2111 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2111 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| // Copyright 2019 NXP
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/gcd.h>
 | |
| #include <sound/dmaengine_pcm.h>
 | |
| #include <sound/pcm.h>
 | |
| #include <sound/pcm_params.h>
 | |
| #include <sound/soc.h>
 | |
| #include <sound/tlv.h>
 | |
| #include <sound/core.h>
 | |
| 
 | |
| #include "fsl_easrc.h"
 | |
| #include "imx-pcm.h"
 | |
| 
 | |
| #define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_U16_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_S24_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_S24_3LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_U24_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_U24_3LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_S32_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_U32_LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_S20_3LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_U20_3LE | \
 | |
| 				 SNDRV_PCM_FMTBIT_FLOAT_LE)
 | |
| 
 | |
| static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
 | |
| 				     struct snd_ctl_elem_value *ucontrol)
 | |
| {
 | |
| 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
 | |
| 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct soc_mreg_control *mc =
 | |
| 		(struct soc_mreg_control *)kcontrol->private_value;
 | |
| 	unsigned int regval = ucontrol->value.integer.value[0];
 | |
| 
 | |
| 	easrc_priv->bps_iec958[mc->regbase] = regval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
 | |
| 				     struct snd_ctl_elem_value *ucontrol)
 | |
| {
 | |
| 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
 | |
| 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct soc_mreg_control *mc =
 | |
| 		(struct soc_mreg_control *)kcontrol->private_value;
 | |
| 
 | |
| 	ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
 | |
| 			     struct snd_ctl_elem_value *ucontrol)
 | |
| {
 | |
| 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 | |
| 	struct soc_mreg_control *mc =
 | |
| 		(struct soc_mreg_control *)kcontrol->private_value;
 | |
| 	unsigned int regval;
 | |
| 
 | |
| 	regval = snd_soc_component_read(component, mc->regbase);
 | |
| 
 | |
| 	ucontrol->value.integer.value[0] = regval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
 | |
| 			     struct snd_ctl_elem_value *ucontrol)
 | |
| {
 | |
| 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 | |
| 	struct soc_mreg_control *mc =
 | |
| 		(struct soc_mreg_control *)kcontrol->private_value;
 | |
| 	unsigned int regval = ucontrol->value.integer.value[0];
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = snd_soc_component_write(component, mc->regbase, regval);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define SOC_SINGLE_REG_RW(xname, xreg) \
 | |
| {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 | |
| 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 | |
| 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
 | |
| 	.put = fsl_easrc_set_reg, \
 | |
| 	.private_value = (unsigned long)&(struct soc_mreg_control) \
 | |
| 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 | |
| 		  .invert = 0, .min = 0, .max = 0xffffffff, } }
 | |
| 
 | |
| #define SOC_SINGLE_VAL_RW(xname, xreg) \
 | |
| {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 | |
| 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 | |
| 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
 | |
| 	.put = fsl_easrc_iec958_put_bits, \
 | |
| 	.private_value = (unsigned long)&(struct soc_mreg_control) \
 | |
| 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 | |
| 		  .invert = 0, .min = 0, .max = 2, } }
 | |
| 
 | |
| static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
 | |
| 	SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
 | |
| 	SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
 | |
| 	SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
 | |
| 	SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
 | |
| 
 | |
| 	SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
 | |
| 	SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
 | |
| 	SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
 | |
| 	SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
 | |
| 
 | |
| 	SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
 | |
| 	SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
 | |
| 	SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
 | |
| 	SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
 | |
| 
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
 | |
| 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
 | |
| 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
 | |
| 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
 | |
| 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * fsl_easrc_set_rs_ratio
 | |
|  *
 | |
|  * According to the resample taps, calculate the resample ratio
 | |
|  * ratio = in_rate / out_rate
 | |
|  */
 | |
| static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 | |
| 	unsigned int in_rate = ctx_priv->in_params.norm_rate;
 | |
| 	unsigned int out_rate = ctx_priv->out_params.norm_rate;
 | |
| 	unsigned int frac_bits;
 | |
| 	u64 val;
 | |
| 	u32 *r;
 | |
| 
 | |
| 	switch (easrc_priv->rs_num_taps) {
 | |
| 	case EASRC_RS_32_TAPS:
 | |
| 		/* integer bits = 5; */
 | |
| 		frac_bits = 39;
 | |
| 		break;
 | |
| 	case EASRC_RS_64_TAPS:
 | |
| 		/* integer bits = 6; */
 | |
| 		frac_bits = 38;
 | |
| 		break;
 | |
| 	case EASRC_RS_128_TAPS:
 | |
| 		/* integer bits = 7; */
 | |
| 		frac_bits = 37;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	val = (u64)in_rate << frac_bits;
 | |
| 	do_div(val, out_rate);
 | |
| 	r = (uint32_t *)&val;
 | |
| 
 | |
| 	if (r[1] & 0xFFFFF000) {
 | |
| 		dev_err(&easrc->pdev->dev, "ratio exceed range\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
 | |
| 		     EASRC_RRL_RS_RL(r[0]));
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
 | |
| 		     EASRC_RRH_RS_RH(r[1]));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Normalize input and output sample rates */
 | |
| static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 	int a, b;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	ctx_priv = ctx->private;
 | |
| 
 | |
| 	a = ctx_priv->in_params.sample_rate;
 | |
| 	b = ctx_priv->out_params.sample_rate;
 | |
| 
 | |
| 	a = gcd(a, b);
 | |
| 
 | |
| 	/* Divide by gcd to normalize the rate */
 | |
| 	ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
 | |
| 	ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
 | |
| }
 | |
| 
 | |
| /* Resets the pointer of the coeff memory pointers */
 | |
| static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
 | |
| 					 unsigned int ctx_id, int mem_type)
 | |
| {
 | |
| 	struct device *dev;
 | |
| 	u32 reg, mask, val;
 | |
| 
 | |
| 	if (!easrc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dev = &easrc->pdev->dev;
 | |
| 
 | |
| 	switch (mem_type) {
 | |
| 	case EASRC_PF_COEFF_MEM:
 | |
| 		/* This resets the prefilter memory pointer addr */
 | |
| 		if (ctx_id >= EASRC_CTX_MAX_NUM) {
 | |
| 			dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		reg = REG_EASRC_CCE1(ctx_id);
 | |
| 		mask = EASRC_CCE1_COEF_MEM_RST_MASK;
 | |
| 		val = EASRC_CCE1_COEF_MEM_RST;
 | |
| 		break;
 | |
| 	case EASRC_RS_COEFF_MEM:
 | |
| 		/* This resets the resampling memory pointer addr */
 | |
| 		reg = REG_EASRC_CRCC;
 | |
| 		mask = EASRC_CRCC_RS_CPR_MASK;
 | |
| 		val = EASRC_CRCC_RS_CPR;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(dev, "Unknown memory type\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * To reset the write pointer back to zero, the register field
 | |
| 	 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
 | |
| 	 * 0x0 to 0x1 to 0x0.
