1346 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1346 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Main bcache entry point - handle a read or a write request and decide what to
 | 
						|
 * do with it; the make_request functions are called by the block layer.
 | 
						|
 *
 | 
						|
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 | 
						|
 * Copyright 2012 Google, Inc.
 | 
						|
 */
 | 
						|
 | 
						|
#include "bcache.h"
 | 
						|
#include "btree.h"
 | 
						|
#include "debug.h"
 | 
						|
#include "request.h"
 | 
						|
#include "writeback.h"
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
 | 
						|
#include <trace/events/bcache.h>
 | 
						|
 | 
						|
#define CUTOFF_CACHE_ADD	95
 | 
						|
#define CUTOFF_CACHE_READA	90
 | 
						|
 | 
						|
struct kmem_cache *bch_search_cache;
 | 
						|
 | 
						|
static void bch_data_insert_start(struct closure *cl);
 | 
						|
 | 
						|
static unsigned int cache_mode(struct cached_dev *dc)
 | 
						|
{
 | 
						|
	return BDEV_CACHE_MODE(&dc->sb);
 | 
						|
}
 | 
						|
 | 
						|
static bool verify(struct cached_dev *dc)
 | 
						|
{
 | 
						|
	return dc->verify;
 | 
						|
}
 | 
						|
 | 
						|
static void bio_csum(struct bio *bio, struct bkey *k)
 | 
						|
{
 | 
						|
	struct bio_vec bv;
 | 
						|
	struct bvec_iter iter;
 | 
						|
	uint64_t csum = 0;
 | 
						|
 | 
						|
	bio_for_each_segment(bv, bio, iter) {
 | 
						|
		void *d = bvec_kmap_local(&bv);
 | 
						|
 | 
						|
		csum = crc64_be(csum, d, bv.bv_len);
 | 
						|
		kunmap_local(d);
 | 
						|
	}
 | 
						|
 | 
						|
	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Insert data into cache */
 | 
						|
 | 
						|
static void bch_data_insert_keys(struct closure *cl)
 | 
						|
{
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
	atomic_t *journal_ref = NULL;
 | 
						|
	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!op->replace)
 | 
						|
		journal_ref = bch_journal(op->c, &op->insert_keys,
 | 
						|
					  op->flush_journal ? cl : NULL);
 | 
						|
 | 
						|
	ret = bch_btree_insert(op->c, &op->insert_keys,
 | 
						|
			       journal_ref, replace_key);
 | 
						|
	if (ret == -ESRCH) {
 | 
						|
		op->replace_collision = true;
 | 
						|
	} else if (ret) {
 | 
						|
		op->status		= BLK_STS_RESOURCE;
 | 
						|
		op->insert_data_done	= true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (journal_ref)
 | 
						|
		atomic_dec_bug(journal_ref);
 | 
						|
 | 
						|
	if (!op->insert_data_done) {
 | 
						|
		continue_at(cl, bch_data_insert_start, op->wq);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	bch_keylist_free(&op->insert_keys);
 | 
						|
	closure_return(cl);
 | 
						|
}
 | 
						|
 | 
						|
static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
 | 
						|
			       struct cache_set *c)
 | 
						|
{
 | 
						|
	size_t oldsize = bch_keylist_nkeys(l);
 | 
						|
	size_t newsize = oldsize + u64s;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The journalling code doesn't handle the case where the keys to insert
 | 
						|
	 * is bigger than an empty write: If we just return -ENOMEM here,
 | 
						|
	 * bch_data_insert_keys() will insert the keys created so far
 | 
						|
	 * and finish the rest when the keylist is empty.
 | 
						|
	 */
 | 
						|
	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return __bch_keylist_realloc(l, u64s);
 | 
						|
}
 | 
						|
 | 
						|
static void bch_data_invalidate(struct closure *cl)
 | 
						|
{
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
	struct bio *bio = op->bio;
 | 
						|
 | 
						|
	pr_debug("invalidating %i sectors from %llu\n",
 | 
						|
		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 | 
						|
 | 
						|
	while (bio_sectors(bio)) {
 | 
						|
		unsigned int sectors = min(bio_sectors(bio),
 | 
						|
				       1U << (KEY_SIZE_BITS - 1));
 | 
						|
 | 
						|
		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		bio->bi_iter.bi_sector	+= sectors;
 | 
						|
		bio->bi_iter.bi_size	-= sectors << 9;
 | 
						|
 | 
						|
		bch_keylist_add(&op->insert_keys,
 | 
						|
				&KEY(op->inode,
 | 
						|
				     bio->bi_iter.bi_sector,
 | 
						|
				     sectors));
 | 
						|
	}
 | 
						|
 | 
						|
	op->insert_data_done = true;
 | 
						|
	/* get in bch_data_insert() */
 | 
						|
	bio_put(bio);
 | 
						|
out:
 | 
						|
	continue_at(cl, bch_data_insert_keys, op->wq);
 | 
						|
}
 | 
						|
 | 
						|
static void bch_data_insert_error(struct closure *cl)
 | 
						|
{
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Our data write just errored, which means we've got a bunch of keys to
 | 
						|
	 * insert that point to data that wasn't successfully written.
 | 
						|
	 *
 | 
						|
	 * We don't have to insert those keys but we still have to invalidate
 | 
						|
	 * that region of the cache - so, if we just strip off all the pointers
 | 
						|
	 * from the keys we'll accomplish just that.
 | 
						|
	 */
 | 
						|
 | 
						|
	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 | 
						|
 | 
						|
	while (src != op->insert_keys.top) {
 | 
						|
		struct bkey *n = bkey_next(src);
 | 
						|
 | 
						|
		SET_KEY_PTRS(src, 0);
 | 
						|
		memmove(dst, src, bkey_bytes(src));
 | 
						|
 | 
						|
		dst = bkey_next(dst);
 | 
						|
		src = n;
 | 
						|
	}
 | 
						|
 | 
						|
	op->insert_keys.top = dst;
 | 
						|
 | 
						|
	bch_data_insert_keys(cl);
 | 
						|
}
 | 
						|
 | 
						|
static void bch_data_insert_endio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct closure *cl = bio->bi_private;
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
 | 
						|
	if (bio->bi_status) {
 | 
						|
		/* TODO: We could try to recover from this. */
 | 
						|
		if (op->writeback)
 | 
						|
			op->status = bio->bi_status;
 | 
						|
		else if (!op->replace)
 | 
						|
			set_closure_fn(cl, bch_data_insert_error, op->wq);
 | 
						|
		else
 | 
						|
			set_closure_fn(cl, NULL, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 | 
						|
}
 | 
						|
 | 
						|
static void bch_data_insert_start(struct closure *cl)
 | 
						|
{
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
	struct bio *bio = op->bio, *n;
 | 
						|
 | 
						|
	if (op->bypass)
 | 
						|
		return bch_data_invalidate(cl);
 | 
						|
 | 
						|
	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 | 
						|
		wake_up_gc(op->c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 | 
						|
	 * flush, it'll wait on the journal write.
