1351 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1351 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| // Copyright (C) 2018 Spreadtrum Communications Inc.
 | |
| 
 | |
| #include <linux/gpio/consumer.h>
 | |
| #include <linux/iio/consumer.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nvmem-consumer.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/power_supply.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| /* PMIC global control registers definition */
 | |
| #define SC27XX_MODULE_EN0		0xc08
 | |
| #define SC27XX_CLK_EN0			0xc18
 | |
| #define SC27XX_FGU_EN			BIT(7)
 | |
| #define SC27XX_FGU_RTC_EN		BIT(6)
 | |
| 
 | |
| /* FGU registers definition */
 | |
| #define SC27XX_FGU_START		0x0
 | |
| #define SC27XX_FGU_CONFIG		0x4
 | |
| #define SC27XX_FGU_ADC_CONFIG		0x8
 | |
| #define SC27XX_FGU_STATUS		0xc
 | |
| #define SC27XX_FGU_INT_EN		0x10
 | |
| #define SC27XX_FGU_INT_CLR		0x14
 | |
| #define SC27XX_FGU_INT_STS		0x1c
 | |
| #define SC27XX_FGU_VOLTAGE		0x20
 | |
| #define SC27XX_FGU_OCV			0x24
 | |
| #define SC27XX_FGU_POCV			0x28
 | |
| #define SC27XX_FGU_CURRENT		0x2c
 | |
| #define SC27XX_FGU_LOW_OVERLOAD		0x34
 | |
| #define SC27XX_FGU_CLBCNT_SETH		0x50
 | |
| #define SC27XX_FGU_CLBCNT_SETL		0x54
 | |
| #define SC27XX_FGU_CLBCNT_DELTH		0x58
 | |
| #define SC27XX_FGU_CLBCNT_DELTL		0x5c
 | |
| #define SC27XX_FGU_CLBCNT_VALH		0x68
 | |
| #define SC27XX_FGU_CLBCNT_VALL		0x6c
 | |
| #define SC27XX_FGU_CLBCNT_QMAXL		0x74
 | |
| #define SC27XX_FGU_USER_AREA_SET	0xa0
 | |
| #define SC27XX_FGU_USER_AREA_CLEAR	0xa4
 | |
| #define SC27XX_FGU_USER_AREA_STATUS	0xa8
 | |
| #define SC27XX_FGU_VOLTAGE_BUF		0xd0
 | |
| #define SC27XX_FGU_CURRENT_BUF		0xf0
 | |
| 
 | |
| #define SC27XX_WRITE_SELCLB_EN		BIT(0)
 | |
| #define SC27XX_FGU_CLBCNT_MASK		GENMASK(15, 0)
 | |
| #define SC27XX_FGU_CLBCNT_SHIFT		16
 | |
| #define SC27XX_FGU_LOW_OVERLOAD_MASK	GENMASK(12, 0)
 | |
| 
 | |
| #define SC27XX_FGU_INT_MASK		GENMASK(9, 0)
 | |
| #define SC27XX_FGU_LOW_OVERLOAD_INT	BIT(0)
 | |
| #define SC27XX_FGU_CLBCNT_DELTA_INT	BIT(2)
 | |
| 
 | |
| #define SC27XX_FGU_MODE_AREA_MASK	GENMASK(15, 12)
 | |
| #define SC27XX_FGU_CAP_AREA_MASK	GENMASK(11, 0)
 | |
| #define SC27XX_FGU_MODE_AREA_SHIFT	12
 | |
| 
 | |
| #define SC27XX_FGU_FIRST_POWERTON	GENMASK(3, 0)
 | |
| #define SC27XX_FGU_DEFAULT_CAP		GENMASK(11, 0)
 | |
| #define SC27XX_FGU_NORMAIL_POWERTON	0x5
 | |
| 
 | |
| #define SC27XX_FGU_CUR_BASIC_ADC	8192
 | |
| #define SC27XX_FGU_SAMPLE_HZ		2
 | |
| /* micro Ohms */
 | |
| #define SC27XX_FGU_IDEAL_RESISTANCE	20000
 | |
| 
 | |
| /*
 | |
|  * struct sc27xx_fgu_data: describe the FGU device
 | |
|  * @regmap: regmap for register access
 | |
|  * @dev: platform device
 | |
|  * @battery: battery power supply
 | |
|  * @base: the base offset for the controller
 | |
|  * @lock: protect the structure
 | |
|  * @gpiod: GPIO for battery detection
 | |
|  * @channel: IIO channel to get battery temperature
 | |
|  * @charge_chan: IIO channel to get charge voltage
 | |
|  * @internal_resist: the battery internal resistance in mOhm
 | |
|  * @total_cap: the total capacity of the battery in mAh
 | |
|  * @init_cap: the initial capacity of the battery in mAh
 | |
|  * @alarm_cap: the alarm capacity
 | |
|  * @init_clbcnt: the initial coulomb counter
 | |
|  * @max_volt: the maximum constant input voltage in millivolt
 | |
|  * @min_volt: the minimum drained battery voltage in microvolt
 | |
|  * @boot_volt: the voltage measured during boot in microvolt
 | |
|  * @table_len: the capacity table length
 | |
|  * @resist_table_len: the resistance table length
 | |
|  * @cur_1000ma_adc: ADC value corresponding to 1000 mA
 | |
|  * @vol_1000mv_adc: ADC value corresponding to 1000 mV
 | |