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, reg, mask, 0);
 | |
| 	regmap_update_bits(easrc->regmap, reg, mask, val);
 | |
| 	regmap_update_bits(easrc->regmap, reg, mask, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t bits_taps_to_val(unsigned int t)
 | |
| {
 | |
| 	switch (t) {
 | |
| 	case EASRC_RS_32_TAPS:
 | |
| 		return 32;
 | |
| 	case EASRC_RS_64_TAPS:
 | |
| 		return 64;
 | |
| 	case EASRC_RS_128_TAPS:
 | |
| 		return 128;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
 | |
| {
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
 | |
| 	struct interp_params *interp = easrc_priv->interp;
 | |
| 	struct interp_params *selected_interp = NULL;
 | |
| 	unsigned int num_coeff;
 | |
| 	unsigned int i;
 | |
| 	u64 *coef;
 | |
| 	u32 *r;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!hdr) {
 | |
| 		dev_err(dev, "firmware not loaded!\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < hdr->interp_scen; i++) {
 | |
| 		if ((interp[i].num_taps - 1) !=
 | |
| 		    bits_taps_to_val(easrc_priv->rs_num_taps))
 | |
| 			continue;
 | |
| 
 | |
| 		coef = interp[i].coeff;
 | |
| 		selected_interp = &interp[i];
 | |
| 		dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
 | |
| 			selected_interp->num_taps,
 | |
| 			selected_interp->num_phases);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!selected_interp) {
 | |
| 		dev_err(dev, "failed to get interpreter configuration\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * RS_LOW - first half of center tap of the sinc function
 | |
| 	 * RS_HIGH - second half of center tap of the sinc function
 | |
| 	 * This is due to the fact the resampling function must be
 | |
| 	 * symetrical - i.e. odd number of taps
 | |
| 	 */
 | |
| 	r = (uint32_t *)&selected_interp->center_tap;
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Number of Resampling Coefficient Taps
 | |
| 	 * 00b - 32-Tap Resampling Filter
 | |
| 	 * 01b - 64-Tap Resampling Filter
 | |
| 	 * 10b - 128-Tap Resampling Filter
 | |
| 	 * 11b - N/A
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
 | |
| 			   EASRC_CRCC_RS_TAPS_MASK,
 | |
| 			   EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
 | |
| 
 | |
| 	/* Reset prefilter coefficient pointer back to 0 */
 | |
| 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the filter is programmed to run in:
 | |
| 	 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
 | |
| 	 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
 | |
| 	 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
 | |
| 	 * This means the number of writes is constant no matter
 | |
| 	 * the mode we are using
 | |
| 	 */
 | |
| 	num_coeff = 16 * 128 * 4;
 | |
| 
 | |
| 	for (i = 0; i < num_coeff; i++) {
 | |
| 		r = (uint32_t *)&coef[i];
 | |
| 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 | |
| 			     EASRC_CRCM_RS_CWD(r[0]));
 | |
| 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 | |
| 			     EASRC_CRCM_RS_CWD(r[1]));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
 | |
|  *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
 | |
|  *      scale it by multiplying filter coefficients by 2^31
 | |
|  *  For input int[16, 24, 32] -> output float32
 | |
|  *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
 | |
|  *  input:
 | |
|  *      @easrc:  Structure pointer of fsl_asrc
 | |
|  *      @infilter : Pointer to non-scaled input filter
 | |
|  *      @shift:  The multiply factor
 | |
|  *  output:
 | |
|  *      @outfilter: scaled filter
 | |
|  */
 | |
| static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
 | |
| 				      u64 *infilter,
 | |
| 				      u64 *outfilter,
 | |
| 				      int shift)
 | |
| {
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	u64 coef = *infilter;
 | |
| 	s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
 | |
| 	u64 outcoef;
 | |
| 
 | |
| 	/*
 | |
| 	 * If exponent is zero (value == 0), or 7ff (value == NaNs)
 | |
| 	 * dont touch the content
 | |
| 	 */
 | |
| 	if (exp == 0 || exp == 0x7ff) {
 | |
| 		*outfilter = coef;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* coef * 2^shift ==> exp + shift */
 | |
| 	exp += shift;
 | |
| 
 | |
| 	if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
 | |
| 		dev_err(dev, "coef out of range\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
 | |
| 	*outfilter = outcoef;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
 | |
| 					u64 *coef, int n_taps, int shift)
 | |
| {
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	u32 *r;
 | |
| 	u64 tmp;
 | |
| 
 | |
| 	/* If STx_NUM_TAPS is set to 0x0 then return */
 | |
| 	if (!n_taps)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!coef) {
 | |
| 		dev_err(dev, "coef table is NULL\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When switching between stages, the address pointer
 | |
| 	 * should be reset back to 0x0 before performing a write
 | |
| 	 */
 | |
| 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < (n_taps + 1) / 2; i++) {
 | |
| 		ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		r = (uint32_t *)&tmp;
 | |
| 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 | |
| 			     EASRC_PCF_CD(r[0]));
 | |
| 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 | |
| 			     EASRC_PCF_CD(r[1]));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
 | |
| 				      unsigned int ctx_id)
 | |
| {
 | |
| 	struct prefil_params *prefil, *selected_prefil = NULL;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 	struct fsl_easrc_priv *easrc_priv;
 | |
| 	struct asrc_firmware_hdr *hdr;
 | |
| 	struct fsl_asrc_pair *ctx;
 | |
| 	struct device *dev;
 | |
| 	u32 inrate, outrate, offset = 0;
 | |
| 	u32 in_s_rate, out_s_rate;
 | |
| 	snd_pcm_format_t in_s_fmt, out_s_fmt;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	if (!easrc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dev = &easrc->pdev->dev;
 | |
| 
 | |
| 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 | |
| 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	easrc_priv = easrc->private;
 | |
| 
 | |
| 	ctx = easrc->pair[ctx_id];
 | |
| 	ctx_priv = ctx->private;
 | |
| 
 | |
| 	in_s_rate = ctx_priv->in_params.sample_rate;
 | |
| 	out_s_rate = ctx_priv->out_params.sample_rate;
 | |
| 	in_s_fmt = ctx_priv->in_params.sample_format;
 | |
| 	out_s_fmt = ctx_priv->out_params.sample_format;
 | |
| 
 | |
| 	ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
 | |
| 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 | |
| 
 | |
| 	ctx_priv->st1_num_taps = 0;
 | |
| 	ctx_priv->st2_num_taps = 0;
 | |
| 
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
 | |
| 	regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The audio float point data range is (-1, 1), the asrc would output
 | |
| 	 * all zero for float point input and integer output case, that is to
 | |
| 	 * drop the fractional part of the data directly.
 | |
| 	 *
 | |
| 	 * In order to support float to int conversion or int to float
 | |
| 	 * conversion we need to do special operation on the coefficient to
 | |
| 	 * enlarge/reduce the data to the expected range.
 | |
| 	 *
 | |
| 	 * For float to int case:
 | |
| 	 * Up sampling:
 | |
| 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
 | |
| 	 *    in 64 bits floating point.
 | |
| 	 *    double value = (double)(((uint64_t)1) << 31)
 | |
| 	 * 2. Program 1 tap prefilter with center tap above.
 | |
| 	 *
 | |
| 	 * Down sampling,
 | |
| 	 * 1. If the filter is single stage filter, add "shift" to the exponent
 | |
| 	 *    of stage 1 coefficients.
 | |
| 	 * 2. If the filter is two stage filter , add "shift" to the exponent
 | |
| 	 *    of stage 2 coefficients.
 | |
| 	 *
 | |
| 	 * The "shift" is 31, same for int16, int24, int32 case.
 | |
| 	 *
 | |
| 	 * For int to float case:
 | |
| 	 * Up sampling:
 | |
| 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
 | |
| 	 *    in 64 bits floating point.
 | |
| 	 * 2. Program 1 tap prefilter with center tap above.
 | |
| 	 *
 | |
| 	 * Down sampling,
 | |
| 	 * 1. If the filter is single stage filter, subtract "shift" to the
 | |
| 	 *    exponent of stage 1 coefficients.
 | |
| 	 * 2. If the filter is two stage filter , subtract "shift" to the
 | |
| 	 *    exponent of stage 2 coefficients.
 | |
| 	 *
 | |
| 	 * The "shift" is 15,23,31, different for int16, int24, int32 case.