 | 
						|
	 */
 | 
						|
	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 | 
						|
 | 
						|
	do {
 | 
						|
		unsigned int i;
 | 
						|
		struct bkey *k;
 | 
						|
		struct bio_set *split = &op->c->bio_split;
 | 
						|
 | 
						|
		/* 1 for the device pointer and 1 for the chksum */
 | 
						|
		if (bch_keylist_realloc(&op->insert_keys,
 | 
						|
					3 + (op->csum ? 1 : 0),
 | 
						|
					op->c)) {
 | 
						|
			continue_at(cl, bch_data_insert_keys, op->wq);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		k = op->insert_keys.top;
 | 
						|
		bkey_init(k);
 | 
						|
		SET_KEY_INODE(k, op->inode);
 | 
						|
		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 | 
						|
 | 
						|
		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 | 
						|
				       op->write_point, op->write_prio,
 | 
						|
				       op->writeback))
 | 
						|
			goto err;
 | 
						|
 | 
						|
		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 | 
						|
 | 
						|
		n->bi_end_io	= bch_data_insert_endio;
 | 
						|
		n->bi_private	= cl;
 | 
						|
 | 
						|
		if (op->writeback) {
 | 
						|
			SET_KEY_DIRTY(k, true);
 | 
						|
 | 
						|
			for (i = 0; i < KEY_PTRS(k); i++)
 | 
						|
				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 | 
						|
					    GC_MARK_DIRTY);
 | 
						|
		}
 | 
						|
 | 
						|
		SET_KEY_CSUM(k, op->csum);
 | 
						|
		if (KEY_CSUM(k))
 | 
						|
			bio_csum(n, k);
 | 
						|
 | 
						|
		trace_bcache_cache_insert(k);
 | 
						|
		bch_keylist_push(&op->insert_keys);
 | 
						|
 | 
						|
		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 | 
						|
		bch_submit_bbio(n, op->c, k, 0);
 | 
						|
	} while (n != bio);
 | 
						|
 | 
						|
	op->insert_data_done = true;
 | 
						|
	continue_at(cl, bch_data_insert_keys, op->wq);
 | 
						|
	return;
 | 
						|
err:
 | 
						|
	/* bch_alloc_sectors() blocks if s->writeback = true */
 | 
						|
	BUG_ON(op->writeback);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * But if it's not a writeback write we'd rather just bail out if
 | 
						|
	 * there aren't any buckets ready to write to - it might take awhile and
 | 
						|
	 * we might be starving btree writes for gc or something.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!op->replace) {
 | 
						|
		/*
 | 
						|
		 * Writethrough write: We can't complete the write until we've
 | 
						|
		 * updated the index. But we don't want to delay the write while
 | 
						|
		 * we wait for buckets to be freed up, so just invalidate the
 | 
						|
		 * rest of the write.
 | 
						|
		 */
 | 
						|
		op->bypass = true;
 | 
						|
		return bch_data_invalidate(cl);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * From a cache miss, we can just insert the keys for the data
 | 
						|
		 * we have written or bail out if we didn't do anything.
 | 
						|
		 */
 | 
						|
		op->insert_data_done = true;
 | 
						|
		bio_put(bio);
 | 
						|
 | 
						|
		if (!bch_keylist_empty(&op->insert_keys))
 | 
						|
			continue_at(cl, bch_data_insert_keys, op->wq);
 | 
						|
		else
 | 
						|
			closure_return(cl);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bch_data_insert - stick some data in the cache
 | 
						|
 * @cl: closure pointer.
 | 
						|
 *
 | 
						|
 * This is the starting point for any data to end up in a cache device; it could
 | 
						|
 * be from a normal write, or a writeback write, or a write to a flash only
 | 
						|
 * volume - it's also used by the moving garbage collector to compact data in
 | 
						|
 * mostly empty buckets.
 | 
						|
 *
 | 
						|
 * It first writes the data to the cache, creating a list of keys to be inserted
 | 
						|
 * (if the data had to be fragmented there will be multiple keys); after the
 | 
						|
 * data is written it calls bch_journal, and after the keys have been added to
 | 
						|
 * the next journal write they're inserted into the btree.
 | 
						|
 *
 | 
						|
 * It inserts the data in op->bio; bi_sector is used for the key offset,
 | 
						|
 * and op->inode is used for the key inode.
 | 
						|
 *
 | 
						|
 * If op->bypass is true, instead of inserting the data it invalidates the
 | 
						|
 * region of the cache represented by op->bio and op->inode.
 | 
						|
 */
 | 
						|
void bch_data_insert(struct closure *cl)
 | 
						|
{
 | 
						|
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | 
						|
 | 
						|
	trace_bcache_write(op->c, op->inode, op->bio,
 | 
						|
			   op->writeback, op->bypass);
 | 
						|
 | 
						|
	bch_keylist_init(&op->insert_keys);
 | 
						|
	bio_get(op->bio);
 | 
						|
	bch_data_insert_start(cl);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Congested?  Return 0 (not congested) or the limit (in sectors)
 | 
						|
 * beyond which we should bypass the cache due to congestion.