|  * @calib_resist: the real resistance of coulomb counter chip in uOhm
 | |
|  * @cap_table: capacity table with corresponding ocv
 | |
|  * @resist_table: resistance percent table with corresponding temperature
 | |
|  */
 | |
| struct sc27xx_fgu_data {
 | |
| 	struct regmap *regmap;
 | |
| 	struct device *dev;
 | |
| 	struct power_supply *battery;
 | |
| 	u32 base;
 | |
| 	struct mutex lock;
 | |
| 	struct gpio_desc *gpiod;
 | |
| 	struct iio_channel *channel;
 | |
| 	struct iio_channel *charge_chan;
 | |
| 	bool bat_present;
 | |
| 	int internal_resist;
 | |
| 	int total_cap;
 | |
| 	int init_cap;
 | |
| 	int alarm_cap;
 | |
| 	int init_clbcnt;
 | |
| 	int max_volt;
 | |
| 	int min_volt;
 | |
| 	int boot_volt;
 | |
| 	int table_len;
 | |
| 	int resist_table_len;
 | |
| 	int cur_1000ma_adc;
 | |
| 	int vol_1000mv_adc;
 | |
| 	int calib_resist;
 | |
| 	struct power_supply_battery_ocv_table *cap_table;
 | |
| 	struct power_supply_resistance_temp_table *resist_table;
 | |
| };
 | |
| 
 | |
| static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
 | |
| static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
 | |
| 					    int cap, bool int_mode);
 | |
| static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
 | |
| static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
 | |
| 
 | |
| static const char * const sc27xx_charger_supply_name[] = {
 | |
| 	"sc2731_charger",
 | |
| 	"sc2720_charger",
 | |
| 	"sc2721_charger",
 | |
| 	"sc2723_charger",
 | |
| };
 | |
| 
 | |
| static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
 | |
| {
 | |
| 	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
 | |
| {
 | |
| 	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
 | |
| {
 | |
| 	return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
 | |
| }
 | |
| 
 | |
| static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
 | |
| {
 | |
| 	int ret, status, cap, mode;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap,
 | |
| 			  data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
 | |
| 	if (ret)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use low 4 bits to save the last battery capacity and high 12 bits
 | |
| 	 * to save the system boot mode.
 | |
| 	 */
 | |
| 	mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
 | |
| 	cap = status & SC27XX_FGU_CAP_AREA_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * When FGU has been powered down, the user area registers became
 | |
| 	 * default value (0xffff), which can be used to valid if the system is
 | |
| 	 * first power on or not.
 | |
| 	 */
 | |
| 	if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
 | |
| 				     int boot_mode)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
 | |
| 				 SC27XX_FGU_MODE_AREA_MASK,
 | |
| 				 SC27XX_FGU_MODE_AREA_MASK);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the user area registers are put on power always-on region,
 | |
| 	 * then these registers changing time will be a little long. Thus
 | |
| 	 * here we should delay 200us to wait until values are updated
 | |
| 	 * successfully according to the datasheet.
 | |
| 	 */
 | |
| 	udelay(200);
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_USER_AREA_SET,
 | |
| 				 SC27XX_FGU_MODE_AREA_MASK,
 | |
| 				 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the user area registers are put on power always-on region,
 | |
| 	 * then these registers changing time will be a little long. Thus
 | |
| 	 * here we should delay 200us to wait until values are updated
 | |
| 	 * successfully according to the datasheet.
 | |
| 	 */
 | |
| 	udelay(200);
 | |
| 
 | |
| 	/*
 | |
| 	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
 | |
| 	 * make the user area data available, otherwise we can not save the user
 | |
| 	 * area data.