 | |
| 	 *
 | |
| 	 */
 | |
| 	if (out_s_rate >= in_s_rate) {
 | |
| 		if (out_s_rate == in_s_rate)
 | |
| 			regmap_update_bits(easrc->regmap,
 | |
| 					   REG_EASRC_CCE1(ctx_id),
 | |
| 					   EASRC_CCE1_RS_BYPASS_MASK,
 | |
| 					   EASRC_CCE1_RS_BYPASS);
 | |
| 
 | |
| 		ctx_priv->st1_num_taps = 1;
 | |
| 		ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
 | |
| 		ctx_priv->st1_num_exp  = 1;
 | |
| 		ctx_priv->st2_num_taps = 0;
 | |
| 
 | |
| 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 | |
| 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
 | |
| 			ctx_priv->st1_addexp = 31;
 | |
| 		else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 | |
| 			 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
 | |
| 			ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 | |
| 	} else {
 | |
| 		inrate = ctx_priv->in_params.norm_rate;
 | |
| 		outrate = ctx_priv->out_params.norm_rate;
 | |
| 
 | |
| 		hdr = easrc_priv->firmware_hdr;
 | |
| 		prefil = easrc_priv->prefil;
 | |
| 
 | |
| 		for (i = 0; i < hdr->prefil_scen; i++) {
 | |
| 			if (inrate == prefil[i].insr &&
 | |
| 			    outrate == prefil[i].outsr) {
 | |
| 				selected_prefil = &prefil[i];
 | |
| 				dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
 | |
| 					selected_prefil->insr,
 | |
| 					selected_prefil->outsr,
 | |
| 					selected_prefil->st1_taps,
 | |
| 					selected_prefil->st2_taps);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!selected_prefil) {
 | |
| 			dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
 | |
| 				in_s_rate, inrate,
 | |
| 				out_s_rate, outrate);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * In prefilter coeff array, first st1_num_taps represent the
 | |
| 		 * stage1 prefilter coefficients followed by next st2_num_taps
 | |
| 		 * representing stage 2 coefficients
 | |
| 		 */
 | |
| 		ctx_priv->st1_num_taps = selected_prefil->st1_taps;
 | |
| 		ctx_priv->st1_coeff    = selected_prefil->coeff;
 | |
| 		ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
 | |
| 
 | |
| 		offset = ((selected_prefil->st1_taps + 1) / 2);
 | |
| 		ctx_priv->st2_num_taps = selected_prefil->st2_taps;
 | |
| 		ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
 | |
| 
 | |
| 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 | |
| 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
 | |
| 			/* only change stage2 coefficient for 2 stage case */
 | |
| 			if (ctx_priv->st2_num_taps > 0)
 | |
| 				ctx_priv->st2_addexp = 31;
 | |
| 			else
 | |
| 				ctx_priv->st1_addexp = 31;
 | |
| 		} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 | |
| 			   out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
 | |
| 			if (ctx_priv->st2_num_taps > 0)
 | |
| 				ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
 | |
| 			else
 | |
| 				ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
 | |
| 				  ctx_priv->st2_num_taps / 2;
 | |
| 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 | |
| 
 | |
| 	if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
 | |
| 		ctx_priv->out_missed_sample += 1;
 | |
| 	/*
 | |
| 	 * To modify the value of a prefilter coefficient, the user must
 | |
| 	 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
 | |
| 	 * while the respective context RUN_EN bit is set to 0b0
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 | |
| 			   EASRC_CC_EN_MASK, 0);
 | |
| 
 | |
| 	if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 | |
| 		dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
 | |
| 			ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
 | |
| 		ret = -EINVAL;
 | |
| 		goto ctx_error;
 | |
| 	}
 | |
| 
 | |
| 	/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 | |
| 			   EASRC_CCE2_ST1_TAPS_MASK,
 | |
| 			   EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
 | |
| 
 | |
| 	/* Prefilter Coefficient Write Select to write in ST1 coeff */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 			   EASRC_CCE1_COEF_WS_MASK,
 | |
| 			   EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 | |
| 
 | |
| 	ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 | |
| 					   ctx_priv->st1_coeff,
 | |
| 					   ctx_priv->st1_num_taps,
 | |
| 					   ctx_priv->st1_addexp);
 | |
| 	if (ret)
 | |
| 		goto ctx_error;
 | |
| 
 | |
| 	if (ctx_priv->st2_num_taps > 0) {
 | |
| 		if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 | |
| 			dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
 | |
| 				ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
 | |
| 			ret = -EINVAL;
 | |
| 			goto ctx_error;
 | |
| 		}
 | |
| 
 | |
| 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 				   EASRC_CCE1_PF_TSEN_MASK,
 | |
| 				   EASRC_CCE1_PF_TSEN);
 | |
| 		/*
 | |
| 		 * Enable prefilter stage1 writeback floating point
 | |
| 		 * which is used for FLOAT_LE case
 | |
| 		 */
 | |
| 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 				   EASRC_CCE1_PF_ST1_WBFP_MASK,
 | |
| 				   EASRC_CCE1_PF_ST1_WBFP);
 | |
| 
 | |
| 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 				   EASRC_CCE1_PF_EXP_MASK,
 | |
| 				   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
 | |
| 
 | |
| 		/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
 | |
| 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 | |
| 				   EASRC_CCE2_ST2_TAPS_MASK,
 | |
| 				   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
 | |
| 
 | |
| 		/* Prefilter Coefficient Write Select to write in ST2 coeff */
 | |
| 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 				   EASRC_CCE1_COEF_WS_MASK,
 | |
| 				   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 | |
| 
 | |
| 		ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 | |
| 						   ctx_priv->st2_coeff,
 | |
| 						   ctx_priv->st2_num_taps,
 | |
| 						   ctx_priv->st2_addexp);
 | |
| 		if (ret)
 | |
| 			goto ctx_error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| ctx_error:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
 | |
| 				     struct fsl_easrc_slot *slot)
 | |
| {
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 | |
| 	int st1_mem_alloc = 0, st2_mem_alloc = 0;
 | |
| 	int pf_mem_alloc = 0;
 | |
| 	int max_channels = 8 - slot->num_channel;
 | |
| 	int channels = 0;
 | |
| 
 | |
| 	if (ctx_priv->st1_num_taps > 0) {
 | |
| 		if (ctx_priv->st2_num_taps > 0)
 | |
| 			st1_mem_alloc =
 | |
| 				(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
 | |
| 		else
 | |
| 			st1_mem_alloc = ctx_priv->st1_num_taps;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx_priv->st2_num_taps > 0)
 | |
| 		st2_mem_alloc = ctx_priv->st2_num_taps;
 | |
| 
 | |
| 	pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
 | |
| 
 | |
| 	if (pf_mem_alloc != 0)
 | |
| 		channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
 | |
| 	else
 | |
| 		channels = 8;
 | |
| 
 | |
| 	if (channels < max_channels)
 | |
| 		max_channels = channels;
 | |
| 
 | |
| 	return max_channels;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
 | |
| 				     struct fsl_easrc_slot *slot,
 | |
| 				     unsigned int slot_ctx_idx,
 | |
| 				     unsigned int *req_channels,
 | |
| 				     unsigned int *start_channel,
 | |
| 				     unsigned int *avail_channel)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 | |
| 	int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
 | |
| 	unsigned int reg0, reg1, reg2, reg3;
 | |
| 	unsigned int addr;
 | |
| 
 | |
| 	if (slot->slot_index == 0) {
 | |
| 		reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
 | |
| 		reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
 | |
| 		reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
 | |
| 		reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
 | |
| 	} else {
 | |
| 		reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
 | |
| 		reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
 | |
| 		reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
 | |
| 		reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
 | |
| 	}
 | |
| 
 | |
| 	if (*req_channels <= *avail_channel) {
 | |
| 		slot->num_channel = *req_channels;
 | |
| 		*req_channels = 0;
 | |
| 	} else {
 | |
| 		slot->num_channel = *avail_channel;
 | |
| 		*req_channels -= *avail_channel;
 | |
| 	}
 | |
| 
 | |
| 	slot->min_channel = *start_channel;
 | |
| 	slot->max_channel = *start_channel + slot->num_channel - 1;
 | |
| 	slot->ctx_index = ctx->index;
 | |
| 	slot->busy = true;
 | |
| 	*start_channel += slot->num_channel;
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, reg0,
 | |
| 			   EASRC_DPCS0R0_MAXCH_MASK,
 | |
| 			   EASRC_DPCS0R0_MAXCH(slot->max_channel));
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, reg0,
 | |
| 			   EASRC_DPCS0R0_MINCH_MASK,
 | |
| 			   EASRC_DPCS0R0_MINCH(slot->min_channel));
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, reg0,
 | |
| 			   EASRC_DPCS0R0_NUMCH_MASK,
 | |
| 			   EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, reg0,
 | |
| 			   EASRC_DPCS0R0_CTXNUM_MASK,
 | |
| 			   EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
 | |
| 
 | |
| 	if (ctx_priv->st1_num_taps > 0) {
 | |
| 		if (ctx_priv->st2_num_taps > 0)
 | |
| 			st1_mem_alloc =
 | |
| 				(ctx_priv->st1_num_taps - 1) * slot->num_channel *
 | |
| 				ctx_priv->st1_num_exp + slot->num_channel;
 | |
| 		else
 | |
| 			st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
 | |
| 
 | |
| 		slot->pf_mem_used = st1_mem_alloc;
 | |
| 		regmap_update_bits(easrc->regmap, reg2,
 | |
| 				   EASRC_DPCS0R2_ST1_MA_MASK,
 | |
| 				   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
 | |
| 
 | |
| 		if (slot->slot_index == 1)
 | |
| 			addr = PREFILTER_MEM_LEN - st1_mem_alloc;
 | |
| 		else
 | |
| 			addr = 0;
 | |
| 
 | |
| 		regmap_update_bits(easrc->regmap, reg2,
 | |
| 				   EASRC_DPCS0R2_ST1_SA_MASK,
 | |
| 				   EASRC_DPCS0R2_ST1_SA(addr));
 | |
| 	}
 | |
| 
 | |
| 	if (ctx_priv->st2_num_taps > 0) {
 | |
| 		st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
 | |
| 
 | |
| 		regmap_update_bits(easrc->regmap, reg1,
 | |
| 				   EASRC_DPCS0R1_ST1_EXP_MASK,
 | |
| 				   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
 | |
| 
 | |
| 		st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
 | |
| 		slot->pf_mem_used += st2_mem_alloc;
 | |
| 		regmap_update_bits(easrc->regmap, reg3,
 | |
| 				   EASRC_DPCS0R3_ST2_MA_MASK,
 | |
| 				   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
 | |
| 
 | |
| 		if (slot->slot_index == 1)
 | |
| 			addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
 | |
| 		else
 | |
| 			addr = st1_mem_alloc;
 | |
| 
 | |
| 		regmap_update_bits(easrc->regmap, reg3,
 | |
| 				   EASRC_DPCS0R3_ST2_SA_MASK,
 | |
| 				   EASRC_DPCS0R3_ST2_SA(addr));
 | |
| 	}
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, reg0,
 | |
| 			   EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsl_easrc_config_slot
 | |
|  *
 | |
|  * A single context can be split amongst any of the 4 context processing pipes
 | |
|  * in the design.