 | 
						|
 */
 | 
						|
unsigned int bch_get_congested(const struct cache_set *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!c->congested_read_threshold_us &&
 | 
						|
	    !c->congested_write_threshold_us)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	i = (local_clock_us() - c->congested_last_us) / 1024;
 | 
						|
	if (i < 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	i += atomic_read(&c->congested);
 | 
						|
	if (i >= 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	i += CONGESTED_MAX;
 | 
						|
 | 
						|
	if (i > 0)
 | 
						|
		i = fract_exp_two(i, 6);
 | 
						|
 | 
						|
	i -= hweight32(get_random_u32());
 | 
						|
 | 
						|
	return i > 0 ? i : 1;
 | 
						|
}
 | 
						|
 | 
						|
static void add_sequential(struct task_struct *t)
 | 
						|
{
 | 
						|
	ewma_add(t->sequential_io_avg,
 | 
						|
		 t->sequential_io, 8, 0);
 | 
						|
 | 
						|
	t->sequential_io = 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 | 
						|
{
 | 
						|
	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 | 
						|
}
 | 
						|
 | 
						|
static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 | 
						|
{
 | 
						|
	struct cache_set *c = dc->disk.c;
 | 
						|
	unsigned int mode = cache_mode(dc);
 | 
						|
	unsigned int sectors, congested;
 | 
						|
	struct task_struct *task = current;
 | 
						|
	struct io *i;
 | 
						|
 | 
						|
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 | 
						|
	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 | 
						|
	    (bio_op(bio) == REQ_OP_DISCARD))
 | 
						|
		goto skip;
 | 
						|
 | 
						|
	if (mode == CACHE_MODE_NONE ||
 | 
						|
	    (mode == CACHE_MODE_WRITEAROUND &&
 | 
						|
	     op_is_write(bio_op(bio))))
 | 
						|
		goto skip;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the bio is for read-ahead or background IO, bypass it or
 | 
						|
	 * not depends on the following situations,
 | 
						|
	 * - If the IO is for meta data, always cache it and no bypass
 | 
						|
	 * - If the IO is not meta data, check dc->cache_reada_policy,
 | 
						|
	 *      BCH_CACHE_READA_ALL: cache it and not bypass
 | 
						|
	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
 | 
						|
	 * That is, read-ahead request for metadata always get cached
 | 
						|
	 * (eg, for gfs2 or xfs).
 | 
						|
	 */
 | 
						|
	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
 | 
						|
		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 | 
						|
		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
 | 
						|
			goto skip;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
 | 
						|
	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
 | 
						|
		pr_debug("skipping unaligned io\n");
 | 
						|
		goto skip;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bypass_torture_test(dc)) {
 | 
						|
		if (prandom_u32_max(4) == 3)
 | 
						|
			goto skip;
 | 
						|
		else
 | 
						|
			goto rescale;
 | 
						|
	}
 | 
						|
 | 
						|
	congested = bch_get_congested(c);
 | 
						|
	if (!congested && !dc->sequential_cutoff)
 | 
						|
		goto rescale;
 | 
						|
 | 
						|
	spin_lock(&dc->io_lock);
 | 
						|
 | 
						|
	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 | 
						|
		if (i->last == bio->bi_iter.bi_sector &&
 | 
						|
		    time_before(jiffies, i->jiffies))
 | 
						|
			goto found;
 | 
						|
 | 
						|
	i = list_first_entry(&dc->io_lru, struct io, lru);
 | 
						|
 | 
						|
	add_sequential(task);
 | 
						|
	i->sequential = 0;
 | 
						|
found:
 | 
						|
	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 | 
						|
		i->sequential	+= bio->bi_iter.bi_size;
 | 
						|
 | 
						|
	i->last			 = bio_end_sector(bio);
 | 
						|
	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 | 
						|
	task->sequential_io	 = i->sequential;
 | 
						|
 | 
						|
	hlist_del(&i->hash);
 | 
						|
	hlist_add_head(&i->hash, iohash(dc, i->last));
 | 
						|
	list_move_tail(&i->lru, &dc->io_lru);
 | 
						|
 | 
						|
	spin_unlock(&dc->io_lock);
 | 
						|
 | 
						|
	sectors = max(task->sequential_io,
 | 
						|
		      task->sequential_io_avg) >> 9;
 | 
						|
 | 
						|
	if (dc->sequential_cutoff &&
 | 
						|
	    sectors >= dc->sequential_cutoff >> 9) {
 | 
						|
		trace_bcache_bypass_sequential(bio);
 | 
						|
		goto skip;
 | 
						|
	}
 | 
						|
 | 
						|
	if (congested && sectors >= congested) {
 | 
						|
		trace_bcache_bypass_congested(bio);
 | 
						|
		goto skip;
 | 
						|
	}
 | 
						|
 | 
						|
rescale:
 | 
						|
	bch_rescale_priorities(c, bio_sectors(bio));
 | 
						|
	return false;
 | 
						|
skip:
 | 
						|
	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Cache lookup */
 | 
						|
 | 
						|
struct search {
 | 
						|
	/* Stack frame for bio_complete */
 | 
						|
	struct closure		cl;
 | 
						|
 | 
						|
	struct bbio		bio;
 | 
						|
	struct bio		*orig_bio;
 | 
						|
	struct bio		*cache_miss;
 | 
						|
	struct bcache_device	*d;
 | 
						|
 | 
						|
	unsigned int		insert_bio_sectors;
 | 
						|
	unsigned int		recoverable:1;
 | 
						|
	unsigned int		write:1;
 | 
						|
	unsigned int		read_dirty_data:1;
 | 
						|
	unsigned int		cache_missed:1;
 | 
						|
 | 
						|
	struct block_device	*orig_bdev;
 | 
						|
	unsigned long		start_time;
 | 
						|
 | 
						|
	struct btree_op		op;
 | 
						|
	struct data_insert_op	iop;
 | 
						|
};
 | 
						|
 | 
						|
static void bch_cache_read_endio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct bbio *b = container_of(bio, struct bbio, bio);
 | 
						|
	struct closure *cl = bio->bi_private;
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the bucket was reused while our bio was in flight, we might have
 | 
						|
	 * read the wrong data. Set s->error but not error so it doesn't get
 | 
						|
	 * counted against the cache device, but we'll still reread the data
 | 
						|
