1181 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1181 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Battery driver for CPCAP PMIC
 | |
|  *
 | |
|  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
 | |
|  *
 | |
|  * Some parts of the code based on earlier Motorola mapphone Linux kernel
 | |
|  * drivers:
 | |
|  *
 | |
|  * Copyright (C) 2009-2010 Motorola, Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/power_supply.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/nvmem-consumer.h>
 | |
| #include <linux/moduleparam.h>
 | |
| 
 | |
| #include <linux/iio/consumer.h>
 | |
| #include <linux/iio/types.h>
 | |
| #include <linux/mfd/motorola-cpcap.h>
 | |
| 
 | |
| /*
 | |
|  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
 | |
|  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
 | |
|  * to enable BATTDETEN, LOBAT and EOL features. We currently use
 | |
|  * LOBAT interrupts instead of EOL.
 | |
|  */
 | |
| #define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
 | |
| #define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
 | |
| #define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
 | |
| #define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
 | |
| #define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
 | |
| #define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
 | |
| #define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
 | |
| #define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
 | |
| #define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
 | |
| #define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
 | |
| 
 | |
| /*
 | |
|  * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
 | |
|  * coulomb counter registers rather than the mc13892 registers. Both twl6030
 | |
|  * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
 | |
|  * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
 | |
|  * the coulomb counter like cpcap does. So for now, we use the twl6030 style
 | |
|  * naming for the registers.
 | |
|  */
 | |
| #define CPCAP_REG_CCC1_ACTIVE_MODE1	BIT(4)	/* Update rate */
 | |
| #define CPCAP_REG_CCC1_ACTIVE_MODE0	BIT(3)	/* Update rate */
 | |
| #define CPCAP_REG_CCC1_AUTOCLEAR	BIT(2)	/* Resets sample registers */
 | |
| #define CPCAP_REG_CCC1_CAL_EN		BIT(1)	/* Clears after write in 1s */
 | |
| #define CPCAP_REG_CCC1_PAUSE		BIT(0)	/* Stop counters, allow write */
 | |
| #define CPCAP_REG_CCC1_RESET_MASK	(CPCAP_REG_CCC1_AUTOCLEAR | \
 | |
| 					 CPCAP_REG_CCC1_CAL_EN)
 | |
| 
 | |
| #define CPCAP_REG_CCCC2_RATE1		BIT(5)
 | |
| #define CPCAP_REG_CCCC2_RATE0		BIT(4)
 | |
| #define CPCAP_REG_CCCC2_ENABLE		BIT(3)
 | |
| 
 | |
| #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
 | |
| 
 | |
| #define CPCAP_BATTERY_EB41_HW4X_ID 0x9E
 | |
| #define CPCAP_BATTERY_BW8X_ID 0x98
 | |
| 
 | |
| enum {
 | |
| 	CPCAP_BATTERY_IIO_BATTDET,
 | |
| 	CPCAP_BATTERY_IIO_VOLTAGE,
 | |
| 	CPCAP_BATTERY_IIO_CHRG_CURRENT,
 | |
| 	CPCAP_BATTERY_IIO_BATT_CURRENT,
 | |
| 	CPCAP_BATTERY_IIO_NR,
 | |
| };
 | |
| 
 | |
| enum cpcap_battery_irq_action {
 | |
| 	CPCAP_BATTERY_IRQ_ACTION_NONE,
 | |
| 	CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
 | |
| 	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
 | |
| 	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
 | |
| };
 | |
| 
 | |
| struct cpcap_interrupt_desc {
 | |
| 	const char *name;
 | |
| 	struct list_head node;
 | |
| 	int irq;
 | |
| 	enum cpcap_battery_irq_action action;
 | |
| };
 | |
| 
 | |
| struct cpcap_battery_config {
 | |
| 	int cd_factor;
 | |
| 	struct power_supply_info info;
 | |
| 	struct power_supply_battery_info bat;
 | |
| };
 | |
| 
 | |
| struct cpcap_coulomb_counter_data {
 | |
| 	s32 sample;		/* 24 or 32 bits */
 | |
| 	s32 accumulator;
 | |
| 	s16 offset;		/* 9 bits */
 | |
| 	s16 integrator;		/* 13 or 16 bits */
 | |
| };
 | |
| 
 | |
| enum cpcap_battery_state {
 | |
| 	CPCAP_BATTERY_STATE_PREVIOUS,
 | |
| 	CPCAP_BATTERY_STATE_LATEST,
 | |
| 	CPCAP_BATTERY_STATE_EMPTY,
 | |
| 	CPCAP_BATTERY_STATE_FULL,
 | |
| 	CPCAP_BATTERY_STATE_NR,
 | |
| };
 | |
| 
 | |
| struct cpcap_battery_state_data {
 | |
| 	int voltage;
 | |
| 	int current_ua;
 | |
| 	int counter_uah;
 | |
| 	int temperature;
 | |
| 	ktime_t time;
 | |
| 	struct cpcap_coulomb_counter_data cc;
 | |
| };
 | |
| 
 | |
| struct cpcap_battery_ddata {
 | |
| 	struct device *dev;
 | |
| 	struct regmap *reg;
 | |
| 	struct list_head irq_list;
 | |
| 	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
 | |
| 	struct power_supply *psy;
 | |
| 	struct cpcap_battery_config config;
 | |