 | |
| 	 */
 | |
| 	return regmap_update_bits(data->regmap,
 | |
| 				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
 | |
| 				  SC27XX_FGU_MODE_AREA_MASK, 0);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
 | |
| 				 SC27XX_FGU_CAP_AREA_MASK,
 | |
| 				 SC27XX_FGU_CAP_AREA_MASK);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the user area registers are put on power always-on region,
 | |
| 	 * then these registers changing time will be a little long. Thus
 | |
| 	 * here we should delay 200us to wait until values are updated
 | |
| 	 * successfully according to the datasheet.
 | |
| 	 */
 | |
| 	udelay(200);
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_USER_AREA_SET,
 | |
| 				 SC27XX_FGU_CAP_AREA_MASK, cap);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the user area registers are put on power always-on region,
 | |
| 	 * then these registers changing time will be a little long. Thus
 | |
| 	 * here we should delay 200us to wait until values are updated
 | |
| 	 * successfully according to the datasheet.
 | |
| 	 */
 | |
| 	udelay(200);
 | |
| 
 | |
| 	/*
 | |
| 	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
 | |
| 	 * make the user area data available, otherwise we can not save the user
 | |
| 	 * area data.
 | |
| 	 */
 | |
| 	return regmap_update_bits(data->regmap,
 | |
| 				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
 | |
| 				  SC27XX_FGU_CAP_AREA_MASK, 0);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
 | |
| {
 | |
| 	int ret, value;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap,
 | |
| 			  data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*cap = value & SC27XX_FGU_CAP_AREA_MASK;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When system boots on, we can not read battery capacity from coulomb
 | |
|  * registers, since now the coulomb registers are invalid. So we should
 | |
|  * calculate the battery open circuit voltage, and get current battery
 | |
|  * capacity according to the capacity table.
 | |
|  */
 | |
| static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
 | |
| {
 | |
| 	int volt, cur, oci, ocv, ret;
 | |
| 	bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
 | |
| 
 | |
| 	/*
 | |
| 	 * If system is not the first power on, we should use the last saved
 | |
| 	 * battery capacity as the initial battery capacity. Otherwise we should
 | |
| 	 * re-calculate the initial battery capacity.
 | |
| 	 */
 | |
| 	if (!is_first_poweron) {
 | |
| 		ret = sc27xx_fgu_read_last_cap(data, cap);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
 | |
| 	 * the first sampled open circuit current.
 | |
| 	 */
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
 | |
| 			  &cur);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	cur <<= 1;
 | |
| 	oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Should get the OCV from SC27XX_FGU_POCV register at the system
 | |
| 	 * beginning. It is ADC values reading from registers which need to
 | |
| 	 * convert the corresponding voltage.
 | |
| 	 */
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	volt = sc27xx_fgu_adc_to_voltage(data, volt);
 | |
| 	ocv = volt * 1000 - oci * data->internal_resist;
 | |
| 	data->boot_volt = ocv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Parse the capacity table to look up the correct capacity percent
 | |
| 	 * according to current battery's corresponding OCV values.
 | |
| 	 */
 | |
| 	*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
 | |
| 					   ocv);
 | |
| 
 | |
| 	ret = sc27xx_fgu_save_last_cap(data, *cap);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_CLBCNT_SETL,
 | |
| 				 SC27XX_FGU_CLBCNT_MASK, clbcnt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap,
 | |
| 				 data->base + SC27XX_FGU_CLBCNT_SETH,
 | |
| 				 SC27XX_FGU_CLBCNT_MASK,
 | |
| 				 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
 | |
| 				 SC27XX_WRITE_SELCLB_EN,
 | |
| 				 SC27XX_WRITE_SELCLB_EN);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
 | |
| {
 | |
| 	int ccl, cch, ret;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
 | |
| 			  &ccl);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
 | |
| 			  &cch);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
 | |
| 	*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 vol;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
 | |
| 			  &vol);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is ADC values reading from registers which need to convert to
 | |
| 	 * corresponding voltage values.
 | |
| 	 */
 | |
| 	*val = sc27xx_fgu_adc_to_voltage(data, vol);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 cur;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
 | |
| 			  &cur);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is ADC values reading from registers which need to convert to
 | |
| 	 * corresponding current values.
 | |
| 	 */
 | |
| 	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
 | |
| {
 | |
| 	int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
 | |
| 
 | |
| 	/* Get current coulomb counters firstly */
 | |
| 	ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	delta_clbcnt = cur_clbcnt - data->init_clbcnt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert coulomb counter to delta capacity (mAh), and set multiplier
 | |
| 	 * as 10 to improve the precision.