	 * from the backing device.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (bio->bi_status)
 | 
						|
		s->iop.status = bio->bi_status;
 | 
						|
	else if (!KEY_DIRTY(&b->key) &&
 | 
						|
		 ptr_stale(s->iop.c, &b->key, 0)) {
 | 
						|
		atomic_long_inc(&s->iop.c->cache_read_races);
 | 
						|
		s->iop.status = BLK_STS_IOERR;
 | 
						|
	}
 | 
						|
 | 
						|
	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read from a single key, handling the initial cache miss if the key starts in
 | 
						|
 * the middle of the bio
 | 
						|
 */
 | 
						|
static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 | 
						|
{
 | 
						|
	struct search *s = container_of(op, struct search, op);
 | 
						|
	struct bio *n, *bio = &s->bio.bio;
 | 
						|
	struct bkey *bio_key;
 | 
						|
	unsigned int ptr;
 | 
						|
 | 
						|
	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 | 
						|
		return MAP_CONTINUE;
 | 
						|
 | 
						|
	if (KEY_INODE(k) != s->iop.inode ||
 | 
						|
	    KEY_START(k) > bio->bi_iter.bi_sector) {
 | 
						|
		unsigned int bio_sectors = bio_sectors(bio);
 | 
						|
		unsigned int sectors = KEY_INODE(k) == s->iop.inode
 | 
						|
			? min_t(uint64_t, INT_MAX,
 | 
						|
				KEY_START(k) - bio->bi_iter.bi_sector)
 | 
						|
			: INT_MAX;
 | 
						|
		int ret = s->d->cache_miss(b, s, bio, sectors);
 | 
						|
 | 
						|
		if (ret != MAP_CONTINUE)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		/* if this was a complete miss we shouldn't get here */
 | 
						|
		BUG_ON(bio_sectors <= sectors);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!KEY_SIZE(k))
 | 
						|
		return MAP_CONTINUE;
 | 
						|
 | 
						|
	/* XXX: figure out best pointer - for multiple cache devices */
 | 
						|
	ptr = 0;
 | 
						|
 | 
						|
	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 | 
						|
 | 
						|
	if (KEY_DIRTY(k))
 | 
						|
		s->read_dirty_data = true;
 | 
						|
 | 
						|
	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 | 
						|
				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 | 
						|
			   GFP_NOIO, &s->d->bio_split);
 | 
						|
 | 
						|
	bio_key = &container_of(n, struct bbio, bio)->key;
 | 
						|
	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 | 
						|
 | 
						|
	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 | 
						|
	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 | 
						|
 | 
						|
	n->bi_end_io	= bch_cache_read_endio;
 | 
						|
	n->bi_private	= &s->cl;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The bucket we're reading from might be reused while our bio
 | 
						|
	 * is in flight, and we could then end up reading the wrong
 | 
						|
	 * data.
 | 
						|
	 *
 | 
						|
	 * We guard against this by checking (in cache_read_endio()) if
 | 
						|
	 * the pointer is stale again; if so, we treat it as an error
 | 
						|
	 * and reread from the backing device (but we don't pass that
 | 
						|
	 * error up anywhere).
 | 
						|
	 */
 | 
						|
 | 
						|
	__bch_submit_bbio(n, b->c);
 | 
						|
	return n == bio ? MAP_DONE : MAP_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void cache_lookup(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, iop.cl);
 | 
						|
	struct bio *bio = &s->bio.bio;
 | 
						|
	struct cached_dev *dc;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	bch_btree_op_init(&s->op, -1);
 | 
						|
 | 
						|
	ret = bch_btree_map_keys(&s->op, s->iop.c,
 | 
						|
				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 | 
						|
				 cache_lookup_fn, MAP_END_KEY);
 | 
						|
	if (ret == -EAGAIN) {
 | 
						|
		continue_at(cl, cache_lookup, bcache_wq);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We might meet err when searching the btree, If that happens, we will
 | 
						|
	 * get negative ret, in this scenario we should not recover data from
 | 
						|
	 * backing device (when cache device is dirty) because we don't know
 | 
						|
	 * whether bkeys the read request covered are all clean.
 | 
						|
	 *
 | 
						|
	 * And after that happened, s->iop.status is still its initial value
 | 
						|
	 * before we submit s->bio.bio
 | 
						|
	 */
 | 
						|
	if (ret < 0) {
 | 
						|
		BUG_ON(ret == -EINTR);
 | 
						|
		if (s->d && s->d->c &&
 | 
						|
				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 | 
						|
			dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
			if (dc && atomic_read(&dc->has_dirty))
 | 
						|
				s->recoverable = false;
 | 
						|
		}
 | 
						|
		if (!s->iop.status)
 | 
						|
			s->iop.status = BLK_STS_IOERR;
 | 
						|
	}
 | 
						|
 | 
						|
	closure_return(cl);
 | 
						|
}
 | 
						|
 | 
						|
/* Common code for the make_request functions */
 | 
						|
 | 
						|
static void request_endio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct closure *cl = bio->bi_private;
 | 
						|
 | 
						|
	if (bio->bi_status) {
 | 
						|
		struct search *s = container_of(cl, struct search, cl);
 | 
						|
 | 
						|
		s->iop.status = bio->bi_status;
 | 
						|
		/* Only cache read errors are recoverable */
 | 
						|
		s->recoverable = false;
 | 
						|
	}
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
	closure_put(cl);
 | 
						|
}
 | 
						|
 | 
						|
static void backing_request_endio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct closure *cl = bio->bi_private;
 | 
						|
 | 
						|
	if (bio->bi_status) {
 | 
						|
		struct search *s = container_of(cl, struct search, cl);
 | 
						|
		struct cached_dev *dc = container_of(s->d,
 | 
						|
						     struct cached_dev, disk);
 | 
						|
		/*
 | 
						|
		 * If a bio has REQ_PREFLUSH for writeback mode, it is
 | 
						|
		 * speically assembled in cached_dev_write() for a non-zero
 | 
						|
		 * write request which has REQ_PREFLUSH. we don't set
 | 
						|
		 * s->iop.status by this failure, the status will be decided
 | 
						|
		 * by result of bch_data_insert() operation.