 | |
|  * The total number of channels consumed within the context processor must be
 | |
|  * less than or equal to 8. if a single context is configured to contain more
 | |
|  * than 8 channels then it must be distributed across multiple context
 | |
|  * processing pipe slots.
 | |
|  *
 | |
|  */
 | |
| static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 | |
| {
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 | |
| 	int req_channels = ctx->channels;
 | |
| 	int start_channel = 0, avail_channel;
 | |
| 	struct fsl_easrc_slot *slot0, *slot1;
 | |
| 	struct fsl_easrc_slot *slota, *slotb;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (req_channels <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 | |
| 		slot0 = &easrc_priv->slot[i][0];
 | |
| 		slot1 = &easrc_priv->slot[i][1];
 | |
| 
 | |
| 		if (slot0->busy && slot1->busy) {
 | |
| 			continue;
 | |
| 		} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
 | |
| 			 (slot1->busy && slot1->ctx_index == ctx->index)) {
 | |
| 			continue;
 | |
| 		} else if (!slot0->busy) {
 | |
| 			slota = slot0;
 | |
| 			slotb = slot1;
 | |
| 			slota->slot_index = 0;
 | |
| 		} else if (!slot1->busy) {
 | |
| 			slota = slot1;
 | |
| 			slotb = slot0;
 | |
| 			slota->slot_index = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (!slota || !slotb)
 | |
| 			continue;
 | |
| 
 | |
| 		avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
 | |
| 		if (avail_channel <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
 | |
| 						&start_channel, &avail_channel);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (req_channels > 0)
 | |
| 			continue;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (req_channels > 0) {
 | |
| 		dev_err(&easrc->pdev->dev, "no avail slot.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsl_easrc_release_slot
 | |
|  *
 | |
|  * Clear the slot configuration
 | |
|  */
 | |
| static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 | |
| {
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 | |
| 		if (easrc_priv->slot[i][0].busy &&
 | |
| 		    easrc_priv->slot[i][0].ctx_index == ctx->index) {
 | |
| 			easrc_priv->slot[i][0].busy = false;
 | |
| 			easrc_priv->slot[i][0].num_channel = 0;
 | |
| 			easrc_priv->slot[i][0].pf_mem_used = 0;
 | |
| 			/* set registers */
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
 | |
| 		}
 | |
| 
 | |
| 		if (easrc_priv->slot[i][1].busy &&
 | |
| 		    easrc_priv->slot[i][1].ctx_index == ctx->index) {
 | |
| 			easrc_priv->slot[i][1].busy = false;
 | |
| 			easrc_priv->slot[i][1].num_channel = 0;
 | |
| 			easrc_priv->slot[i][1].pf_mem_used = 0;
 | |
| 			/* set registers */
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
 | |
| 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsl_easrc_config_context
 | |
|  *
 | |
|  * Configure the register relate with context.
 | |
|  */
 | |
| static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
 | |
| {
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 	struct fsl_asrc_pair *ctx;
 | |
| 	struct device *dev;
 | |
| 	unsigned long lock_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!easrc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dev = &easrc->pdev->dev;
 | |
| 
 | |
| 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 | |
| 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx = easrc->pair[ctx_id];
 | |
| 
 | |
| 	ctx_priv = ctx->private;
 | |
| 
 | |
| 	fsl_easrc_normalize_rates(ctx);
 | |
| 
 | |
| 	ret = fsl_easrc_set_rs_ratio(ctx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Initialize the context coeficients */
 | |
| 	ret = fsl_easrc_prefilter_config(easrc, ctx->index);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&easrc->lock, lock_flags);
 | |
| 	ret = fsl_easrc_config_slot(easrc, ctx->index);
 | |
| 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Both prefilter and resampling filters can use following
 | |
| 	 * initialization modes:
 | |
| 	 * 2 - zero-fil mode
 | |
| 	 * 1 - replication mode
 | |
| 	 * 0 - software control
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 			   EASRC_CCE1_RS_INIT_MASK,
 | |
| 			   EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 | |
| 			   EASRC_CCE1_PF_INIT_MASK,
 | |
| 			   EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
 | |
| 
 | |
| 	/*
 | |
| 	 * Context Input FIFO Watermark
 | |
| 	 * DMA request is generated when input FIFO < FIFO_WTMK
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 | |
| 			   EASRC_CC_FIFO_WTMK_MASK,
 | |
| 			   EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
 | |
| 
 | |
| 	/*
 | |
| 	 * Context Output FIFO Watermark
 | |
| 	 * DMA request is generated when output FIFO > FIFO_WTMK
 | |
| 	 * So we set fifo_wtmk -1 to register.