 | |
| 	 */
 | |
| 	temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
 | |
| 	temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to capacity percent of the battery total capacity,
 | |
| 	 * and multiplier is 100 too.
 | |
| 	 */
 | |
| 	delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
 | |
| 	*cap = delta_cap + data->init_cap;
 | |
| 
 | |
| 	/* Calibrate the battery capacity in a normal range. */
 | |
| 	sc27xx_fgu_capacity_calibration(data, *cap, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int ret, vol;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is ADC values reading from registers which need to convert to
 | |
| 	 * corresponding voltage values.
 | |
| 	 */
 | |
| 	*val = sc27xx_fgu_adc_to_voltage(data, vol);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int ret, cur;
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is ADC values reading from registers which need to convert to
 | |
| 	 * corresponding current values.
 | |
| 	 */
 | |
| 	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int vol, cur, ret, temp, resistance;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_current(data, &cur);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	resistance = data->internal_resist;
 | |
| 	if (data->resist_table_len > 0) {
 | |
| 		ret = sc27xx_fgu_get_temp(data, &temp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		resistance = power_supply_temp2resist_simple(data->resist_table,
 | |
| 						data->resist_table_len, temp);
 | |
| 		resistance = data->internal_resist * resistance / 100;
 | |
| 	}
 | |
| 
 | |
| 	/* Return the battery OCV in micro volts. */
 | |
| 	*val = vol * 1000 - cur * resistance;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
 | |
| {
 | |
| 	int ret, vol;
 | |
| 
 | |
| 	ret = iio_read_channel_processed(data->charge_chan, &vol);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	*val = vol * 1000;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
 | |
| {
 | |
| 	return iio_read_channel_processed(data->channel, temp);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
 | |
| {
 | |
| 	int ret, vol;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (vol > data->max_volt)
 | |
| 		*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
 | |
| 	else
 | |
| 		*health = POWER_SUPPLY_HEALTH_GOOD;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
 | |
| {
 | |
| 	union power_supply_propval val;
 | |
| 	struct power_supply *psy;
 | |
| 	int i, ret = -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
 | |
| 		psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
 | |
| 		if (!psy)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
 | |
| 						&val);
 | |
| 		power_supply_put(psy);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		*status = val.intval;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_get_property(struct power_supply *psy,
 | |
| 				   enum power_supply_property psp,
 | |
| 				   union power_supply_propval *val)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
 | |
| 	int ret = 0;
 | |
| 	int value;
 | |
| 
 | |
| 	mutex_lock(&data->lock);
 | |
| 
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_STATUS:
 | |
| 		ret = sc27xx_fgu_get_status(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_HEALTH:
 | |
| 		ret = sc27xx_fgu_get_health(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_PRESENT:
 | |
| 		val->intval = data->bat_present;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_TEMP:
 | |
| 		ret = sc27xx_fgu_get_temp(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_TECHNOLOGY:
 | |
| 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY:
 | |
| 		ret = sc27xx_fgu_get_capacity(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
 | |
| 		ret = sc27xx_fgu_get_vbat_vol(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value * 1000;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
 | |
| 		ret = sc27xx_fgu_get_vbat_ocv(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
 | |
| 		ret = sc27xx_fgu_get_charge_vol(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_AVG:
 | |
| 		ret = sc27xx_fgu_get_current(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value * 1000;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
 | |
| 		val->intval = data->total_cap * 1000;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_NOW:
 | |
| 		ret = sc27xx_fgu_get_clbcnt(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		value = DIV_ROUND_CLOSEST(value * 10,
 | |
| 					  36 * SC27XX_FGU_SAMPLE_HZ);
 | |
| 		val->intval = sc27xx_fgu_adc_to_current(data, value);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
 | |
| 		ret = sc27xx_fgu_get_vol_now(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value * 1000;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_NOW:
 | |
| 		ret = sc27xx_fgu_get_cur_now(data, &value);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		val->intval = value * 1000;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