 | 
						|
		 */
 | 
						|
		if (unlikely(s->iop.writeback &&
 | 
						|
			     bio->bi_opf & REQ_PREFLUSH)) {
 | 
						|
			pr_err("Can't flush %pg: returned bi_status %i\n",
 | 
						|
				dc->bdev, bio->bi_status);
 | 
						|
		} else {
 | 
						|
			/* set to orig_bio->bi_status in bio_complete() */
 | 
						|
			s->iop.status = bio->bi_status;
 | 
						|
		}
 | 
						|
		s->recoverable = false;
 | 
						|
		/* should count I/O error for backing device here */
 | 
						|
		bch_count_backing_io_errors(dc, bio);
 | 
						|
	}
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
	closure_put(cl);
 | 
						|
}
 | 
						|
 | 
						|
static void bio_complete(struct search *s)
 | 
						|
{
 | 
						|
	if (s->orig_bio) {
 | 
						|
		/* Count on bcache device */
 | 
						|
		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
 | 
						|
					 s->orig_bdev);
 | 
						|
		trace_bcache_request_end(s->d, s->orig_bio);
 | 
						|
		s->orig_bio->bi_status = s->iop.status;
 | 
						|
		bio_endio(s->orig_bio);
 | 
						|
		s->orig_bio = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void do_bio_hook(struct search *s,
 | 
						|
			struct bio *orig_bio,
 | 
						|
			bio_end_io_t *end_io_fn)
 | 
						|
{
 | 
						|
	struct bio *bio = &s->bio.bio;
 | 
						|
 | 
						|
	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
 | 
						|
	/*
 | 
						|
	 * bi_end_io can be set separately somewhere else, e.g. the
 | 
						|
	 * variants in,
 | 
						|
	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
 | 
						|
	 * - n->bi_end_io from cache_lookup_fn()
 | 
						|
	 */
 | 
						|
	bio->bi_end_io		= end_io_fn;
 | 
						|
	bio->bi_private		= &s->cl;
 | 
						|
 | 
						|
	bio_cnt_set(bio, 3);
 | 
						|
}
 | 
						|
 | 
						|
static void search_free(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
 | 
						|
	atomic_dec(&s->iop.c->search_inflight);
 | 
						|
 | 
						|
	if (s->iop.bio)
 | 
						|
		bio_put(s->iop.bio);
 | 
						|
 | 
						|
	bio_complete(s);
 | 
						|
	closure_debug_destroy(cl);
 | 
						|
	mempool_free(s, &s->iop.c->search);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct search *search_alloc(struct bio *bio,
 | 
						|
		struct bcache_device *d, struct block_device *orig_bdev,
 | 
						|
		unsigned long start_time)
 | 
						|
{
 | 
						|
	struct search *s;
 | 
						|
 | 
						|
	s = mempool_alloc(&d->c->search, GFP_NOIO);
 | 
						|
 | 
						|
	closure_init(&s->cl, NULL);
 | 
						|
	do_bio_hook(s, bio, request_endio);
 | 
						|
	atomic_inc(&d->c->search_inflight);
 | 
						|
 | 
						|
	s->orig_bio		= bio;
 | 
						|
	s->cache_miss		= NULL;
 | 
						|
	s->cache_missed		= 0;
 | 
						|
	s->d			= d;
 | 
						|
	s->recoverable		= 1;
 | 
						|
	s->write		= op_is_write(bio_op(bio));
 | 
						|
	s->read_dirty_data	= 0;
 | 
						|
	/* Count on the bcache device */
 | 
						|
	s->orig_bdev		= orig_bdev;
 | 
						|
	s->start_time		= start_time;
 | 
						|
	s->iop.c		= d->c;
 | 
						|
	s->iop.bio		= NULL;
 | 
						|
	s->iop.inode		= d->id;
 | 
						|
	s->iop.write_point	= hash_long((unsigned long) current, 16);
 | 
						|
	s->iop.write_prio	= 0;
 | 
						|
	s->iop.status		= 0;
 | 
						|
	s->iop.flags		= 0;
 | 
						|
	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
 | 
						|
	s->iop.wq		= bcache_wq;
 | 
						|
 | 
						|
	return s;
 | 
						|
}
 | 
						|
 | 
						|
/* Cached devices */
 | 
						|
 | 
						|
static void cached_dev_bio_complete(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
 | 
						|
	cached_dev_put(dc);
 | 
						|
	search_free(cl);
 | 
						|
}
 | 
						|
 | 
						|
/* Process reads */
 | 
						|
 | 
						|
static void cached_dev_read_error_done(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
 | 
						|
	if (s->iop.replace_collision)
 | 
						|
		bch_mark_cache_miss_collision(s->iop.c, s->d);
 | 
						|
 | 
						|
	if (s->iop.bio)
 | 
						|
		bio_free_pages(s->iop.bio);
 | 
						|
 | 
						|
	cached_dev_bio_complete(cl);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_read_error(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct bio *bio = &s->bio.bio;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If read request hit dirty data (s->read_dirty_data is true),
 | 
						|
	 * then recovery a failed read request from cached device may
 | 
						|
	 * get a stale data back. So read failure recovery is only
 | 
						|
	 * permitted when read request hit clean data in cache device,
 | 
						|
	 * or when cache read race happened.
 | 
						|
	 */
 | 
						|
	if (s->recoverable && !s->read_dirty_data) {
 | 
						|
		/* Retry from the backing device: */
 | 
						|
		trace_bcache_read_retry(s->orig_bio);
 | 
						|
 | 
						|
		s->iop.status = 0;
 | 
						|
		do_bio_hook(s, s->orig_bio, backing_request_endio);
 | 
						|
 | 
						|
		/* XXX: invalidate cache */
 | 
						|
 | 
						|
		/* I/O request sent to backing device */
 | 
						|
		closure_bio_submit(s->iop.c, bio, cl);
 | 
						|
	}
 | 
						|
 | 
						|
	continue_at(cl, cached_dev_read_error_done, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_cache_miss_done(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct bcache_device *d = s->d;
 | 
						|
 | 
						|
	if (s->iop.replace_collision)
 | 
						|
		bch_mark_cache_miss_collision(s->iop.c, s->d);
 | 
						|
 | 
						|
	if (s->iop.bio)
 | 
						|
		bio_free_pages(s->iop.bio);
 | 
						|
 | 
						|
	cached_dev_bio_complete(cl);
 | 
						|
	closure_put(&d->cl);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_read_done(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We had a cache miss; cache_bio now contains data ready to be inserted
 | 
						|
	 * into the cache.