 | |
| 	 */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
 | |
| 			   EASRC_COC_FIFO_WTMK_MASK,
 | |
| 			   EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
 | |
| 
 | |
| 	/* Number of channels */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 | |
| 			   EASRC_CC_CHEN_MASK,
 | |
| 			   EASRC_CC_CHEN(ctx->channels - 1));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
 | |
| 				    struct fsl_easrc_data_fmt *fmt,
 | |
| 				    snd_pcm_format_t raw_fmt)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!fmt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Context Input Floating Point Format
 | |
| 	 * 0 - Integer Format
 | |
| 	 * 1 - Single Precision FP Format
 | |
| 	 */
 | |
| 	fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
 | |
| 	fmt->sample_pos = 0;
 | |
| 	fmt->iec958 = 0;
 | |
| 
 | |
| 	/* Get the data width */
 | |
| 	switch (snd_pcm_format_width(raw_fmt)) {
 | |
| 	case 16:
 | |
| 		fmt->width = EASRC_WIDTH_16_BIT;
 | |
| 		fmt->addexp = 15;
 | |
| 		break;
 | |
| 	case 20:
 | |
| 		fmt->width = EASRC_WIDTH_20_BIT;
 | |
| 		fmt->addexp = 19;
 | |
| 		break;
 | |
| 	case 24:
 | |
| 		fmt->width = EASRC_WIDTH_24_BIT;
 | |
| 		fmt->addexp = 23;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		fmt->width = EASRC_WIDTH_32_BIT;
 | |
| 		fmt->addexp = 31;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (raw_fmt) {
 | |
| 	case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
 | |
| 		fmt->width = easrc_priv->bps_iec958[ctx->index];
 | |
| 		fmt->iec958 = 1;
 | |
| 		fmt->floating_point = 0;
 | |
| 		if (fmt->width == EASRC_WIDTH_16_BIT) {
 | |
| 			fmt->sample_pos = 12;
 | |
| 			fmt->addexp = 15;
 | |
| 		} else if (fmt->width == EASRC_WIDTH_20_BIT) {
 | |
| 			fmt->sample_pos = 8;
 | |
| 			fmt->addexp = 19;
 | |
| 		} else if (fmt->width == EASRC_WIDTH_24_BIT) {
 | |
| 			fmt->sample_pos = 4;
 | |
| 			fmt->addexp = 23;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Data Endianness
 | |
| 	 * 0 - Little-Endian
 | |
| 	 * 1 - Big-Endian
 | |
| 	 */
 | |
| 	ret = snd_pcm_format_big_endian(raw_fmt);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	fmt->endianness = ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Input Data sign
 | |
| 	 * 0b - Signed Format
 | |
| 	 * 1b - Unsigned Format
 | |
| 	 */
 | |
| 	fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
 | |
| 				    snd_pcm_format_t *in_raw_format,
 | |
| 				    snd_pcm_format_t *out_raw_format)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 | |
| 	struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
 | |
| 	struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Get the bitfield values for input data format */
 | |
| 	if (in_raw_format && out_raw_format) {
 | |
| 		ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_BPS_MASK,
 | |
| 			   EASRC_CC_BPS(in_fmt->width));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_ENDIANNESS_MASK,
 | |
| 			   in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_FMT_MASK,
 | |
| 			   in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_INSIGN_MASK,
 | |
| 			   in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
 | |
| 
 | |
| 	/* In Sample Position */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_SAMPLE_POS_MASK,
 | |
| 			   EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
 | |
| 
 | |
| 	/* Get the bitfield values for input data format */
 | |
| 	if (in_raw_format && out_raw_format) {
 | |
| 		ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_BPS_MASK,
 | |
| 			   EASRC_COC_BPS(out_fmt->width));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_ENDIANNESS_MASK,
 | |
| 			   out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_FMT_MASK,
 | |
| 			   out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_OUTSIGN_MASK,
 | |
| 			   out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
 | |
| 
 | |
| 	/* Out Sample Position */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_SAMPLE_POS_MASK,
 | |
| 			   EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_IEC_EN_MASK,
 | |
| 			   out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The ASRC provides interleaving support in hardware to ensure that a
 | |
|  * variety of sample sources can be internally combined
 | |
|  * to conform with this format. Interleaving parameters are accessed
 | |
|  * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
 | |
|  */
 | |
| static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 	struct fsl_asrc *easrc;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	easrc = ctx->asrc;
 | |
| 	ctx_priv = ctx->private;
 | |
| 
 | |
| 	/* input interleaving parameters */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
 | |
| 			   EASRC_CIA_ITER_MASK,
 | |
| 			   EASRC_CIA_ITER(ctx_priv->in_params.iterations));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
 | |
| 			   EASRC_CIA_GRLEN_MASK,
 | |
| 			   EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
 | |
| 			   EASRC_CIA_ACCLEN_MASK,
 | |
| 			   EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
 | |
| 
 | |
| 	/* output interleaving parameters */
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
 | |
| 			   EASRC_COA_ITER_MASK,
 | |
| 			   EASRC_COA_ITER(ctx_priv->out_params.iterations));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
 | |
| 			   EASRC_COA_GRLEN_MASK,
 | |
| 			   EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
 | |
| 			   EASRC_COA_ACCLEN_MASK,
 | |
| 			   EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Request one of the available contexts
 | |
|  *
 | |
|  * Returns a negative number on error and >=0 as context id
 | |
|  * on success
 | |
|  */
 | |
| static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	enum asrc_pair_index index = ASRC_INVALID_PAIR;
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	struct device *dev;
 | |
| 	unsigned long lock_flags;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	dev = &easrc->pdev->dev;
 | |
| 
 | |
| 	spin_lock_irqsave(&easrc->lock, lock_flags);
 | |
| 
 | |
| 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
 | |
| 		if (easrc->pair[i])
 | |
| 			continue;
 | |
| 
 | |
| 		index = i;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (index == ASRC_INVALID_PAIR) {
 | |
| 		dev_err(dev, "all contexts are busy\n");
 | |
| 		ret = -EBUSY;
 | |
| 	} else if (channels > easrc->channel_avail) {
 | |
| 		dev_err(dev, "can't give the required channels: %d\n",
 | |
| 			channels);
 | |
| 		ret = -EINVAL;
 | |
| 	} else {
 | |
| 		ctx->index = index;
 | |
| 		ctx->channels = channels;
 | |
| 		easrc->pair[index] = ctx;
 | |
| 		easrc->channel_avail -= channels;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the context
 | |
|  *
 | |
|  * This funciton is mainly doing the revert thing in request context
 | |
|  */
 | |
| static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	unsigned long lock_flags;
 | |
| 	struct fsl_asrc *easrc;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	easrc = ctx->asrc;
 | |
| 
 | |
| 	spin_lock_irqsave(&easrc->lock, lock_flags);
 | |
| 
 | |
| 	fsl_easrc_release_slot(easrc, ctx->index);
 | |
| 
 | |
| 	easrc->channel_avail += ctx->channels;
 | |
| 	easrc->pair[ctx->index] = NULL;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start the context
 | |
|  *
 | |
|  * Enable the DMA request and context
 | |
|  */
 | |
| static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_EN_MASK, EASRC_CC_EN);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop the context
 | |
|  *
 | |
|  * Disable the DMA request and context
 | |
|  */
 | |
| static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	int val, i;
 | |
| 	int size;
 | |
| 	int retry = 200;
 | |
| 
 | |
| 	regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
 | |
| 
 | |
| 	if (val & EASRC_CC_EN_MASK) {
 | |
| 		regmap_update_bits(easrc->regmap,
 | |
| 				   REG_EASRC_CC(ctx->index),
 | |
| 				   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
 | |
| 		do {
 | |
| 			regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
 | |
| 			val &= EASRC_SFS_NSGO_MASK;
 | |
| 			size = val >> EASRC_SFS_NSGO_SHIFT;
 | |
| 
 | |
| 			/* Read FIFO, drop the data */
