CoolPi-Armbian-Rockchip-RK3.../drivers/clk/rockchip/clk-fractional-divider-v2.c

348 lines
9.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2024 Rockchip Electronics Co., Ltd.
*
* Adjustable fractional divider clock implementation.
* Uses rational best approximation algorithm.
*
* Output is calculated as
*
* rate = (m / n) * parent_rate (1)
*
* This is useful when we have a prescaler block which asks for
* m (numerator) and n (denominator) values to be provided to satisfy
* the (1) as much as possible.
*
* Since m and n have the limitation by a range, e.g.
*
* n >= 1, n < N_width, where N_width = 2^nwidth (2)
*
* for some cases the output may be saturated. Hence, from (1) and (2),
* assuming the worst case when m = 1, the inequality
*
* floor(log2(parent_rate / rate)) <= nwidth (3)
*
* may be derived. Thus, in cases when
*
* (parent_rate / rate) >> N_width (4)
*
* we might scale up the rate by 2^scale (see the description of
* CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
*
* scale = floor(log2(parent_rate / rate)) - nwidth (5)
*
* and assume that the IP, that needs m and n, has also its own
* prescaler, which is capable to divide by 2^scale. In this way
* we get the denominator to satisfy the desired range (2) and
* at the same time a much better result of m and n than simple
* saturated values.
*/
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/rational.h>
#include "clk.h"
struct clk_fractional_divider_v2 {
struct clk_hw hw;
void __iomem *reg;
void __iomem *high_reg;
u8 mshift;
u8 mwidth;
u32 mmask;
u8 nshift;
u8 nwidth;
u32 nmask;
u8 high_mshift;
u8 high_mwidth;
u32 high_mmask;
u8 high_nshift;
u8 high_nwidth;
u32 high_nmask;
u8 flags;
void (*approximation)(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate,
unsigned long *m, unsigned long *n);
spinlock_t *lock;
};
#define to_clk_fd_v2(_hw) container_of(_hw, struct clk_fractional_divider_v2, hw)
static inline u32 clk_fd_v2_readl(struct clk_fractional_divider_v2 *fd,
void __iomem *reg)
{
return readl(reg);
}
static inline void clk_fd_v2_writel(struct clk_fractional_divider_v2 *fd,
void __iomem *reg, u32 val)
{
writel(val, reg);
}
static unsigned long clk_fd_v2_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw);
unsigned long flags = 0;
unsigned long m_low, n_low, m_high, n_high, m, n;
u32 val_low, val_high;
u64 ret;
if (fd->lock)
spin_lock_irqsave(fd->lock, flags);
else
__acquire(fd->lock);
val_low = clk_fd_v2_readl(fd, fd->reg);
val_high = clk_fd_v2_readl(fd, fd->high_reg);
if (fd->lock)
spin_unlock_irqrestore(fd->lock, flags);
else
__release(fd->lock);
m_low = (val_low & fd->mmask) >> fd->mshift;
n_low = (val_low & fd->nmask) >> fd->nshift;
m_high = (val_high & fd->high_mmask) >> fd->high_mshift;
n_high = (val_high & fd->high_nmask) >> fd->high_nshift;
m = (m_high << 16) | m_low;
n = (n_high << 16) | n_low;
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
m++;
n++;
}
if (!n || !m)
return parent_rate;
ret = (u64)parent_rate * m;
do_div(ret, n);
return ret;
}
static void clk_fractional_divider_general_approximation_v2(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate,
unsigned long *m, unsigned long *n)
{
struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw);
unsigned long scale;
/*
* Get rate closer to *parent_rate to guarantee there is no overflow
* for m and n. In the result it will be the nearest rate left shifted
* by (scale - fd->nwidth) bits.
*
* For the detailed explanation see the top comment in this file.
*/
scale = fls_long(*parent_rate / rate - 1);
if (scale > fd->nwidth)
rate <<= scale - fd->nwidth;
rational_best_approximation(rate, *parent_rate,
GENMASK(fd->mwidth - 1, 0),
GENMASK(fd->nwidth - 1, 0),
m, n);
}
static long clk_fd_v2_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw);
unsigned long m, n;
u64 ret;
if (!rate || rate >= *parent_rate)
return *parent_rate;
if (fd->approximation)
fd->approximation(hw, rate, parent_rate, &m, &n);
else
clk_fractional_divider_general_approximation_v2(hw, rate, parent_rate, &m, &n);
ret = (u64)*parent_rate * m;
do_div(ret, n);
return ret;
}
static int clk_fd_v2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw);
unsigned long flags = 0;
unsigned long m, n, m_low, n_low, m_high, n_high;
u32 val, val_high;
rational_best_approximation(rate, parent_rate,
GENMASK(fd->mwidth - 1, 0),
GENMASK(fd->nwidth - 1, 0),
&m, &n);
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
m--;
n--;
}
/*
* When compensation the fractional divider,
* the [1:0] bits of the numerator register are omitted,
* which will lead to a large deviation in the result.