 | 
						|
	 *
 | 
						|
	 * First, we copy the data we just read from cache_bio's bounce buffers
 | 
						|
	 * to the buffers the original bio pointed to:
 | 
						|
	 */
 | 
						|
 | 
						|
	if (s->iop.bio) {
 | 
						|
		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
 | 
						|
		s->iop.bio->bi_iter.bi_sector =
 | 
						|
			s->cache_miss->bi_iter.bi_sector;
 | 
						|
		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 | 
						|
		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
 | 
						|
		bch_bio_map(s->iop.bio, NULL);
 | 
						|
 | 
						|
		bio_copy_data(s->cache_miss, s->iop.bio);
 | 
						|
 | 
						|
		bio_put(s->cache_miss);
 | 
						|
		s->cache_miss = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (verify(dc) && s->recoverable && !s->read_dirty_data)
 | 
						|
		bch_data_verify(dc, s->orig_bio);
 | 
						|
 | 
						|
	closure_get(&dc->disk.cl);
 | 
						|
	bio_complete(s);
 | 
						|
 | 
						|
	if (s->iop.bio &&
 | 
						|
	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 | 
						|
		BUG_ON(!s->iop.replace);
 | 
						|
		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | 
						|
	}
 | 
						|
 | 
						|
	continue_at(cl, cached_dev_cache_miss_done, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_read_done_bh(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
 | 
						|
	bch_mark_cache_accounting(s->iop.c, s->d,
 | 
						|
				  !s->cache_missed, s->iop.bypass);
 | 
						|
	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
 | 
						|
 | 
						|
	if (s->iop.status)
 | 
						|
		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 | 
						|
	else if (s->iop.bio || verify(dc))
 | 
						|
		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 | 
						|
	else
 | 
						|
		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int cached_dev_cache_miss(struct btree *b, struct search *s,
 | 
						|
				 struct bio *bio, unsigned int sectors)
 | 
						|
{
 | 
						|
	int ret = MAP_CONTINUE;
 | 
						|
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
	struct bio *miss, *cache_bio;
 | 
						|
	unsigned int size_limit;
 | 
						|
 | 
						|
	s->cache_missed = 1;
 | 
						|
 | 
						|
	if (s->cache_miss || s->iop.bypass) {
 | 
						|
		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 | 
						|
		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 | 
						|
		goto out_submit;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Limitation for valid replace key size and cache_bio bvecs number */
 | 
						|
	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
 | 
						|
			   (1 << KEY_SIZE_BITS) - 1);
 | 
						|
	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
 | 
						|
 | 
						|
	s->iop.replace_key = KEY(s->iop.inode,
 | 
						|
				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 | 
						|
				 s->insert_bio_sectors);
 | 
						|
 | 
						|
	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	s->iop.replace = true;
 | 
						|
 | 
						|
	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
 | 
						|
			      &s->d->bio_split);
 | 
						|
 | 
						|
	/* btree_search_recurse()'s btree iterator is no good anymore */
 | 
						|
	ret = miss == bio ? MAP_DONE : -EINTR;
 | 
						|
 | 
						|
	cache_bio = bio_alloc_bioset(miss->bi_bdev,
 | 
						|
			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 | 
						|
			0, GFP_NOWAIT, &dc->disk.bio_split);
 | 
						|
	if (!cache_bio)
 | 
						|
		goto out_submit;
 | 
						|
 | 
						|
	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 | 
						|
	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 | 
						|
 | 
						|
	cache_bio->bi_end_io	= backing_request_endio;
 | 
						|
	cache_bio->bi_private	= &s->cl;
 | 
						|
 | 
						|
	bch_bio_map(cache_bio, NULL);
 | 
						|
	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 | 
						|
		goto out_put;
 | 
						|
 | 
						|
	s->cache_miss	= miss;
 | 
						|
	s->iop.bio	= cache_bio;
 | 
						|
	bio_get(cache_bio);
 | 
						|
	/* I/O request sent to backing device */
 | 
						|
	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 | 
						|
 | 
						|
	return ret;
 | 
						|
out_put:
 | 
						|
	bio_put(cache_bio);
 | 
						|
out_submit:
 | 
						|
	miss->bi_end_io		= backing_request_endio;
 | 
						|
	miss->bi_private	= &s->cl;
 | 
						|
	/* I/O request sent to backing device */
 | 
						|
	closure_bio_submit(s->iop.c, miss, &s->cl);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_read(struct cached_dev *dc, struct search *s)
 | 
						|
{
 | 
						|
	struct closure *cl = &s->cl;
 | 
						|
 | 
						|
	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 | 
						|
	continue_at(cl, cached_dev_read_done_bh, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/* Process writes */
 | 
						|
 | 
						|
static void cached_dev_write_complete(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | 
						|
 | 
						|
	up_read_non_owner(&dc->writeback_lock);
 | 
						|
	cached_dev_bio_complete(cl);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_write(struct cached_dev *dc, struct search *s)
 | 
						|
{
 | 
						|
	struct closure *cl = &s->cl;
 | 
						|
	struct bio *bio = &s->bio.bio;
 | 
						|
	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 | 
						|
	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 | 
						|
 | 
						|
	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 | 
						|
 | 
						|
	down_read_non_owner(&dc->writeback_lock);
 | 
						|
	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 | 
						|
		/*
 | 
						|
		 * We overlap with some dirty data undergoing background
 | 
						|
		 * writeback, force this write to writeback
 | 
						|
		 */
 | 
						|
		s->iop.bypass = false;
 | 
						|
		s->iop.writeback = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Discards aren't _required_ to do anything, so skipping if
 | 
						|
	 * check_overlapping returned true is ok
 | 
						|
	 *
 | 
						|
	 * But check_overlapping drops dirty keys for which io hasn't started,
 | 
						|
	 * so we still want to call it.
 | 
						|
	 */
 | 
						|
	if (bio_op(bio) == REQ_OP_DISCARD)
 | 
						|
		s->iop.bypass = true;
 | 
						|
 | 
						|
	if (should_writeback(dc, s->orig_bio,
 | 
						|
			     cache_mode(dc),
 | 
						|
			     s->iop.bypass)) {
 | 
						|
		s->iop.bypass = false;
 | 
						|
		s->iop.writeback = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (s->iop.bypass) {
 | 
						|
		s->iop.bio = s->orig_bio;
 | 
						|
		bio_get(s->iop.bio);
 | 
						|
 | 
						|
		if (bio_op(bio) == REQ_OP_DISCARD &&
 | 
						|
		    !bdev_max_discard_sectors(dc->bdev))
 | 
						|
			goto insert_data;
 | 
						|
 | 
						|
		/* I/O request sent to backing device */
 | 
						|
		bio->bi_end_io = backing_request_endio;
 | 
						|
		closure_bio_submit(s->iop.c, bio, cl);
 | 
						|
 | 
						|
	} else if (s->iop.writeback) {
 | 
						|
		bch_writeback_add(dc);
 | 
						|
		s->iop.bio = bio;
 | 
						|
 | 
						|
		if (bio->bi_opf & REQ_PREFLUSH) {
 | 
						|
			/*
 | 
						|
			 * Also need to send a flush to the backing
 | 
						|
			 * device.