 | |
| 		val->intval = data->boot_volt;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| error:
 | |
| 	mutex_unlock(&data->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_set_property(struct power_supply *psy,
 | |
| 				   enum power_supply_property psp,
 | |
| 				   const union power_supply_propval *val)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&data->lock);
 | |
| 
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY:
 | |
| 		ret = sc27xx_fgu_save_last_cap(data, val->intval);
 | |
| 		if (ret < 0)
 | |
| 			dev_err(data->dev, "failed to save battery capacity\n");
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_CALIBRATE:
 | |
| 		sc27xx_fgu_adjust_cap(data, val->intval);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
 | |
| 		data->total_cap = val->intval / 1000;
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&data->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
 | |
| 					    enum power_supply_property psp)
 | |
| {
 | |
| 	return psp == POWER_SUPPLY_PROP_CAPACITY ||
 | |
| 		psp == POWER_SUPPLY_PROP_CALIBRATE ||
 | |
| 		psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
 | |
| }
 | |
| 
 | |
| static enum power_supply_property sc27xx_fgu_props[] = {
 | |
| 	POWER_SUPPLY_PROP_STATUS,
 | |
| 	POWER_SUPPLY_PROP_HEALTH,
 | |
| 	POWER_SUPPLY_PROP_PRESENT,
 | |
| 	POWER_SUPPLY_PROP_TEMP,
 | |
| 	POWER_SUPPLY_PROP_TECHNOLOGY,
 | |
| 	POWER_SUPPLY_PROP_CAPACITY,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_NOW,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_AVG,
 | |
| 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
 | |
| 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_CALIBRATE,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_NOW
 | |
| };
 | |
| 
 | |
| static const struct power_supply_desc sc27xx_fgu_desc = {
 | |
| 	.name			= "sc27xx-fgu",
 | |
| 	.type			= POWER_SUPPLY_TYPE_BATTERY,
 | |
| 	.properties		= sc27xx_fgu_props,
 | |
| 	.num_properties		= ARRAY_SIZE(sc27xx_fgu_props),
 | |
| 	.get_property		= sc27xx_fgu_get_property,
 | |
| 	.set_property		= sc27xx_fgu_set_property,
 | |
| 	.external_power_changed	= power_supply_changed,
 | |
| 	.property_is_writeable	= sc27xx_fgu_property_is_writeable,
 | |
| 	.no_thermal		= true,
 | |
| };
 | |
| 
 | |
| static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	data->init_cap = cap;
 | |
| 	ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
 | |
| 	if (ret)
 | |
| 		dev_err(data->dev, "failed to get init coulomb counter\n");
 | |
| }
 | |
| 
 | |
| static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
 | |
| 					    int cap, bool int_mode)
 | |
| {
 | |
| 	int ret, ocv, chg_sts, adc;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "get battery ocv error.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_status(data, &chg_sts);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "get charger status error.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in charging mode, then we do not need to calibrate the
 | |
| 	 * lower capacity.
 | |
| 	 */
 | |
| 	if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
 | |
| 		return;
 | |
| 
 | |
| 	if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
 | |
| 		/*
 | |
| 		 * If current OCV value is larger than the max OCV value in
 | |
| 		 * OCV table, or the current capacity is larger than 100,
 | |
| 		 * we should force the inititial capacity to 100.
 | |
| 		 */
 | |
| 		sc27xx_fgu_adjust_cap(data, 100);
 | |
| 	} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
 | |
| 		/*
 | |
| 		 * If current OCV value is leass than the minimum OCV value in
 | |
| 		 * OCV table, we should force the inititial capacity to 0.
 | |
| 		 */
 | |
| 		sc27xx_fgu_adjust_cap(data, 0);
 | |
| 	} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
 | |
| 		   (ocv > data->min_volt && cap <= data->alarm_cap)) {
 | |
| 		/*
 | |
| 		 * If current OCV value is not matchable with current capacity,
 | |
| 		 * we should re-calculate current capacity by looking up the
 | |
| 		 * OCV table.
 | |
| 		 */
 | |
| 		int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
 | |
| 							  data->table_len, ocv);
 | |
| 
 | |
| 		sc27xx_fgu_adjust_cap(data, cur_cap);
 | |
| 	} else if (ocv <= data->min_volt) {
 | |
| 		/*
 | |
| 		 * If current OCV value is less than the low alarm voltage, but
 | |
| 		 * current capacity is larger than the alarm capacity, we should
 | |
| 		 * adjust the inititial capacity to alarm capacity.
 | |
| 		 */
 | |
| 		if (cap > data->alarm_cap) {
 | |
| 			sc27xx_fgu_adjust_cap(data, data->alarm_cap);
 | |
| 		} else {
 | |
| 			int cur_cap;
 | |
| 
 | |
| 			/*
 | |
| 			 * If current capacity is equal with 0 or less than 0
 | |
| 			 * (some error occurs), we should adjust inititial
 | |
| 			 * capacity to the capacity corresponding to current OCV
 | |
| 			 * value.
 | |
| 			 */
 | |
| 			cur_cap = power_supply_ocv2cap_simple(data->cap_table,
 | |
| 							      data->table_len,
 | |
| 							      ocv);
 | |
| 			sc27xx_fgu_adjust_cap(data, cur_cap);
 | |
| 		}
 | |
| 
 | |
| 		if (!int_mode)
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * After adjusting the battery capacity, we should set the
 | |
| 		 * lowest alarm voltage instead.
 | |
| 		 */
 | |
| 		data->min_volt = data->cap_table[data->table_len - 1].ocv;
 | |
| 		data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
 | |
| 							      data->table_len,
 | |
| 							      data->min_volt);
 | |
| 
 | |
| 		adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
 | |
| 		regmap_update_bits(data->regmap,
 | |
| 				   data->base + SC27XX_FGU_LOW_OVERLOAD,
 | |
| 				   SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = dev_id;
 | |
| 	int ret, cap;
 | |
| 	u32 status;
 | |
| 
 | |
| 	mutex_lock(&data->lock);
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
 | |
| 			  &status);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
 | |
| 				 status, status);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * When low overload voltage interrupt happens, we should calibrate the
 | |
| 	 * battery capacity in lower voltage stage.
 | |
| 	 */
 | |
| 	if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_capacity(data, &cap);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	sc27xx_fgu_capacity_calibration(data, cap, true);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&data->lock);
 | |
| 
 | |
| 	power_supply_changed(data->battery);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = dev_id;
 | |
| 	int state;
 | |
| 
 | |
| 	mutex_lock(&data->lock);
 | |
| 
 | |
| 	state = gpiod_get_value_cansleep(data->gpiod);
 | |
| 	if (state < 0) {
 | |
| 		dev_err(data->dev, "failed to get gpio state\n");
 | |
| 		mutex_unlock(&data->lock);
 | |
| 		return IRQ_RETVAL(state);
 | |
| 	}
 | |
| 
 | |
| 	data->bat_present = !!state;
 | |
| 
 | |
| 	mutex_unlock(&data->lock);
 | |
| 
 | |
| 	power_supply_changed(data->battery);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void sc27xx_fgu_disable(void *_data)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = _data;
 | |
| 
 | |
| 	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
 | |
| 	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
 | |
| {
 | |
| 	/*
 | |
| 	 * Get current capacity (mAh) = battery total capacity (mAh) *
 | |
| 	 * current capacity percent (capacity / 100).
 | |
| 	 */
 | |
| 	int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert current capacity (mAh) to coulomb counter according to the
 | |
| 	 * formula: 1 mAh =3.6 coulomb.
 | |
| 	 */
 | |
| 	return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
 | |
| {
 | |
| 	struct nvmem_cell *cell;
 | |
| 	int calib_data, cal_4200mv;
 | |
| 	void *buf;
 | |
| 	size_t len;
 | |
| 
 | |
| 	cell = nvmem_cell_get(data->dev, "fgu_calib");
 | |
| 	if (IS_ERR(cell))
 | |
| 		return PTR_ERR(cell);
 | |
| 
 | |
| 	buf = nvmem_cell_read(cell, &len);
 | |
| 	nvmem_cell_put(cell);
 | |
| 
 | |
| 	if (IS_ERR(buf))
 | |
| 		return PTR_ERR(buf);
 | |
| 
 | |
| 	memcpy(&calib_data, buf, min(len, sizeof(u32)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the ADC value corresponding to 4200 mV from eFuse controller
 | |
| 	 * according to below formula. Then convert to ADC values corresponding
 | |
| 	 * to 1000 mV and 1000 mA.
 | |
| 	 */
 | |
| 	cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
 | |
| 	data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
 | |
| 	data->cur_1000ma_adc =
 | |
| 		DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
 | |
| 				  SC27XX_FGU_IDEAL_RESISTANCE);
 | |
| 
 | |
| 	kfree(buf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
 | |
| {
 | |
| 	struct power_supply_battery_info *info;
 | |
| 	struct power_supply_battery_ocv_table *table;
 | |
| 	int ret, delta_clbcnt, alarm_adc;
 | |
| 
 | |
| 	ret = power_supply_get_battery_info(data->battery, &info);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to get battery information\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	data->total_cap = info->charge_full_design_uah / 1000;
 | |
| 	data->max_volt = info->constant_charge_voltage_max_uv / 1000;
 | |
| 	data->internal_resist = info->factory_internal_resistance_uohm / 1000;
 | |
| 	data->min_volt = info->voltage_min_design_uv;
 | |
| 
 | |
| 	/*
 | |
| 	 * For SC27XX fuel gauge device, we only use one ocv-capacity
 | |
| 	 * table in normal temperature 20 Celsius.
 | |
| 	 */
 | |
| 	table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
 | |
| 	if (!table)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	data->cap_table = devm_kmemdup(data->dev, table,
 | |
| 				       data->table_len * sizeof(*table),
 | |
| 				       GFP_KERNEL);
 | |
| 	if (!data->cap_table) {
 | |
| 		power_supply_put_battery_info(data->battery, info);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
 | |
| 						      data->table_len,
 | |
| 						      data->min_volt);
 | |
| 	if (!data->alarm_cap)
 | |
| 		data->alarm_cap += 1;
 | |
| 
 | |
| 	data->resist_table_len = info->resist_table_size;
 | |
| 	if (data->resist_table_len > 0) {
 | |
| 		data->resist_table = devm_kmemdup(data->dev, info->resist_table,
 | |
| 						  data->resist_table_len *
 | |
| 						  sizeof(struct power_supply_resistance_temp_table),
 | |
| 						  GFP_KERNEL);
 | |
| 		if (!data->resist_table) {
 | |
| 			power_supply_put_battery_info(data->battery, info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	power_supply_put_battery_info(data->battery, info);
 | |
| 
 | |
| 	ret = sc27xx_fgu_calibration(data);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Enable the FGU module */
 | |
| 	ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
 | |
| 				 SC27XX_FGU_EN, SC27XX_FGU_EN);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to enable fgu\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable the FGU RTC clock to make it work */
 | |
| 	ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
 | |
| 				 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to enable fgu RTC clock\n");
 | |
| 		goto disable_fgu;
 | |
| 	}
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
 | |
| 				 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to clear interrupt status\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the voltage low overload threshold, which means when the battery
 | |
| 	 * voltage is lower than this threshold, the controller will generate
 | |
| 	 * one interrupt to notify.
 | |
| 	 */
 | |
| 	alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
 | |
| 				 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to set fgu low overload\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the coulomb counter delta threshold, that means when the coulomb
 | |
| 	 * counter change is multiples of the delta threshold, the controller
 | |
| 	 * will generate one interrupt to notify the users to update the battery
 | |
| 	 * capacity. Now we set the delta threshold as a counter value of 1%
 | |
| 	 * capacity.
 | |
| 	 */
 | |
| 	delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
 | |
| 				 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to set low delta coulomb counter\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
 | |
| 				 SC27XX_FGU_CLBCNT_MASK,
 | |
| 				 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to set high delta coulomb counter\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the boot battery capacity when system powers on, which is used to
 | |
| 	 * initialize the coulomb counter. After that, we can read the coulomb
 | |
| 	 * counter to measure the battery capacity.
 | |
| 	 */
 | |
| 	ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to get boot capacity\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert battery capacity to the corresponding initial coulomb counter
 | |
| 	 * and set into coulomb counter registers.
 | |
| 	 */
 | |
| 	data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
 | |
| 	ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to initialize coulomb counter\n");
 | |
| 		goto disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| disable_clk:
 | |
| 	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
 | |
| disable_fgu:
 | |
| 	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct device_node *np = dev->of_node;
 | |
| 	struct power_supply_config fgu_cfg = { };
 | |
| 	struct sc27xx_fgu_data *data;
 | |
| 	int ret, irq;
 | |
| 
 | |
| 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->regmap = dev_get_regmap(dev->parent, NULL);
 | |
| 	if (!data->regmap) {
 | |
| 		dev_err(dev, "failed to get regmap\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ret = device_property_read_u32(dev, "reg", &data->base);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to get fgu address\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = device_property_read_u32(&pdev->dev,
 | |
| 				       "sprd,calib-resistance-micro-ohms",
 | |
| 				       &data->calib_resist);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"failed to get fgu calibration resistance\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	data->channel = devm_iio_channel_get(dev, "bat-temp");