 | |
| 			for (i = 0; i < size * ctx->channels; i++)
 | |
| 				regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
 | |
| 			/* Check RUN_STOP_DONE */
 | |
| 			regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
 | |
| 			if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
 | |
| 				/*Clear RUN_STOP_DONE*/
 | |
| 				regmap_write_bits(easrc->regmap,
 | |
| 						  REG_EASRC_IRQF,
 | |
| 						  EASRC_IRQF_RSD(1 << ctx->index),
 | |
| 						  EASRC_IRQF_RSD(1 << ctx->index));
 | |
| 				break;
 | |
| 			}
 | |
| 			udelay(100);
 | |
| 		} while (--retry);
 | |
| 
 | |
| 		if (retry == 0)
 | |
| 			dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
 | |
| 	}
 | |
| 
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
 | |
| 			   EASRC_CC_FWMDE_MASK, 0);
 | |
| 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
 | |
| 			   EASRC_COC_FWMDE_MASK, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
 | |
| 						  bool dir)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = ctx->asrc;
 | |
| 	enum asrc_pair_index index = ctx->index;
 | |
| 	char name[8];
 | |
| 
 | |
| 	/* Example of dma name: ctx0_rx */
 | |
| 	sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
 | |
| 
 | |
| 	return dma_request_slave_channel(&easrc->pdev->dev, name);
 | |
| };
 | |
| 
 | |
| static const unsigned int easrc_rates[] = {
 | |
| 	8000, 11025, 12000, 16000,
 | |
| 	22050, 24000, 32000, 44100,
 | |
| 	48000, 64000, 88200, 96000,
 | |
| 	128000, 176400, 192000, 256000,
 | |
| 	352800, 384000, 705600, 768000,
 | |
| };
 | |
| 
 | |
| static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
 | |
| 	.count = ARRAY_SIZE(easrc_rates),
 | |
| 	.list = easrc_rates,
 | |
| };
 | |
| 
 | |
| static int fsl_easrc_startup(struct snd_pcm_substream *substream,
 | |
| 			     struct snd_soc_dai *dai)
 | |
| {
 | |
| 	return snd_pcm_hw_constraint_list(substream->runtime, 0,
 | |
| 					  SNDRV_PCM_HW_PARAM_RATE,
 | |
| 					  &easrc_rate_constraints);
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
 | |
| 			     int cmd, struct snd_soc_dai *dai)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_asrc_pair *ctx = runtime->private_data;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case SNDRV_PCM_TRIGGER_START:
 | |
| 	case SNDRV_PCM_TRIGGER_RESUME:
 | |
| 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 | |
| 		ret = fsl_easrc_start_context(ctx);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		break;
 | |
| 	case SNDRV_PCM_TRIGGER_STOP:
 | |
| 	case SNDRV_PCM_TRIGGER_SUSPEND:
 | |
| 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 | |
| 		ret = fsl_easrc_stop_context(ctx);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
 | |
| 			       struct snd_pcm_hw_params *params,
 | |
| 			       struct snd_soc_dai *dai)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	struct fsl_asrc_pair *ctx = runtime->private_data;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 | |
| 	unsigned int channels = params_channels(params);
 | |
| 	unsigned int rate = params_rate(params);
 | |
| 	snd_pcm_format_t format = params_format(params);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = fsl_easrc_request_context(channels, ctx);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to request context\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ctx_priv->ctx_streams |= BIT(substream->stream);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the input and output ratio so we can compute
 | |
| 	 * the resampling ratio in RS_LOW/HIGH
 | |
| 	 */
 | |
| 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 | |
| 		ctx_priv->in_params.sample_rate = rate;
 | |
| 		ctx_priv->in_params.sample_format = format;
 | |
| 		ctx_priv->out_params.sample_rate = easrc->asrc_rate;
 | |
| 		ctx_priv->out_params.sample_format = easrc->asrc_format;
 | |
| 	} else {
 | |
| 		ctx_priv->out_params.sample_rate = rate;
 | |
| 		ctx_priv->out_params.sample_format = format;
 | |
| 		ctx_priv->in_params.sample_rate = easrc->asrc_rate;
 | |
| 		ctx_priv->in_params.sample_format = easrc->asrc_format;
 | |
| 	}
 | |
| 
 | |
| 	ctx->channels = channels;
 | |
| 	ctx_priv->in_params.fifo_wtmk  = 0x20;
 | |
| 	ctx_priv->out_params.fifo_wtmk = 0x20;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do only rate conversion and keep the same format for input
 | |
| 	 * and output data
 | |
| 	 */
 | |
| 	ret = fsl_easrc_set_ctx_format(ctx,
 | |
| 				       &ctx_priv->in_params.sample_format,
 | |
| 				       &ctx_priv->out_params.sample_format);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to set format %d", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = fsl_easrc_config_context(easrc, ctx->index);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to config context\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ctx_priv->in_params.iterations = 1;
 | |
| 	ctx_priv->in_params.group_len = ctx->channels;
 | |
| 	ctx_priv->in_params.access_len = ctx->channels;
 | |
| 	ctx_priv->out_params.iterations = 1;
 | |
| 	ctx_priv->out_params.group_len = ctx->channels;
 | |
| 	ctx_priv->out_params.access_len = ctx->channels;
 | |
| 
 | |
| 	ret = fsl_easrc_set_ctx_organziation(ctx);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to set fifo organization\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
 | |
| 			     struct snd_soc_dai *dai)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_asrc_pair *ctx = runtime->private_data;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx_priv = ctx->private;
 | |
| 
 | |
| 	if (ctx_priv->ctx_streams & BIT(substream->stream)) {
 | |
| 		ctx_priv->ctx_streams &= ~BIT(substream->stream);
 | |
| 		fsl_easrc_release_context(ctx);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
 | |
| 	.startup = fsl_easrc_startup,
 | |
| 	.trigger = fsl_easrc_trigger,
 | |
| 	.hw_params = fsl_easrc_hw_params,
 | |
| 	.hw_free = fsl_easrc_hw_free,
 | |
| };
 | |
| 
 | |
| static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
 | |
| 
 | |
| 	snd_soc_dai_init_dma_data(cpu_dai,
 | |
| 				  &easrc->dma_params_tx,
 | |
| 				  &easrc->dma_params_rx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct snd_soc_dai_driver fsl_easrc_dai = {
 | |
| 	.probe = fsl_easrc_dai_probe,
 | |
| 	.playback = {
 | |
| 		.stream_name = "ASRC-Playback",
 | |
| 		.channels_min = 1,
 | |
| 		.channels_max = 32,
 | |
| 		.rate_min = 8000,
 | |
| 		.rate_max = 768000,
 | |
| 		.rates = SNDRV_PCM_RATE_KNOT,
 | |
| 		.formats = FSL_EASRC_FORMATS,
 | |
| 	},
 | |
| 	.capture = {
 | |
| 		.stream_name = "ASRC-Capture",
 | |
| 		.channels_min = 1,
 | |
| 		.channels_max = 32,
 | |
| 		.rate_min = 8000,
 | |
| 		.rate_max = 768000,
 | |
| 		.rates = SNDRV_PCM_RATE_KNOT,
 | |
| 		.formats = FSL_EASRC_FORMATS |
 | |
| 			   SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
 | |
| 	},
 | |
| 	.ops = &fsl_easrc_dai_ops,
 | |
| };
 | |
| 
 | |
| static const struct snd_soc_component_driver fsl_easrc_component = {
 | |
| 	.name			= "fsl-easrc-dai",
 | |
| 	.controls		= fsl_easrc_snd_controls,
 | |
| 	.num_controls		= ARRAY_SIZE(fsl_easrc_snd_controls),
 | |
| 	.legacy_dai_naming	= 1,
 | |
| };
 | |
| 
 | |
| static const struct reg_default fsl_easrc_reg_defaults[] = {
 | |
| 	{REG_EASRC_WRFIFO(0),	0x00000000},
 | |
| 	{REG_EASRC_WRFIFO(1),	0x00000000},
 | |
| 	{REG_EASRC_WRFIFO(2),	0x00000000},
 | |
| 	{REG_EASRC_WRFIFO(3),	0x00000000},
 | |
| 	{REG_EASRC_RDFIFO(0),	0x00000000},
 | |
| 	{REG_EASRC_RDFIFO(1),	0x00000000},
 | |
| 	{REG_EASRC_RDFIFO(2),	0x00000000},
 | |
| 	{REG_EASRC_RDFIFO(3),	0x00000000},
 | |
| 	{REG_EASRC_CC(0),	0x00000000},
 | |
| 	{REG_EASRC_CC(1),	0x00000000},
 | |
| 	{REG_EASRC_CC(2),	0x00000000},
 | |
| 	{REG_EASRC_CC(3),	0x00000000},
 | |
| 	{REG_EASRC_CCE1(0),	0x00000000},
 | |
| 	{REG_EASRC_CCE1(1),	0x00000000},
 | |
| 	{REG_EASRC_CCE1(2),	0x00000000},
 | |
| 	{REG_EASRC_CCE1(3),	0x00000000},
 | |
| 	{REG_EASRC_CCE2(0),	0x00000000},
 | |
| 	{REG_EASRC_CCE2(1),	0x00000000},
 | |
| 	{REG_EASRC_CCE2(2),	0x00000000},
 | |
| 	{REG_EASRC_CCE2(3),	0x00000000},
 | |
| 	{REG_EASRC_CIA(0),	0x00000000},
 | |
| 	{REG_EASRC_CIA(1),	0x00000000},
 | |
| 	{REG_EASRC_CIA(2),	0x00000000},
 | |
| 	{REG_EASRC_CIA(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R0(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R0(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R0(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R0(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R1(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R1(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R1(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R1(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R2(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R2(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R2(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R2(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R3(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R3(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R3(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS0R3(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R0(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R0(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R0(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R0(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R1(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R1(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R1(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R1(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R2(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R2(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R2(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R2(3),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R3(0),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R3(1),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R3(2),	0x00000000},
 | |
| 	{REG_EASRC_DPCS1R3(3),	0x00000000},
 | |
| 	{REG_EASRC_COC(0),	0x00000000},
 | |
| 	{REG_EASRC_COC(1),	0x00000000},
 | |
| 	{REG_EASRC_COC(2),	0x00000000},
 | |
| 	{REG_EASRC_COC(3),	0x00000000},
 | |
| 	{REG_EASRC_COA(0),	0x00000000},
 | |
| 	{REG_EASRC_COA(1),	0x00000000},
 | |
| 	{REG_EASRC_COA(2),	0x00000000},
 | |
| 	{REG_EASRC_COA(3),	0x00000000},
 | |
| 	{REG_EASRC_SFS(0),	0x00000000},
 | |
| 	{REG_EASRC_SFS(1),	0x00000000},
 | |
| 	{REG_EASRC_SFS(2),	0x00000000},
 | |
| 	{REG_EASRC_SFS(3),	0x00000000},
 | |
| 	{REG_EASRC_RRL(0),	0x00000000},
 | |
| 	{REG_EASRC_RRL(1),	0x00000000},
 | |
| 	{REG_EASRC_RRL(2),	0x00000000},
 | |
| 	{REG_EASRC_RRL(3),	0x00000000},
 | |
| 	{REG_EASRC_RRH(0),	0x00000000},
 | |
| 	{REG_EASRC_RRH(1),	0x00000000},
 | |
| 	{REG_EASRC_RRH(2),	0x00000000},
 | |
| 	{REG_EASRC_RRH(3),	0x00000000},
 | |
| 	{REG_EASRC_RUC(0),	0x00000000},
 | |
| 	{REG_EASRC_RUC(1),	0x00000000},
 | |
| 	{REG_EASRC_RUC(2),	0x00000000},
 | |
| 	{REG_EASRC_RUC(3),	0x00000000},
 | |
| 	{REG_EASRC_RUR(0),	0x7FFFFFFF},
 | |
| 	{REG_EASRC_RUR(1),	0x7FFFFFFF},
 | |
| 	{REG_EASRC_RUR(2),	0x7FFFFFFF},
 | |
| 	{REG_EASRC_RUR(3),	0x7FFFFFFF},
 | |
| 	{REG_EASRC_RCTCL,	0x00000000},
 | |
| 	{REG_EASRC_RCTCH,	0x00000000},
 | |
| 	{REG_EASRC_PCF(0),	0x00000000},
 | |
| 	{REG_EASRC_PCF(1),	0x00000000},
 | |
| 	{REG_EASRC_PCF(2),	0x00000000},
 | |
| 	{REG_EASRC_PCF(3),	0x00000000},
 | |
| 	{REG_EASRC_CRCM,	0x00000000},
 | |
| 	{REG_EASRC_CRCC,	0x00000000},
 | |
| 	{REG_EASRC_IRQC,	0x00000FFF},
 | |
| 	{REG_EASRC_IRQF,	0x00000000},
 | |
| 	{REG_EASRC_CS0(0),	0x00000000},
 | |
| 	{REG_EASRC_CS0(1),	0x00000000},
 | |
| 	{REG_EASRC_CS0(2),	0x00000000},
 | |
| 	{REG_EASRC_CS0(3),	0x00000000},
 | |
| 	{REG_EASRC_CS1(0),	0x00000000},
 | |
| 	{REG_EASRC_CS1(1),	0x00000000},
 | |
| 	{REG_EASRC_CS1(2),	0x00000000},
 | |
| 	{REG_EASRC_CS1(3),	0x00000000},
 | |
| 	{REG_EASRC_CS2(0),	0x00000000},
 | |
| 	{REG_EASRC_CS2(1),	0x00000000},
 | |
| 	{REG_EASRC_CS2(2),	0x00000000},
 | |
| 	{REG_EASRC_CS2(3),	0x00000000},
 | |
| 	{REG_EASRC_CS3(0),	0x00000000},
 | |
| 	{REG_EASRC_CS3(1),	0x00000000},
 | |
| 	{REG_EASRC_CS3(2),	0x00000000},
 | |
| 	{REG_EASRC_CS3(3),	0x00000000},
 | |
| 	{REG_EASRC_CS4(0),	0x00000000},
 | |
| 	{REG_EASRC_CS4(1),	0x00000000},
 | |
| 	{REG_EASRC_CS4(2),	0x00000000},
 | |
| 	{REG_EASRC_CS4(3),	0x00000000},
 | |
| 	{REG_EASRC_CS5(0),	0x00000000},
 | |
| 	{REG_EASRC_CS5(1),	0x00000000},
 | |
| 	{REG_EASRC_CS5(2),	0x00000000},
 | |
| 	{REG_EASRC_CS5(3),	0x00000000},
 | |
| 	{REG_EASRC_DBGC,	0x00000000},
 | |
| 	{REG_EASRC_DBGS,	0x00000000},
 | |
| };
 | |
| 
 | |
| static const struct regmap_range fsl_easrc_readable_ranges[] = {
 | |
| 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
 | |
| 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
 | |
| 	regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
 | |
| };
 | |
| 
 | |
| static const struct regmap_access_table fsl_easrc_readable_table = {
 | |
| 	.yes_ranges = fsl_easrc_readable_ranges,
 | |
| 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
 | |
| };
 | |
| 
 | |
| static const struct regmap_range fsl_easrc_writeable_ranges[] = {
 | |
| 	regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
 | |
| 	regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
 | |
| 	regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
 | |
| 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
 | |
| };
 | |
| 
 | |
| static const struct regmap_access_table fsl_easrc_writeable_table = {
 | |
| 	.yes_ranges = fsl_easrc_writeable_ranges,
 | |
| 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
 | |
| };
 | |
| 
 | |
| static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
 | |
| 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
 | |
| 	regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
 | |
| 	regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
 | |
| 	regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
 | |
| };
 | |
| 
 | |
| static const struct regmap_access_table fsl_easrc_volatileable_table = {
 | |
| 	.yes_ranges = fsl_easrc_volatileable_ranges,
 | |
| 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
 | |
| };
 | |
| 
 | |
| static const struct regmap_config fsl_easrc_regmap_config = {
 | |
| 	.reg_bits = 32,
 | |
| 	.reg_stride = 4,
 | |
| 	.val_bits = 32,
 | |
| 
 | |
| 	.max_register = REG_EASRC_DBGS,
 | |
| 	.reg_defaults = fsl_easrc_reg_defaults,
 | |
| 	.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
 | |
| 	.rd_table = &fsl_easrc_readable_table,
 | |
| 	.wr_table = &fsl_easrc_writeable_table,
 | |
| 	.volatile_table = &fsl_easrc_volatileable_table,
 | |
| 	.cache_type = REGCACHE_RBTREE,
 | |
| };
 | |
| 
 | |
| #ifdef DEBUG
 | |
| static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
 | |
| {
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
 | |
| 	struct interp_params *interp = easrc_priv->interp;
 | |
| 	struct prefil_params *prefil = easrc_priv->prefil;
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	int i;
 | |
| 
 | |
| 	if (firm->magic != FIRMWARE_MAGIC) {
 | |
| 		dev_err(dev, "Wrong magic. Something went wrong!");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
 | |
| 	dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
 | |
| 	dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
 | |
| 	dev_dbg(dev, "\nInterpolation scenarios:\n");
 | |
| 
 | |
| 	for (i = 0; i < firm->interp_scen; i++) {
 | |
| 		if (interp[i].magic != FIRMWARE_MAGIC) {
 | |
| 			dev_dbg(dev, "%d. wrong interp magic: %x\n",
 | |
| 				i, interp[i].magic);
 | |
| 			continue;
 | |
| 		}
 | |
| 		dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
 | |
| 			interp[i].num_taps, interp[i].num_phases,
 | |
| 			interp[i].center_tap);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < firm->prefil_scen; i++) {
 | |
| 		if (prefil[i].magic != FIRMWARE_MAGIC) {
 | |
| 			dev_dbg(dev, "%d. wrong prefil magic: %x\n",
 | |
| 				i, prefil[i].magic);
 | |
| 			continue;
 | |
| 		}
 | |
| 		dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
 | |
| 			prefil[i].insr, prefil[i].outsr,
 | |
| 			prefil[i].st1_taps, prefil[i].st2_taps);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "end of firmware dump\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
 | |
| {
 | |
| 	struct fsl_easrc_priv *easrc_priv;
 | |
| 	const struct firmware **fw_p;
 | |
| 	u32 pnum, inum, offset;
 | |