 | 
						|
			 */
 | 
						|
			struct bio *flush;
 | 
						|
 | 
						|
			flush = bio_alloc_bioset(bio->bi_bdev, 0,
 | 
						|
						 REQ_OP_WRITE | REQ_PREFLUSH,
 | 
						|
						 GFP_NOIO, &dc->disk.bio_split);
 | 
						|
			if (!flush) {
 | 
						|
				s->iop.status = BLK_STS_RESOURCE;
 | 
						|
				goto insert_data;
 | 
						|
			}
 | 
						|
			flush->bi_end_io = backing_request_endio;
 | 
						|
			flush->bi_private = cl;
 | 
						|
			/* I/O request sent to backing device */
 | 
						|
			closure_bio_submit(s->iop.c, flush, cl);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
 | 
						|
					     &dc->disk.bio_split);
 | 
						|
		/* I/O request sent to backing device */
 | 
						|
		bio->bi_end_io = backing_request_endio;
 | 
						|
		closure_bio_submit(s->iop.c, bio, cl);
 | 
						|
	}
 | 
						|
 | 
						|
insert_data:
 | 
						|
	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | 
						|
	continue_at(cl, cached_dev_write_complete, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void cached_dev_nodata(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
	struct bio *bio = &s->bio.bio;
 | 
						|
 | 
						|
	if (s->iop.flush_journal)
 | 
						|
		bch_journal_meta(s->iop.c, cl);
 | 
						|
 | 
						|
	/* If it's a flush, we send the flush to the backing device too */
 | 
						|
	bio->bi_end_io = backing_request_endio;
 | 
						|
	closure_bio_submit(s->iop.c, bio, cl);
 | 
						|
 | 
						|
	continue_at(cl, cached_dev_bio_complete, NULL);
 | 
						|
}
 | 
						|
 | 
						|
struct detached_dev_io_private {
 | 
						|
	struct bcache_device	*d;
 | 
						|
	unsigned long		start_time;
 | 
						|
	bio_end_io_t		*bi_end_io;
 | 
						|
	void			*bi_private;
 | 
						|
	struct block_device	*orig_bdev;
 | 
						|
};
 | 
						|
 | 
						|
static void detached_dev_end_io(struct bio *bio)
 | 
						|
{
 | 
						|
	struct detached_dev_io_private *ddip;
 | 
						|
 | 
						|
	ddip = bio->bi_private;
 | 
						|
	bio->bi_end_io = ddip->bi_end_io;
 | 
						|
	bio->bi_private = ddip->bi_private;
 | 
						|
 | 
						|
	/* Count on the bcache device */
 | 
						|
	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
 | 
						|
 | 
						|
	if (bio->bi_status) {
 | 
						|
		struct cached_dev *dc = container_of(ddip->d,
 | 
						|
						     struct cached_dev, disk);
 | 
						|
		/* should count I/O error for backing device here */
 | 
						|
		bch_count_backing_io_errors(dc, bio);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(ddip);
 | 
						|
	bio->bi_end_io(bio);
 | 
						|
}
 | 
						|
 | 
						|
static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
 | 
						|
		struct block_device *orig_bdev, unsigned long start_time)
 | 
						|
{
 | 
						|
	struct detached_dev_io_private *ddip;
 | 
						|
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * no need to call closure_get(&dc->disk.cl),
 | 
						|
	 * because upper layer had already opened bcache device,
 | 
						|
	 * which would call closure_get(&dc->disk.cl)
 | 
						|
	 */
 | 
						|
	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
 | 
						|
	if (!ddip) {
 | 
						|
		bio->bi_status = BLK_STS_RESOURCE;
 | 
						|
		bio->bi_end_io(bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ddip->d = d;
 | 
						|
	/* Count on the bcache device */
 | 
						|
	ddip->orig_bdev = orig_bdev;
 | 
						|
	ddip->start_time = start_time;
 | 
						|
	ddip->bi_end_io = bio->bi_end_io;
 | 
						|
	ddip->bi_private = bio->bi_private;
 | 
						|
	bio->bi_end_io = detached_dev_end_io;
 | 
						|
	bio->bi_private = ddip;
 | 
						|
 | 
						|
	if ((bio_op(bio) == REQ_OP_DISCARD) &&
 | 
						|
	    !bdev_max_discard_sectors(dc->bdev))
 | 
						|
		bio->bi_end_io(bio);
 | 
						|
	else
 | 
						|
		submit_bio_noacct(bio);
 | 
						|
}
 | 
						|
 | 
						|
static void quit_max_writeback_rate(struct cache_set *c,
 | 
						|
				    struct cached_dev *this_dc)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct bcache_device *d;
 | 
						|
	struct cached_dev *dc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * mutex bch_register_lock may compete with other parallel requesters,
 | 
						|
	 * or attach/detach operations on other backing device. Waiting to
 | 
						|
	 * the mutex lock may increase I/O request latency for seconds or more.
 | 
						|
	 * To avoid such situation, if mutext_trylock() failed, only writeback
 | 
						|
	 * rate of current cached device is set to 1, and __update_write_back()
 | 
						|
	 * will decide writeback rate of other cached devices (remember now
 | 
						|
	 * c->idle_counter is 0 already).
 | 
						|
	 */
 | 
						|
	if (mutex_trylock(&bch_register_lock)) {
 | 
						|
		for (i = 0; i < c->devices_max_used; i++) {
 | 
						|
			if (!c->devices[i])
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (UUID_FLASH_ONLY(&c->uuids[i]))
 | 
						|
				continue;
 | 
						|
 | 
						|
			d = c->devices[i];
 | 
						|
			dc = container_of(d, struct cached_dev, disk);
 | 
						|
			/*
 | 
						|
			 * set writeback rate to default minimum value,
 | 
						|
			 * then let update_writeback_rate() to decide the
 | 
						|
			 * upcoming rate.
