev_info(dev, "lane_num(%d) pixel_rate(%u)\n", gc8034->lane_num, gc8034->pixel_rate); } else { dev_err(dev, "unsupported lane_num(%d)\n", gc8034->lane_num); return -1; } return 0; } static int gc8034_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device_node *node = dev->of_node; struct gc8034 *gc8034; struct v4l2_subdev *sd; char facing[2]; int ret; struct device_node *eeprom_ctrl_node; struct i2c_client *eeprom_ctrl_client; struct v4l2_subdev *eeprom_ctrl; struct otp_info *otp_ptr; dev_info(dev, "driver version: %02x.%02x.%02x", DRIVER_VERSION >> 16, (DRIVER_VERSION & 0xff00) >> 8, DRIVER_VERSION & 0x00ff); gc8034 = devm_kzalloc(dev, sizeof(*gc8034), GFP_KERNEL); if (!gc8034) return -ENOMEM; ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX, &gc8034->module_index); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING, &gc8034->module_facing); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME, &gc8034->module_name); ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME, &gc8034->len_name); if (ret) { dev_err(dev, "could not get module information!\n"); return -EINVAL; } gc8034->client = client; gc8034->xvclk = devm_clk_get(dev, "xvclk"); if (IS_ERR(gc8034->xvclk)) { dev_err(dev, "Failed to get xvclk\n"); return -EINVAL; } gc8034->power_gpio = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW); if (IS_ERR(gc8034->power_gpio)) dev_warn(dev, "Failed to get power-gpios, maybe no use\n"); gc8034->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(gc8034->reset_gpio)) dev_warn(dev, "Failed to get reset-gpios\n"); gc8034->pwdn_gpio = devm_gpiod_get(dev, "pwdn", GPIOD_OUT_LOW); if (IS_ERR(gc8034->pwdn_gpio)) dev_warn(dev, "Failed to get pwdn-gpios\n"); ret = gc8034_configure_regulators(gc8034); if (ret) { dev_err(dev, "Failed to get power regulators\n"); return ret; } ret = gc8034_parse_of(gc8034); if (ret != 0) return -EINVAL; gc8034->pinctrl = devm_pinctrl_get(dev); if (!IS_ERR(gc8034->pinctrl)) { gc8034->pins_default = pinctrl_lookup_state(gc8034->pinctrl, OF_CAMERA_PINCTRL_STATE_DEFAULT); if (IS_ERR(gc8034->pins_default)) dev_err(dev, "could not get default pinstate\n"); gc8034->pins_sleep = pinctrl_lookup_state(gc8034->pinctrl, OF_CAMERA_PINCTRL_STATE_SLEEP); if (IS_ERR(gc8034->pins_sleep)) dev_err(dev, "could not get sleep pinstate\n"); } mutex_init(&gc8034->mutex); sd = &gc8034->subdev; v4l2_i2c_subdev_init(sd, client, &gc8034_subdev_ops); ret = gc8034_initialize_controls(gc8034); if (ret) goto err_destroy_mutex; ret = __gc8034_power_on(gc8034); if (ret) goto err_free_handler; ret = gc8034_check_sensor_id(gc8034, client); if (ret) goto err_power_off; #ifdef RK_OTP eeprom_ctrl_node = of_parse_phandle(node, "eeprom-ctrl", 0); if (eeprom_ctrl_node) { eeprom_ctrl_client = of_find_i2c_device_by_node(eeprom_ctrl_node); of_node_put(eeprom_ctrl_node); if (IS_ERR_OR_NULL(eeprom_ctrl_client)) { dev_err(dev, "can not get node\n"); goto continue_probe; } eeprom_ctrl = i2c_get_clientdata(eeprom_ctrl_client); if (IS_ERR_OR_NULL(eeprom_ctrl)) { dev_err(dev, "can not get eeprom i2c client\n"); } else { otp_ptr = devm_kzalloc(dev, sizeof(*otp_ptr), GFP_KERNEL); if (!otp_ptr) return -ENOMEM; ret = v4l2_subdev_call(eeprom_ctrl, core, ioctl, 0, otp_ptr); if (!ret) { gc8034->otp = otp_ptr; } else { gc8034->otp = NULL; devm_kfree(dev, otp_ptr); dev_warn(dev, "can not get otp info, skip!\n"); } } } continue_probe: #else gc8034_otp_enable(gc8034); gc8034_otp_read(gc8034); gc8034_otp_disable(gc8034); #endif #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API sd->internal_ops = &gc8034_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; #endif #if defined(CONFIG_MEDIA_CONTROLLER) gc8034->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sd->entity, 1, &gc8034->pad); if (ret < 0) goto err_power_off; #endif memset(facing, 0, sizeof(facing)); if (strcmp(gc8034->module_facing, "back") == 0) facing[0] = 'b'; else facing[0] = 'f'; snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s", gc8034->module_index, facing, GC8034_NAME, dev_name(sd->dev)); ret = v4l2_async_register_subdev_sensor(sd); if (ret) { dev_err(dev, "v4l2 async register subdev failed\n"); goto err_clean_entity; } pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_idle(dev); return 0; err_clean_entity: #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif err_power_off: __gc8034_power_off(gc8034); err_free_handler: v4l2_ctrl_handler_free(&gc8034->ctrl_handler); err_destroy_mutex: mutex_destroy(&gc8034->mutex); return ret; } static void gc8034_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc8034 *gc8034 = to_gc8034(sd); v4l2_async_unregister_subdev(sd); #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif v4l2_ctrl_handler_free(&gc8034->ctrl_handler); mutex_destroy(&gc8034->mutex); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) __gc8034_power_off(gc8034); pm_runtime_set_suspended(&client->dev); } #if IS_ENABLED(CONFIG_OF) static const struct of_device_id gc8034_of_match[] = { { .compatible = "galaxycore,gc8034" }, {}, }; MODULE_DEVICE_TABLE(of, gc8034_of_match); #endif static const struct i2c_device_id gc8034_match_id[] = { { "galaxycore,gc8034", 0}, { }, }; static struct i2c_driver gc8034_i2c_driver = { .driver = { .name = GC8034_NAME, .pm = &gc8034_pm_ops, .of_match_table = of_match_ptr(gc8034_of_match), }, .probe = &gc8034_probe, .remove = &gc8034_remove, .id_table = gc8034_match_id, }; static int __init sensor_mod_init(void) { return i2c_add_driver(&gc8034_i2c_driver); } static void __exit sensor_mod_exit(void) { i2c_del_driver(&gc8034_i2c_driver); } device_initcall_sync(sensor_mod_init); module_exit(sensor_mod_exit); MODULE_DESCRIPTION("GalaxyCore gc8034 sensor driver"); MODULE_LICENSE("GPL v2");