| 	const u8 *data;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!easrc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	easrc_priv = easrc->private;
 | |
| 	fw_p = &easrc_priv->fw;
 | |
| 
 | |
| 	ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	data = easrc_priv->fw->data;
 | |
| 
 | |
| 	easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
 | |
| 	pnum = easrc_priv->firmware_hdr->prefil_scen;
 | |
| 	inum = easrc_priv->firmware_hdr->interp_scen;
 | |
| 
 | |
| 	if (inum) {
 | |
| 		offset = sizeof(struct asrc_firmware_hdr);
 | |
| 		easrc_priv->interp = (struct interp_params *)(data + offset);
 | |
| 	}
 | |
| 
 | |
| 	if (pnum) {
 | |
| 		offset = sizeof(struct asrc_firmware_hdr) +
 | |
| 				inum * sizeof(struct interp_params);
 | |
| 		easrc_priv->prefil = (struct prefil_params *)(data + offset);
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	fsl_easrc_dump_firmware(easrc);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
 | |
| 	struct device *dev = &easrc->pdev->dev;
 | |
| 	int val;
 | |
| 
 | |
| 	regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
 | |
| 
 | |
| 	if (val & EASRC_IRQF_OER_MASK)
 | |
| 		dev_dbg(dev, "output FIFO underflow\n");
 | |
| 
 | |
| 	if (val & EASRC_IRQF_IFO_MASK)
 | |
| 		dev_dbg(dev, "input FIFO overflow\n");
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
 | |
| {
 | |
| 	return REG_EASRC_FIFO(dir, index);
 | |
| }
 | |
| 
 | |
| static const struct of_device_id fsl_easrc_dt_ids[] = {
 | |
| 	{ .compatible = "fsl,imx8mn-easrc",},
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
 | |
| 
 | |
| static int fsl_easrc_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fsl_easrc_priv *easrc_priv;
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct fsl_asrc *easrc;
 | |
| 	struct resource *res;
 | |
| 	struct device_node *np;
 | |
| 	void __iomem *regs;
 | |
| 	u32 asrc_fmt = 0;
 | |
| 	int ret, irq;
 | |
| 
 | |
| 	easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
 | |
| 	if (!easrc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
 | |
| 	if (!easrc_priv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	easrc->pdev = pdev;
 | |
| 	easrc->private = easrc_priv;
 | |
| 	np = dev->of_node;
 | |
| 
 | |
| 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 | |
| 	if (IS_ERR(regs))
 | |
| 		return PTR_ERR(regs);
 | |
| 
 | |
| 	easrc->paddr = res->start;
 | |
| 
 | |
| 	easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
 | |
| 	if (IS_ERR(easrc->regmap)) {
 | |
| 		dev_err(dev, "failed to init regmap");
 | |
| 		return PTR_ERR(easrc->regmap);
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
 | |
| 			       dev_name(dev), easrc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	easrc->mem_clk = devm_clk_get(dev, "mem");
 | |
| 	if (IS_ERR(easrc->mem_clk)) {
 | |
| 		dev_err(dev, "failed to get mem clock\n");
 | |
| 		return PTR_ERR(easrc->mem_clk);
 | |
| 	}
 | |
| 
 | |
| 	/* Set default value */
 | |
| 	easrc->channel_avail = 32;
 | |
| 	easrc->get_dma_channel = fsl_easrc_get_dma_channel;
 | |
| 	easrc->request_pair = fsl_easrc_request_context;
 | |
| 	easrc->release_pair = fsl_easrc_release_context;
 | |
| 	easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
 | |
| 	easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
 | |
| 
 | |
| 	easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
 | |
| 	easrc_priv->const_coeff = 0x3FF0000000000000;
 | |
| 
 | |
| 	ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to asrc rate\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt);
 | |
| 	easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt;
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to asrc format\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) {
 | |
| 		dev_warn(dev, "unsupported format, switching to S24_LE\n");
 | |
| 		easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
 | |
| 	}
 | |
| 
 | |
| 	ret = of_property_read_string(np, "firmware-name",
 | |
| 				      &easrc_priv->fw_name);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to get firmware name\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, easrc);
 | |
| 	pm_runtime_enable(dev);
 | |
| 
 | |
| 	spin_lock_init(&easrc->lock);
 | |
| 
 | |
| 	regcache_cache_only(easrc->regmap, true);
 | |
| 
 | |
| 	ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
 | |
| 					      &fsl_easrc_dai, 1);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to register ASoC DAI\n");
 | |
| 		goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
 | |
| 					      NULL, 0);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "failed to register ASoC platform\n");
 | |
| 		goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_pm_disable:
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int fsl_easrc_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	unsigned long lock_flags;
 | |
| 
 | |
| 	regcache_cache_only(easrc->regmap, true);
 | |
| 
 | |
| 	clk_disable_unprepare(easrc->mem_clk);
 | |
| 
 | |
| 	spin_lock_irqsave(&easrc->lock, lock_flags);
 | |
| 	easrc_priv->firmware_loaded = 0;
 | |
| 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
 | |
| 	struct fsl_easrc_priv *easrc_priv = easrc->private;
 | |
| 	struct fsl_easrc_ctx_priv *ctx_priv;
 | |
| 	struct fsl_asrc_pair *ctx;
 | |
| 	unsigned long lock_flags;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	ret = clk_prepare_enable(easrc->mem_clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	regcache_cache_only(easrc->regmap, false);
 | |
| 	regcache_mark_dirty(easrc->regmap);
 | |
| 	regcache_sync(easrc->regmap);
 | |
| 
 | |
| 	spin_lock_irqsave(&easrc->lock, lock_flags);
 | |
| 	if (easrc_priv->firmware_loaded) {
 | |
| 		spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| 		goto skip_load;
 | |
| 	}
 | |
| 	easrc_priv->firmware_loaded = 1;
 | |
| 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
 | |
| 
 | |
| 	ret = fsl_easrc_get_firmware(easrc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to get firmware\n");
 | |
| 		goto disable_mem_clk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Resampling Coefficients
 | |
| 	 * The coefficient RAM must be configured prior to beginning of
 | |
| 	 * any context processing within the ASRC
 | |
| 	 */
 | |
| 	ret = fsl_easrc_resampler_config(easrc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "resampler config failed\n");
 | |
| 		goto disable_mem_clk;
 | |
| 	}
 | |
| 
 | |
| 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
 | |
| 		ctx = easrc->pair[i];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		ctx_priv = ctx->private;
 | |
| 		fsl_easrc_set_rs_ratio(ctx);
 | |
| 		ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
 | |
| 					      ctx_priv->out_params.sample_rate /
 | |
| 					      ctx_priv->in_params.sample_rate;
 | |
| 		if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
 | |
| 		    % ctx_priv->in_params.sample_rate != 0)
 | |
| 			ctx_priv->out_missed_sample += 1;
 | |
| 
 | |
| 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
 | |
| 						   ctx_priv->st1_coeff,
 | |
| 						   ctx_priv->st1_num_taps,
 | |
| 						   ctx_priv->st1_addexp);
 | |
| 		if (ret)
 | |
| 			goto disable_mem_clk;
 | |
| 
 | |
| 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
 | |
| 						   ctx_priv->st2_coeff,
 | |
| 						   ctx_priv->st2_num_taps,
 | |
| 						   ctx_priv->st2_addexp);
 | |
| 		if (ret)
 | |
| 			goto disable_mem_clk;
 | |
| 	}
 | |
| 
 | |
| skip_load:
 | |
| 	return 0;
 | |
| 
 | |
| disable_mem_clk:
 | |
| 	clk_disable_unprepare(easrc->mem_clk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops fsl_easrc_pm_ops = {
 | |
| 	SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
 | |
| 			   fsl_easrc_runtime_resume,
 | |
| 			   NULL)
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 | |
| 				pm_runtime_force_resume)
 | |
| };
 | |
| 
 | |
| static struct platform_driver fsl_easrc_driver = {
 | |
| 	.probe = fsl_easrc_probe,
 | |
| 	.remove = fsl_easrc_remove,
 | |
| 	.driver = {
 | |
| 		.name = "fsl-easrc",
 | |
| 		.pm = &fsl_easrc_pm_ops,
 | |
| 		.of_match_table = fsl_easrc_dt_ids,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(fsl_easrc_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
 | |
| MODULE_LICENSE("GPL v2");
 |