 | 
						|
			 */
 | 
						|
			atomic_long_set(&dc->writeback_rate.rate, 1);
 | 
						|
		}
 | 
						|
		mutex_unlock(&bch_register_lock);
 | 
						|
	} else
 | 
						|
		atomic_long_set(&this_dc->writeback_rate.rate, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Cached devices - read & write stuff */
 | 
						|
 | 
						|
void cached_dev_submit_bio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct search *s;
 | 
						|
	struct block_device *orig_bdev = bio->bi_bdev;
 | 
						|
	struct bcache_device *d = orig_bdev->bd_disk->private_data;
 | 
						|
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | 
						|
	unsigned long start_time;
 | 
						|
	int rw = bio_data_dir(bio);
 | 
						|
 | 
						|
	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
 | 
						|
		     dc->io_disable)) {
 | 
						|
		bio->bi_status = BLK_STS_IOERR;
 | 
						|
		bio_endio(bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (likely(d->c)) {
 | 
						|
		if (atomic_read(&d->c->idle_counter))
 | 
						|
			atomic_set(&d->c->idle_counter, 0);
 | 
						|
		/*
 | 
						|
		 * If at_max_writeback_rate of cache set is true and new I/O
 | 
						|
		 * comes, quit max writeback rate of all cached devices
 | 
						|
		 * attached to this cache set, and set at_max_writeback_rate
 | 
						|
		 * to false.
 | 
						|
		 */
 | 
						|
		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
 | 
						|
			atomic_set(&d->c->at_max_writeback_rate, 0);
 | 
						|
			quit_max_writeback_rate(d->c, dc);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	start_time = bio_start_io_acct(bio);
 | 
						|
 | 
						|
	bio_set_dev(bio, dc->bdev);
 | 
						|
	bio->bi_iter.bi_sector += dc->sb.data_offset;
 | 
						|
 | 
						|
	if (cached_dev_get(dc)) {
 | 
						|
		s = search_alloc(bio, d, orig_bdev, start_time);
 | 
						|
		trace_bcache_request_start(s->d, bio);
 | 
						|
 | 
						|
		if (!bio->bi_iter.bi_size) {
 | 
						|
			/*
 | 
						|
			 * can't call bch_journal_meta from under
 | 
						|
			 * submit_bio_noacct
 | 
						|
			 */
 | 
						|
			continue_at_nobarrier(&s->cl,
 | 
						|
					      cached_dev_nodata,
 | 
						|
					      bcache_wq);
 | 
						|
		} else {
 | 
						|
			s->iop.bypass = check_should_bypass(dc, bio);
 | 
						|
 | 
						|
			if (rw)
 | 
						|
				cached_dev_write(dc, s);
 | 
						|
			else
 | 
						|
				cached_dev_read(dc, s);
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		/* I/O request sent to backing device */
 | 
						|
		detached_dev_do_request(d, bio, orig_bdev, start_time);
 | 
						|
}
 | 
						|
 | 
						|
static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
 | 
						|
			    unsigned int cmd, unsigned long arg)
 | 
						|
{
 | 
						|
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | 
						|
 | 
						|
	if (dc->io_disable)
 | 
						|
		return -EIO;
 | 
						|
	if (!dc->bdev->bd_disk->fops->ioctl)
 | 
						|
		return -ENOTTY;
 | 
						|
	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
 | 
						|
}
 | 
						|
 | 
						|
void bch_cached_dev_request_init(struct cached_dev *dc)
 | 
						|
{
 | 
						|
	dc->disk.cache_miss			= cached_dev_cache_miss;
 | 
						|
	dc->disk.ioctl				= cached_dev_ioctl;
 | 
						|
}
 | 
						|
 | 
						|
/* Flash backed devices */
 | 
						|
 | 
						|
static int flash_dev_cache_miss(struct btree *b, struct search *s,
 | 
						|
				struct bio *bio, unsigned int sectors)
 | 
						|
{
 | 
						|
	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
 | 
						|
 | 
						|
	swap(bio->bi_iter.bi_size, bytes);
 | 
						|
	zero_fill_bio(bio);
 | 
						|
	swap(bio->bi_iter.bi_size, bytes);
 | 
						|
 | 
						|
	bio_advance(bio, bytes);
 | 
						|
 | 
						|
	if (!bio->bi_iter.bi_size)
 | 
						|
		return MAP_DONE;
 | 
						|
 | 
						|
	return MAP_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void flash_dev_nodata(struct closure *cl)
 | 
						|
{
 | 
						|
	struct search *s = container_of(cl, struct search, cl);
 | 
						|
 | 
						|
	if (s->iop.flush_journal)
 | 
						|
		bch_journal_meta(s->iop.c, cl);
 | 
						|
 | 
						|
	continue_at(cl, search_free, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void flash_dev_submit_bio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct search *s;
 | 
						|
	struct closure *cl;
 | 
						|
	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 | 
						|
 | 
						|
	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
 | 
						|
		bio->bi_status = BLK_STS_IOERR;
 | 
						|
		bio_endio(bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
 | 
						|
	cl = &s->cl;
 | 
						|
	bio = &s->bio.bio;
 | 
						|
 | 
						|
	trace_bcache_request_start(s->d, bio);
 | 
						|
 | 
						|
	if (!bio->bi_iter.bi_size) {
 | 
						|
		/*
 | 
						|
		 * can't call bch_journal_meta from under submit_bio_noacct
 | 
						|
		 */
 | 
						|
		continue_at_nobarrier(&s->cl,
 | 
						|
				      flash_dev_nodata,
 | 
						|
				      bcache_wq);
 | 
						|
		return;
 | 
						|
	} else if (bio_data_dir(bio)) {
 | 
						|
		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
 | 
						|
					&KEY(d->id, bio->bi_iter.bi_sector, 0),
 | 
						|
					&KEY(d->id, bio_end_sector(bio), 0));
 | 
						|
 | 
						|
		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
 | 
						|
		s->iop.writeback	= true;
 | 
						|
		s->iop.bio		= bio;
 | 
						|
 | 
						|
		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | 
						|
	} else {
 | 
						|
		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 | 
						|
	}
 | 
						|
 | 
						|
	continue_at(cl, search_free, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
 | 
						|
			   unsigned int cmd, unsigned long arg)
 | 
						|
{
 | 
						|
	return -ENOTTY;
 | 
						|
}
 | 
						|
 | 
						|
void bch_flash_dev_request_init(struct bcache_device *d)
 | 
						|
{
 | 
						|
	d->cache_miss				= flash_dev_cache_miss;
 | 
						|
	d->ioctl				= flash_dev_ioctl;
 | 
						|
}
 | 
						|
 | 
						|
void bch_request_exit(void)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(bch_search_cache);
 | 
						|
}
 | 
						|
 | 
						|
int __init bch_request_init(void)
 | 
						|
{
 | 
						|
	bch_search_cache = KMEM_CACHE(search, 0);
 | 
						|
	if (!bch_search_cache)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |