// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2024 Rockchip Electronics Co., Ltd. * * Adjustable fractional divider clock implementation. * Uses rational best approximation algorithm. * * Output is calculated as * * rate = (m / n) * parent_rate (1) * * This is useful when we have a prescaler block which asks for * m (numerator) and n (denominator) values to be provided to satisfy * the (1) as much as possible. * * Since m and n have the limitation by a range, e.g. * * n >= 1, n < N_width, where N_width = 2^nwidth (2) * * for some cases the output may be saturated. Hence, from (1) and (2), * assuming the worst case when m = 1, the inequality * * floor(log2(parent_rate / rate)) <= nwidth (3) * * may be derived. Thus, in cases when * * (parent_rate / rate) >> N_width (4) * * we might scale up the rate by 2^scale (see the description of * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where * * scale = floor(log2(parent_rate / rate)) - nwidth (5) * * and assume that the IP, that needs m and n, has also its own * prescaler, which is capable to divide by 2^scale. In this way * we get the denominator to satisfy the desired range (2) and * at the same time a much better result of m and n than simple * saturated values. */ #include #include #include #include #include #include #include "clk.h" struct clk_fractional_divider_v2 { struct clk_hw hw; void __iomem *reg; void __iomem *high_reg; u8 mshift; u8 mwidth; u32 mmask; u8 nshift; u8 nwidth; u32 nmask; u8 high_mshift; u8 high_mwidth; u32 high_mmask; u8 high_nshift; u8 high_nwidth; u32 high_nmask; u8 flags; void (*approximation)(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate, unsigned long *m, unsigned long *n); spinlock_t *lock; }; #define to_clk_fd_v2(_hw) container_of(_hw, struct clk_fractional_divider_v2, hw) static inline u32 clk_fd_v2_readl(struct clk_fractional_divider_v2 *fd, void __iomem *reg) { return readl(reg); } static inline void clk_fd_v2_writel(struct clk_fractional_divider_v2 *fd, void __iomem *reg, u32 val) { writel(val, reg); } static unsigned long clk_fd_v2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw); unsigned long flags = 0; unsigned long m_low, n_low, m_high, n_high, m, n; u32 val_low, val_high; u64 ret; if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val_low = clk_fd_v2_readl(fd, fd->reg); val_high = clk_fd_v2_readl(fd, fd->high_reg); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); m_low = (val_low & fd->mmask) >> fd->mshift; n_low = (val_low & fd->nmask) >> fd->nshift; m_high = (val_high & fd->high_mmask) >> fd->high_mshift; n_high = (val_high & fd->high_nmask) >> fd->high_nshift; m = (m_high << 16) | m_low; n = (n_high << 16) | n_low; if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m++; n++; } if (!n || !m) return parent_rate; ret = (u64)parent_rate * m; do_div(ret, n); return ret; } static void clk_fractional_divider_general_approximation_v2(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate, unsigned long *m, unsigned long *n) { struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw); unsigned long scale; /* * Get rate closer to *parent_rate to guarantee there is no overflow * for m and n. In the result it will be the nearest rate left shifted * by (scale - fd->nwidth) bits. * * For the detailed explanation see the top comment in this file. */ scale = fls_long(*parent_rate / rate - 1); if (scale > fd->nwidth) rate <<= scale - fd->nwidth; rational_best_approximation(rate, *parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), m, n); } static long clk_fd_v2_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw); unsigned long m, n; u64 ret; if (!rate || rate >= *parent_rate) return *parent_rate; if (fd->approximation) fd->approximation(hw, rate, parent_rate, &m, &n); else clk_fractional_divider_general_approximation_v2(hw, rate, parent_rate, &m, &n); ret = (u64)*parent_rate * m; do_div(ret, n); return ret; } static int clk_fd_v2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_fractional_divider_v2 *fd = to_clk_fd_v2(hw); unsigned long flags = 0; unsigned long m, n, m_low, n_low, m_high, n_high; u32 val, val_high; rational_best_approximation(rate, parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), &m, &n); if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m--; n--; } /* * When compensation the fractional divider, * the [1:0] bits of the numerator register are omitted, * which will lead to a large deviation in the result. * Therefore, it is required that the numerator must * be greater than 4. * * Note that there are some exceptions here: * If there is an even frac div, we need to keep the original * numerator(<4) and denominator. Otherwise, it may cause the * issue that the duty ratio is not 50%. */ if (m < 4 && m != 0) { if (n % 2 == 0) val = 1; else val = DIV_ROUND_UP(4, m); n *= val; m *= val; if (n > GENMASK(fd->nwidth + fd->high_nwidth - 1, 0)) { pr_debug("%s n(%ld) is overflow, use mask value\n", __func__, n); n = GENMASK(fd->nwidth + fd->high_nwidth - 1, 0); } } if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); m_low = m & fd->nmask; n_low = n & fd->nmask; m_high = (m & GENMASK(fd->mwidth - 1, (fd->mwidth - fd->high_mwidth))) >> (fd->mwidth - fd->high_mwidth); n_high = (n & GENMASK(fd->nwidth - 1, (fd->nwidth - fd->high_nwidth))) >> (fd->nwidth - fd->high_nwidth); val_high = clk_fd_v2_readl(fd, fd->high_reg); val_high &= ~(fd->high_mmask | fd->high_nmask); val_high |= (m_high << fd->high_mshift) | (n_high << fd->high_nshift); clk_fd_v2_writel(fd, fd->high_reg, val_high); val = clk_fd_v2_readl(fd, fd->reg); val &= ~(fd->mmask | fd->nmask); val |= (m_low << fd->mshift) | (n_low << fd->nshift); clk_fd_v2_writel(fd, fd->reg, val); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); return 0; } static const struct clk_ops clk_fractional_divider_ops_v2 = { .recalc_rate = clk_fd_v2_recalc_rate, .round_rate = clk_fd_v2_round_rate, .set_rate = clk_fd_v2_set_rate, }; struct clk_hw *clk_hw_register_fractional_divider_v2(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, void __iomem *high_reg, u8 high_mshift, u8 high_mwidth, u8 high_nshift, u8 high_nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_fractional_divider_v2 *fd; struct clk_init_data init; struct clk_hw *hw; int ret; fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fractional_divider_ops_v2; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; fd->reg = reg; fd->mshift = mshift; fd->mwidth = mwidth + high_mwidth; fd->mmask = GENMASK(mwidth - 1, 0) << mshift; fd->nshift = nshift; fd->nwidth = nwidth + high_nwidth; fd->nmask = GENMASK(nwidth - 1, 0) << nshift; fd->high_reg = high_reg; fd->high_mshift = high_mshift; fd->high_mwidth = high_mwidth; fd->high_mmask = GENMASK(high_mwidth - 1, 0) << high_mshift; fd->high_nshift = high_nshift; fd->high_nwidth = high_nwidth; fd->high_nmask = GENMASK(high_nwidth - 1, 0) << high_nshift; fd->flags = clk_divider_flags; fd->lock = lock; fd->hw.init = &init; hw = &fd->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(fd); hw = ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider_v2); struct clk *clk_register_fractional_divider_v2(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 width, void __iomem *high_reg, u8 high_mshift, u8 high_width, u8 clk_divider_flags, spinlock_t *lock) { struct clk_hw *hw; hw = clk_hw_register_fractional_divider_v2(dev, name, parent_name, flags, reg, mshift, width, 0, width, high_reg, high_mshift, high_width, 0, high_width, clk_divider_flags, lock); if (IS_ERR(hw)) return ERR_CAST(hw); return hw->clk; } EXPORT_SYMBOL_GPL(clk_register_fractional_divider_v2); void clk_hw_unregister_fractional_divider_v2(struct clk_hw *hw) { struct clk_fractional_divider_v2 *fd; fd = to_clk_fd_v2(hw); clk_hw_unregister(hw); kfree(fd); }