* Therefore, it is required that the numerator must
* be greater than 4.
*
* Note that there are some exceptions here:
* If there is an even frac div, we need to keep the original
* numerator(<4) and denominator. Otherwise, it may cause the
* issue that the duty ratio is not 50%.
*/
if (m < 4 && m != 0) {
if (n % 2 == 0)
val = 1;
else
val = DIV_ROUND_UP(4, m);
n *= val;
m *= val;
if (n > GENMASK(fd->nwidth + fd->high_nwidth - 1, 0)) {
pr_debug("%s n(%ld) is overflow, use mask value\n",
__func__, n);
n = GENMASK(fd->nwidth + fd->high_nwidth - 1, 0);
}
}
if (fd->lock)
spin_lock_irqsave(fd->lock, flags);
else
__acquire(fd->lock);
m_low = m & fd->nmask;
n_low = n & fd->nmask;
m_high = (m & GENMASK(fd->mwidth - 1, (fd->mwidth - fd->high_mwidth))) >>
(fd->mwidth - fd->high_mwidth);
n_high = (n & GENMASK(fd->nwidth - 1, (fd->nwidth - fd->high_nwidth))) >>
(fd->nwidth - fd->high_nwidth);
val_high = clk_fd_v2_readl(fd, fd->high_reg);
val_high &= ~(fd->high_mmask | fd->high_nmask);
val_high |= (m_high << fd->high_mshift) | (n_high << fd->high_nshift);
clk_fd_v2_writel(fd, fd->high_reg, val_high);
val = clk_fd_v2_readl(fd, fd->reg);
val &= ~(fd->mmask | fd->nmask);
val |= (m_low << fd->mshift) | (n_low << fd->nshift);
clk_fd_v2_writel(fd, fd->reg, val);
if (fd->lock)
spin_unlock_irqrestore(fd->lock, flags);
else
__release(fd->lock);
return 0;
}
static const struct clk_ops clk_fractional_divider_ops_v2 = {
.recalc_rate = clk_fd_v2_recalc_rate,
.round_rate = clk_fd_v2_round_rate,
.set_rate = clk_fd_v2_set_rate,
};
struct clk_hw *clk_hw_register_fractional_divider_v2(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *reg,
u8 mshift, u8 mwidth,
u8 nshift, u8 nwidth,
void __iomem *high_reg,
u8 high_mshift, u8 high_mwidth,
u8 high_nshift, u8 high_nwidth,
u8 clk_divider_flags,
spinlock_t *lock)
{
struct clk_fractional_divider_v2 *fd;
struct clk_init_data init;
struct clk_hw *hw;
int ret;
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
if (!fd)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &clk_fractional_divider_ops_v2;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
fd->reg = reg;
fd->mshift = mshift;
fd->mwidth = mwidth + high_mwidth;
fd->mmask = GENMASK(mwidth - 1, 0) << mshift;
fd->nshift = nshift;
fd->nwidth = nwidth + high_nwidth;
fd->nmask = GENMASK(nwidth - 1, 0) << nshift;
fd->high_reg = high_reg;
fd->high_mshift = high_mshift;
fd->high_mwidth = high_mwidth;
fd->high_mmask = GENMASK(high_mwidth - 1, 0) << high_mshift;
fd->high_nshift = high_nshift;
fd->high_nwidth = high_nwidth;
fd->high_nmask = GENMASK(high_nwidth - 1, 0) << high_nshift;
fd->flags = clk_divider_flags;
fd->lock = lock;
fd->hw.init = &init;
hw = &fd->hw;
ret = clk_hw_register(dev, hw);
if (ret) {
kfree(fd);
hw = ERR_PTR(ret);
}
return hw;
}
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider_v2);
struct clk *clk_register_fractional_divider_v2(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *reg,
u8 mshift, u8 width,
void __iomem *high_reg,
u8 high_mshift, u8 high_width,
u8 clk_divider_flags,
spinlock_t *lock)
{
struct clk_hw *hw;
hw = clk_hw_register_fractional_divider_v2(dev, name, parent_name, flags,
reg, mshift, width, 0, width,
high_reg, high_mshift, high_width,
0, high_width,
clk_divider_flags,
lock);
if (IS_ERR(hw))
return ERR_CAST(hw);
return hw->clk;
}
EXPORT_SYMBOL_GPL(clk_register_fractional_divider_v2);
void clk_hw_unregister_fractional_divider_v2(struct clk_hw *hw)
{
struct clk_fractional_divider_v2 *fd;
fd = to_clk_fd_v2(hw);
clk_hw_unregister(hw);
kfree(fd);
}