 | |
| 	if (IS_ERR(data->channel)) {
 | |
| 		dev_err(dev, "failed to get IIO channel\n");
 | |
| 		return PTR_ERR(data->channel);
 | |
| 	}
 | |
| 
 | |
| 	data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
 | |
| 	if (IS_ERR(data->charge_chan)) {
 | |
| 		dev_err(dev, "failed to get charge IIO channel\n");
 | |
| 		return PTR_ERR(data->charge_chan);
 | |
| 	}
 | |
| 
 | |
| 	data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
 | |
| 	if (IS_ERR(data->gpiod)) {
 | |
| 		dev_err(dev, "failed to get battery detection GPIO\n");
 | |
| 		return PTR_ERR(data->gpiod);
 | |
| 	}
 | |
| 
 | |
| 	ret = gpiod_get_value_cansleep(data->gpiod);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "failed to get gpio state\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	data->bat_present = !!ret;
 | |
| 	mutex_init(&data->lock);
 | |
| 	data->dev = dev;
 | |
| 	platform_set_drvdata(pdev, data);
 | |
| 
 | |
| 	fgu_cfg.drv_data = data;
 | |
| 	fgu_cfg.of_node = np;
 | |
| 	data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
 | |
| 						   &fgu_cfg);
 | |
| 	if (IS_ERR(data->battery)) {
 | |
| 		dev_err(dev, "failed to register power supply\n");
 | |
| 		return PTR_ERR(data->battery);
 | |
| 	}
 | |
| 
 | |
| 	ret = sc27xx_fgu_hw_init(data);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to initialize fgu hardware\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to add fgu disable action\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(data->dev, irq, NULL,
 | |
| 					sc27xx_fgu_interrupt,
 | |
| 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
 | |
| 					pdev->name, data);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to request fgu IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	irq = gpiod_to_irq(data->gpiod);
 | |
| 	if (irq < 0) {
 | |
| 		dev_err(dev, "failed to translate GPIO to IRQ\n");
 | |
| 		return irq;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(dev, irq, NULL,
 | |
| 					sc27xx_fgu_bat_detection,
 | |
| 					IRQF_ONESHOT | IRQF_TRIGGER_RISING |
 | |
| 					IRQF_TRIGGER_FALLING,
 | |
| 					pdev->name, data);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to request IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int sc27xx_fgu_resume(struct device *dev)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
 | |
| 				 SC27XX_FGU_LOW_OVERLOAD_INT |
 | |
| 				 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to disable fgu interrupts\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sc27xx_fgu_suspend(struct device *dev)
 | |
| {
 | |
| 	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
 | |
| 	int ret, status, ocv;
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_status(data, &status);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are charging, then no need to enable the FGU interrupts to
 | |
| 	 * adjust the battery capacity.
 | |
| 	 */
 | |
| 	if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
 | |
| 	    status != POWER_SUPPLY_STATUS_DISCHARGING)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
 | |
| 				 SC27XX_FGU_LOW_OVERLOAD_INT,
 | |
| 				 SC27XX_FGU_LOW_OVERLOAD_INT);
 | |
| 	if (ret) {
 | |
| 		dev_err(data->dev, "failed to enable low voltage interrupt\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
 | |
| 	if (ret)
 | |
| 		goto disable_int;
 | |
| 
 | |
| 	/*
 | |
| 	 * If current OCV is less than the minimum voltage, we should enable the
 | |
| 	 * coulomb counter threshold interrupt to notify events to adjust the
 | |
| 	 * battery capacity.
 | |
| 	 */
 | |
| 	if (ocv < data->min_volt) {
 | |
| 		ret = regmap_update_bits(data->regmap,
 | |
| 					 data->base + SC27XX_FGU_INT_EN,
 | |
| 					 SC27XX_FGU_CLBCNT_DELTA_INT,
 | |
| 					 SC27XX_FGU_CLBCNT_DELTA_INT);
 | |
| 		if (ret) {
 | |
| 			dev_err(data->dev,
 | |
| 				"failed to enable coulomb threshold int\n");
 | |
| 			goto disable_int;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| disable_int:
 | |
| 	regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
 | |
| 			   SC27XX_FGU_LOW_OVERLOAD_INT, 0);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
 | |
| };
 | |
| 
 | |
| static const struct of_device_id sc27xx_fgu_of_match[] = {
 | |
| 	{ .compatible = "sprd,sc2731-fgu", },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
 | |
| 
 | |
| static struct platform_driver sc27xx_fgu_driver = {
 | |
| 	.probe = sc27xx_fgu_probe,
 | |
| 	.driver = {
 | |
| 		.name = "sc27xx-fgu",
 | |
| 		.of_match_table = sc27xx_fgu_of_match,
 | |
| 		.pm = &sc27xx_fgu_pm_ops,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| module_platform_driver(sc27xx_fgu_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
 | |
| MODULE_LICENSE("GPL v2");
 |