438 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2010 Red Hat Inc.
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a
 | 
						|
 * copy of this software and associated documentation files (the "Software"),
 | 
						|
 * to deal in the Software without restriction, including without limitation
 | 
						|
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | 
						|
 * and/or sell copies of the Software, and to permit persons to whom the
 | 
						|
 * Software is furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in
 | 
						|
 * all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | 
						|
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 | 
						|
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 | 
						|
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 | 
						|
 * OTHER DEALINGS IN THE SOFTWARE.
 | 
						|
 *
 | 
						|
 * Authors: Ben Skeggs
 | 
						|
 */
 | 
						|
#include "ummu.h"
 | 
						|
#include "vmm.h"
 | 
						|
 | 
						|
#include <subdev/bar.h>
 | 
						|
#include <subdev/fb.h>
 | 
						|
 | 
						|
#include <nvif/if500d.h>
 | 
						|
#include <nvif/if900d.h>
 | 
						|
 | 
						|
struct nvkm_mmu_ptp {
 | 
						|
	struct nvkm_mmu_pt *pt;
 | 
						|
	struct list_head head;
 | 
						|
	u8  shift;
 | 
						|
	u16 mask;
 | 
						|
	u16 free;
 | 
						|
};
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt)
 | 
						|
{
 | 
						|
	const int slot = pt->base >> pt->ptp->shift;
 | 
						|
	struct nvkm_mmu_ptp *ptp = pt->ptp;
 | 
						|
 | 
						|
	/* If there were no free slots in the parent allocation before,
 | 
						|
	 * there will be now, so return PTP to the cache.
 | 
						|
	 */
 | 
						|
	if (!ptp->free)
 | 
						|
		list_add(&ptp->head, &mmu->ptp.list);
 | 
						|
	ptp->free |= BIT(slot);
 | 
						|
 | 
						|
	/* If there's no more sub-allocations, destroy PTP. */
 | 
						|
	if (ptp->free == ptp->mask) {
 | 
						|
		nvkm_mmu_ptc_put(mmu, force, &ptp->pt);
 | 
						|
		list_del(&ptp->head);
 | 
						|
		kfree(ptp);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(pt);
 | 
						|
}
 | 
						|
 | 
						|
static struct nvkm_mmu_pt *
 | 
						|
nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_pt *pt;
 | 
						|
	struct nvkm_mmu_ptp *ptp;
 | 
						|
	int slot;
 | 
						|
 | 
						|
	if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head);
 | 
						|
	if (!ptp) {
 | 
						|
		/* Need to allocate a new parent to sub-allocate from. */
 | 
						|
		if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) {
 | 
						|
			kfree(pt);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false);
 | 
						|
		if (!ptp->pt) {
 | 
						|
			kfree(ptp);
 | 
						|
			kfree(pt);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		ptp->shift = order_base_2(size);
 | 
						|
		slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift;
 | 
						|
		ptp->mask = (1 << slot) - 1;
 | 
						|
		ptp->free = ptp->mask;
 | 
						|
		list_add(&ptp->head, &mmu->ptp.list);
 | 
						|
	}
 | 
						|
	pt->ptp = ptp;
 | 
						|
	pt->sub = true;
 | 
						|
 | 
						|
	/* Sub-allocate from parent object, removing PTP from cache
 | 
						|
	 * if there's no more free slots left.
 | 
						|
	 */
 | 
						|
	slot = __ffs(ptp->free);
 | 
						|
	ptp->free &= ~BIT(slot);
 | 
						|
	if (!ptp->free)
 | 
						|
		list_del(&ptp->head);
 | 
						|
 | 
						|
	pt->memory = pt->ptp->pt->memory;
 | 
						|
	pt->base = slot << ptp->shift;
 | 
						|
	pt->addr = pt->ptp->pt->addr + pt->base;
 | 
						|
	return pt;
 | 
						|
}
 | 
						|
 | 
						|
struct nvkm_mmu_ptc {
 | 
						|
	struct list_head head;
 | 
						|
	struct list_head item;
 | 
						|
	u32 size;
 | 
						|
	u32 refs;
 | 
						|
};
 | 
						|
 | 
						|
static inline struct nvkm_mmu_ptc *
 | 
						|
nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_ptc *ptc;
 | 
						|
 | 
						|
	list_for_each_entry(ptc, &mmu->ptc.list, head) {
 | 
						|
		if (ptc->size == size)
 | 
						|
			return ptc;
 | 
						|
	}
 | 
						|
 | 
						|
	ptc = kmalloc(sizeof(*ptc), GFP_KERNEL);
 | 
						|
	if (ptc) {
 | 
						|
		INIT_LIST_HEAD(&ptc->item);
 | 
						|
		ptc->size = size;
 | 
						|
		ptc->refs = 0;
 | 
						|
		list_add(&ptc->head, &mmu->ptc.list);
 | 
						|
	}
 | 
						|
 | 
						|
	return ptc;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_pt *pt = *ppt;
 | 
						|
	if (pt) {
 | 
						|
		/* Handle sub-allocated page tables. */
 | 
						|
		if (pt->sub) {
 | 
						|
			mutex_lock(&mmu->ptp.mutex);
 | 
						|
			nvkm_mmu_ptp_put(mmu, force, pt);
 | 
						|
			mutex_unlock(&mmu->ptp.mutex);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Either cache or free the object. */
 | 
						|
		mutex_lock(&mmu->ptc.mutex);
 | 
						|
		if (pt->ptc->refs < 8 /* Heuristic. */ && !force) {
 | 
						|
			list_add_tail(&pt->head, &pt->ptc->item);
 | 
						|
			pt->ptc->refs++;
 | 
						|
		} else {
 | 
						|
			nvkm_memory_unref(&pt->memory);
 | 
						|
			kfree(pt);
 | 
						|
		}
 | 
						|
		mutex_unlock(&mmu->ptc.mutex);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct nvkm_mmu_pt *
 | 
						|
nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_ptc *ptc;
 | 
						|
	struct nvkm_mmu_pt *pt;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Sub-allocated page table (ie. GP100 LPT). */
 | 
						|
	if (align < 0x1000) {
 | 
						|
		mutex_lock(&mmu->ptp.mutex);
 | 
						|
		pt = nvkm_mmu_ptp_get(mmu, align, zero);
 | 
						|
		mutex_unlock(&mmu->ptp.mutex);
 | 
						|
		return pt;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Lookup cache for this page table size. */
 | 
						|
	mutex_lock(&mmu->ptc.mutex);
 | 
						|
	ptc = nvkm_mmu_ptc_find(mmu, size);
 | 
						|
	if (!ptc) {
 | 
						|
		mutex_unlock(&mmu->ptc.mutex);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there's a free PT in the cache, reuse it. */
 | 
						|
	pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head);
 | 
						|
	if (pt) {
 | 
						|
		if (zero)
 | 
						|
			nvkm_fo64(pt->memory, 0, 0, size >> 3);
 | 
						|
		list_del(&pt->head);
 | 
						|
		ptc->refs--;
 | 
						|
		mutex_unlock(&mmu->ptc.mutex);
 | 
						|
		return pt;
 | 
						|
	}
 | 
						|
	mutex_unlock(&mmu->ptc.mutex);
 | 
						|
 | 
						|
	/* No such luck, we need to allocate. */
 | 
						|
	if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL)))
 | 
						|
		return NULL;
 | 
						|
	pt->ptc = ptc;
 | 
						|
	pt->sub = false;
 | 
						|
 | 
						|
	ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
 | 
						|
			      size, align, zero, &pt->memory);
 | 
						|
	if (ret) {
 | 
						|
		kfree(pt);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	pt->base = 0;
 | 
						|
	pt->addr = nvkm_memory_addr(pt->memory);
 | 
						|
	return pt;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_ptc *ptc;
 | 
						|
	list_for_each_entry(ptc, &mmu->ptc.list, head) {
 | 
						|
		struct nvkm_mmu_pt *pt, *tt;
 | 
						|
		list_for_each_entry_safe(pt, tt, &ptc->item, head) {
 | 
						|
			nvkm_memory_unref(&pt->memory);
 | 
						|
			list_del(&pt->head);
 | 
						|
			kfree(pt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	struct nvkm_mmu_ptc *ptc, *ptct;
 | 
						|
 | 
						|
	list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) {
 | 
						|
		WARN_ON(!list_empty(&ptc->item));
 | 
						|
		list_del(&ptc->head);
 | 
						|
		kfree(ptc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_ptc_init(struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	mutex_init(&mmu->ptc.mutex);
 | 
						|
	INIT_LIST_HEAD(&mmu->ptc.list);
 | 
						|
	mutex_init(&mmu->ptp.mutex);
 | 
						|
	INIT_LIST_HEAD(&mmu->ptp.list);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type)
 | 
						|
{
 | 
						|
	if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) {
 | 
						|
		mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type;
 | 
						|
		mmu->type[mmu->type_nr].heap = heap;
 | 
						|
		mmu->type_nr++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size)
 | 
						|
{
 | 
						|
	if (size) {
 | 
						|
		if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) {
 | 
						|
			mmu->heap[mmu->heap_nr].type = type;
 | 
						|
			mmu->heap[mmu->heap_nr].size = size;
 | 
						|
			return mmu->heap_nr++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_host(struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	struct nvkm_device *device = mmu->subdev.device;
 | 
						|
	u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys;
 | 
						|
	int heap;
 | 
						|
 | 
						|
	/* Non-mappable system memory. */
 | 
						|
	heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL);
 | 
						|
	nvkm_mmu_type(mmu, heap, type);
 | 
						|
 | 
						|
	/* Non-coherent, cached, system memory.
 | 
						|
	 *
 | 
						|
	 * Block-linear mappings of system memory must be done through
 | 
						|
	 * BAR1, and cannot be supported on systems where we're unable
 | 
						|
	 * to map BAR1 with write-combining.
 | 
						|
	 */
 | 
						|
	type |= NVKM_MEM_MAPPABLE;
 | 
						|
	if (!device->bar || device->bar->iomap_uncached)
 | 
						|
		nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
 | 
						|
	else
 | 
						|
		nvkm_mmu_type(mmu, heap, type);
 | 
						|
 | 
						|
	/* Coherent, cached, system memory.
 | 
						|
	 *
 | 
						|
	 * Unsupported on systems that aren't able to support snooped
 | 
						|
	 * mappings, and also for block-linear mappings which must be
 | 
						|
	 * done through BAR1.
 | 
						|
	 */
 | 
						|
	type |= NVKM_MEM_COHERENT;
 | 
						|
	if (device->func->cpu_coherent)
 | 
						|
		nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
 | 
						|
 | 
						|
	/* Uncached system memory. */
 | 
						|
	nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
nvkm_mmu_vram(struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	struct nvkm_device *device = mmu->subdev.device;
 | 
						|
	struct nvkm_mm *mm = &device->fb->ram->vram;
 | 
						|
	const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL);
 | 
						|
	const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP);
 | 
						|
	const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED);
 | 
						|
	u8 type = NVKM_MEM_KIND * !!mmu->func->kind;
 | 
						|
	u8 heap = NVKM_MEM_VRAM;
 | 
						|
	int heapM, heapN, heapU;
 | 
						|
 | 
						|
	/* Mixed-memory doesn't support compression or display. */
 | 
						|
	heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT);
 | 
						|
 | 
						|
	heap |= NVKM_MEM_COMP;
 | 
						|
	heap |= NVKM_MEM_DISP;
 | 
						|
	heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT);
 | 
						|
	heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT);
 | 
						|
 | 
						|
	/* Add non-mappable VRAM types first so that they're preferred
 | 
						|
	 * over anything else.  Mixed-memory will be slower than other
 | 
						|
	 * heaps, it's prioritised last.
 | 
						|
	 */
 | 
						|
	nvkm_mmu_type(mmu, heapU, type);
 | 
						|
	nvkm_mmu_type(mmu, heapN, type);
 | 
						|
	nvkm_mmu_type(mmu, heapM, type);
 | 
						|
 | 
						|
	/* Add host memory types next, under the assumption that users
 | 
						|
	 * wanting mappable memory want to use them as staging buffers
 | 
						|
	 * or the like.
 | 
						|
	 */
 | 
						|
	nvkm_mmu_host(mmu);
 | 
						|
 | 
						|
	/* Mappable VRAM types go last, as they're basically the worst
 | 
						|
	 * possible type to ask for unless there's no other choice.
 | 
						|
	 */
 | 
						|
	if (device->bar) {
 | 
						|
		/* Write-combined BAR1 access. */
 | 
						|
		type |= NVKM_MEM_MAPPABLE;
 | 
						|
		if (!device->bar->iomap_uncached) {
 | 
						|
			nvkm_mmu_type(mmu, heapN, type);
 | 
						|
			nvkm_mmu_type(mmu, heapM, type);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Uncached BAR1 access. */
 | 
						|
		type |= NVKM_MEM_COHERENT;
 | 
						|
		type |= NVKM_MEM_UNCACHED;
 | 
						|
		nvkm_mmu_type(mmu, heapN, type);
 | 
						|
		nvkm_mmu_type(mmu, heapM, type);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
 | 
						|
{
 | 
						|
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);
 | 
						|
 | 
						|
	/* Determine available memory types. */
 | 
						|
	if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram)
 | 
						|
		nvkm_mmu_vram(mmu);
 | 
						|
	else
 | 
						|
		nvkm_mmu_host(mmu);
 | 
						|
 | 
						|
	if (mmu->func->vmm.global) {
 | 
						|
		int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL,
 | 
						|
				       "gart", &mmu->vmm);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
nvkm_mmu_init(struct nvkm_subdev *subdev)
 | 
						|
{
 | 
						|
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);
 | 
						|
	if (mmu->func->init)
 | 
						|
		mmu->func->init(mmu);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
nvkm_mmu_dtor(struct nvkm_subdev *subdev)
 | 
						|
{
 | 
						|
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);
 | 
						|
 | 
						|
	nvkm_vmm_unref(&mmu->vmm);
 | 
						|
 | 
						|
	nvkm_mmu_ptc_fini(mmu);
 | 
						|
	mutex_destroy(&mmu->mutex);
 | 
						|
	return mmu;
 | 
						|
}
 | 
						|
 | 
						|
static const struct nvkm_subdev_func
 | 
						|
nvkm_mmu = {
 | 
						|
	.dtor = nvkm_mmu_dtor,
 | 
						|
	.oneinit = nvkm_mmu_oneinit,
 | 
						|
	.init = nvkm_mmu_init,
 | 
						|
};
 | 
						|
 | 
						|
void
 | 
						|
nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device,
 | 
						|
	      enum nvkm_subdev_type type, int inst, struct nvkm_mmu *mmu)
 | 
						|
{
 | 
						|
	nvkm_subdev_ctor(&nvkm_mmu, device, type, inst, &mmu->subdev);
 | 
						|
	mmu->func = func;
 | 
						|
	mmu->dma_bits = func->dma_bits;
 | 
						|
	nvkm_mmu_ptc_init(mmu);
 | 
						|
	mutex_init(&mmu->mutex);
 | 
						|
	mmu->user.ctor = nvkm_ummu_new;
 | 
						|
	mmu->user.base = func->mmu.user;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device,
 | 
						|
	      enum nvkm_subdev_type type, int inst, struct nvkm_mmu **pmmu)
 | 
						|
{
 | 
						|
	if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL)))
 | 
						|
		return -ENOMEM;
 | 
						|
	nvkm_mmu_ctor(func, device, type, inst, *pmmu);
 | 
						|
	return 0;
 | 
						|
}
 |