| 	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
 | |
| 	u32 cc_lsb;		/* μAms per LSB */
 | |
| 	atomic_t active;
 | |
| 	int charge_full;
 | |
| 	int status;
 | |
| 	u16 vendor;
 | |
| 	bool check_nvmem;
 | |
| 	unsigned int is_full:1;
 | |
| };
 | |
| 
 | |
| #define CPCAP_NO_BATTERY	-400
 | |
| 
 | |
| static bool ignore_temperature_probe;
 | |
| module_param(ignore_temperature_probe, bool, 0660);
 | |
| 
 | |
| static struct cpcap_battery_state_data *
 | |
| cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
 | |
| 			enum cpcap_battery_state state)
 | |
| {
 | |
| 	if (state >= CPCAP_BATTERY_STATE_NR)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &ddata->state[state];
 | |
| }
 | |
| 
 | |
| static struct cpcap_battery_state_data *
 | |
| cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
 | |
| }
 | |
| 
 | |
| static struct cpcap_battery_state_data *
 | |
| cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
 | |
| }
 | |
| 
 | |
| static struct cpcap_battery_state_data *
 | |
| cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
 | |
| }
 | |
| 
 | |
| static struct cpcap_battery_state_data *
 | |
| cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
 | |
| }
 | |
| 
 | |
| static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
 | |
| 					     int *value)
 | |
| {
 | |
| 	struct iio_channel *channel;
 | |
| 	int error;
 | |
| 
 | |
| 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
 | |
| 	error = iio_read_channel_processed(channel, value);
 | |
| 	if (error < 0) {
 | |
| 		if (!ignore_temperature_probe)
 | |
| 			dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 | |
| 		*value = CPCAP_NO_BATTERY;
 | |
| 
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	*value /= 100;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct iio_channel *channel;
 | |
| 	int error, value = 0;
 | |
| 
 | |
| 	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
 | |
| 	error = iio_read_channel_processed(channel, &value);
 | |
| 	if (error < 0) {
 | |
| 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value * 1000;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct iio_channel *channel;
 | |
| 	int error, value = 0;
 | |
| 
 | |
| 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
 | |
| 	error = iio_read_channel_processed(channel, &value);
 | |
| 	if (error < 0) {
 | |
| 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value * 1000;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
 | |
|  * @ddata: device driver data
 | |
|  * @sample: coulomb counter sample value
 | |
|  * @accumulator: coulomb counter integrator value
 | |
|  * @offset: coulomb counter offset value
 | |
|  * @divider: conversion divider
 | |
|  *
 | |
|  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
 | |
|  * function data_get_avg_curr_ua() and seem to be based on measured test
 | |
|  * results. It also has the following comment:
 | |
|  *
 | |
|  * Adjustment factors are applied here as a temp solution per the test
 | |
|  * results. Need to work out a formal solution for this adjustment.
 | |
|  *
 | |
|  * A coulomb counter for similar hardware seems to be documented in
 | |
|  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
 | |
|  * "10 Calculating Accumulated Current". We however follow what the
 | |
|  * Motorola mapphone Linux kernel is doing as there may be either a
 | |
|  * TI or ST coulomb counter in the PMIC.
 | |
|  */
 | |
| static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
 | |
| 				    s32 sample, s32 accumulator,
 | |
| 				    s16 offset, u32 divider)
 | |
| {
 | |
| 	s64 acc;
 | |
| 
 | |
| 	if (!divider)
 | |
| 		return 0;
 | |
| 
 | |
| 	acc = accumulator;
 | |
| 	acc -= (s64)sample * offset;
 | |
| 	acc *= ddata->cc_lsb;
 | |
| 	acc *= -1;
 | |
| 	acc = div_s64(acc, divider);
 | |
| 
 | |
| 	return acc;
 | |
| }
 | |
| 
 | |
| /* 3600000μAms = 1μAh */
 | |
| static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
 | |
| 				   s32 sample, s32 accumulator,
 | |
| 				   s16 offset)
 | |
| {
 | |
| 	return cpcap_battery_cc_raw_div(ddata, sample,
 | |
| 					accumulator, offset,
 | |
| 					3600000);
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
 | |
| 				  s32 sample, s32 accumulator,
 | |
| 				  s16 offset)
 | |
| {
 | |
| 	return cpcap_battery_cc_raw_div(ddata, sample,
 | |
| 					accumulator, offset,
 | |
| 					sample *
 | |
| 					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
 | |
|  * @ddata: device driver data
 | |
|  * @ccd: coulomb counter values
 | |
|  *
 | |
|  * Based on Motorola mapphone kernel function data_read_regs().
 | |
|  * Looking at the registers, the coulomb counter seems similar to
 | |
|  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
 | |
|  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
 | |
|  *
 | |
|  * Note that swca095a.pdf instructs to stop the coulomb counter
 | |
|  * before reading to avoid values changing. Motorola mapphone
 | |
|  * Linux kernel does not do it, so let's assume they've verified
 | |
|  * the data produced is correct.
 | |
|  */
 | |
| static int
 | |
| cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
 | |
| 			       struct cpcap_coulomb_counter_data *ccd)
 | |
| {
 | |
| 	u16 buf[7];	/* CPCAP_REG_CCS1 to CCI */
 | |
| 	int error;
 | |
| 
 | |
| 	ccd->sample = 0;
 | |
| 	ccd->accumulator = 0;
 | |
| 	ccd->offset = 0;
 | |
| 	ccd->integrator = 0;
 | |
| 
 | |
| 	/* Read coulomb counter register range */
 | |
| 	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
 | |
| 				 buf, ARRAY_SIZE(buf));
 | |
| 	if (error)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Sample value CPCAP_REG_CCS1 & 2 */
 | |
| 	ccd->sample = (buf[1] & 0x0fff) << 16;
 | |
| 	ccd->sample |= buf[0];
 | |
| 	if (ddata->vendor == CPCAP_VENDOR_TI)
 | |
| 		ccd->sample = sign_extend32(24, ccd->sample);
 | |
| 
 | |
| 	/* Accumulator value CPCAP_REG_CCA1 & 2 */
 | |
| 	ccd->accumulator = ((s16)buf[3]) << 16;
 | |
| 	ccd->accumulator |= buf[2];
 | |
| 
 | |
| 	/*
 | |
| 	 * Coulomb counter calibration offset is CPCAP_REG_CCM,
 | |
| 	 * REG_CCO seems unused
 | |
| 	 */
 | |
| 	ccd->offset = buf[4];
 | |
| 	ccd->offset = sign_extend32(ccd->offset, 9);
 | |
| 
 | |
| 	/* Integrator register CPCAP_REG_CCI */
 | |
| 	if (ddata->vendor == CPCAP_VENDOR_TI)
 | |
| 		ccd->integrator = sign_extend32(buf[6], 13);
 | |
| 	else
 | |
| 		ccd->integrator = (s16)buf[6];
 | |
| 
 | |
| 	return cpcap_battery_cc_to_uah(ddata,
 | |
| 				       ccd->sample,
 | |
| 				       ccd->accumulator,
 | |
| 				       ccd->offset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Based on the values from Motorola mapphone Linux kernel for the
 | |
|  * stock Droid 4 battery eb41. In the Motorola mapphone Linux
 | |
|  * kernel tree the value for pm_cd_factor is passed to the kernel
 | |
|  * via device tree. If it turns out to be something device specific
 | |
|  * we can consider that too later. These values are also fine for
 | |
|  * Bionic's hw4x.
 | |
|  *
 | |
|  * And looking at the battery full and shutdown values for the stock
 | |
|  * kernel on droid 4, full is 4351000 and software initiates shutdown
 | |
|  * at 3078000. The device will die around 2743000.
 | |
|  */
 | |
| static const struct cpcap_battery_config cpcap_battery_eb41_data = {
 | |
| 	.cd_factor = 0x3cc,
 | |
| 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
 | |
| 	.info.voltage_max_design = 4351000,
 | |
| 	.info.voltage_min_design = 3100000,
 | |
| 	.info.charge_full_design = 1740000,
 | |
| 	.bat.constant_charge_voltage_max_uv = 4200000,
 | |
| };
 | |
| 
 | |
| /* Values for the extended Droid Bionic battery bw8x. */
 | |
| static const struct cpcap_battery_config cpcap_battery_bw8x_data = {
 | |
| 	.cd_factor = 0x3cc,
 | |
| 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
 | |
| 	.info.voltage_max_design = 4200000,
 | |
| 	.info.voltage_min_design = 3200000,
 | |
| 	.info.charge_full_design = 2760000,
 | |
| 	.bat.constant_charge_voltage_max_uv = 4200000,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Safe values for any lipo battery likely to fit into a mapphone
 | |
|  * battery bay.
 | |
|  */
 | |
| static const struct cpcap_battery_config cpcap_battery_unkown_data = {
 | |
| 	.cd_factor = 0x3cc,
 | |
| 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
 | |
| 	.info.voltage_max_design = 4200000,
 | |
| 	.info.voltage_min_design = 3200000,
 | |
| 	.info.charge_full_design = 3000000,
 | |
| 	.bat.constant_charge_voltage_max_uv = 4200000,
 | |
| };
 | |
| 
 | |
| static int cpcap_battery_match_nvmem(struct device *dev, const void *data)
 | |
| {
 | |
| 	if (strcmp(dev_name(dev), "89-500029ba0f73") == 0)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static void cpcap_battery_detect_battery_type(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct nvmem_device *nvmem;
 | |
| 	u8 battery_id = 0;
 | |
| 
 | |
| 	ddata->check_nvmem = false;
 | |
| 
 | |
| 	nvmem = nvmem_device_find(NULL, &cpcap_battery_match_nvmem);
 | |
| 	if (IS_ERR_OR_NULL(nvmem)) {
 | |
| 		ddata->check_nvmem = true;
 | |
| 		dev_info_once(ddata->dev, "Can not find battery nvmem device. Assuming generic lipo battery\n");
 | |
| 	} else if (nvmem_device_read(nvmem, 2, 1, &battery_id) < 0) {
 | |
| 		battery_id = 0;
 | |
| 		ddata->check_nvmem = true;
 | |
| 		dev_warn(ddata->dev, "Can not read battery nvmem device. Assuming generic lipo battery\n");
 | |
| 	}
 | |
| 
 | |
| 	switch (battery_id) {
 | |
| 	case CPCAP_BATTERY_EB41_HW4X_ID:
 | |
| 		ddata->config = cpcap_battery_eb41_data;
 | |
| 		break;
 | |
| 	case CPCAP_BATTERY_BW8X_ID:
 | |
| 		ddata->config = cpcap_battery_bw8x_data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ddata->config = cpcap_battery_unkown_data;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
 | |
|  * @ddata: cpcap battery driver device data
 | |
|  */
 | |
| static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	int value, acc, error;
 | |
| 	s32 sample;
 | |
| 	s16 offset;
 | |
| 
 | |
| 	/* Coulomb counter integrator */
 | |
| 	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (ddata->vendor == CPCAP_VENDOR_TI) {
 | |
| 		acc = sign_extend32(value, 13);
 | |
| 		sample = 1;
 | |
| 	} else {
 | |
| 		acc = (s16)value;
 | |
| 		sample = 4;
 | |
| 	}
 | |
| 
 | |
| 	/* Coulomb counter calibration offset  */
 | |
| 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	offset = sign_extend32(value, 9);
 | |
| 
 | |
| 	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
 | |
| 					    int *val)
 | |
| {
 | |
| 	union power_supply_propval prop;
 | |
| 	struct power_supply *charger;
 | |
| 	int error;
 | |
| 
 | |
| 	charger = power_supply_get_by_name("usb");
 | |
| 	if (!charger)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
 | |
| 					  &prop);
 | |
| 	if (error)
 | |
| 		*val = POWER_SUPPLY_STATUS_UNKNOWN;
 | |
| 	else
 | |
| 		*val = prop.intval;
 | |
| 
 | |
| 	power_supply_put(charger);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
 | |
| 	unsigned int vfull;
 | |
| 	int error, val;
 | |
| 
 | |
| 	error = cpcap_battery_get_charger_status(ddata, &val);
 | |
| 	if (!error) {
 | |
| 		switch (val) {
 | |
| 		case POWER_SUPPLY_STATUS_DISCHARGING:
 | |
| 			dev_dbg(ddata->dev, "charger disconnected\n");
 | |
| 			ddata->is_full = 0;
 | |
| 			break;
 | |
| 		case POWER_SUPPLY_STATUS_FULL:
 | |
| 			dev_dbg(ddata->dev, "charger full status\n");
 | |
| 			ddata->is_full = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The full battery voltage here can be inaccurate, it's used just to
 | |
| 	 * filter out any trickle charging events. We clear the is_full status
 | |
| 	 * on charger disconnect above anyways.
 | |
| 	 */
 | |
| 	vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
 | |
| 
 | |
| 	if (ddata->is_full && state->voltage < vfull)
 | |
| 		ddata->is_full = 0;
 | |
| 
 | |
| 	return ddata->is_full;
 | |
| }
 | |
| 
 | |
| static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
 | |
| 	static bool is_low;
 | |
| 
 | |
| 	if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
 | |
| 		is_low = true;
 | |
| 	else
 | |
| 		is_low = false;
 | |
| 
 | |
| 	return is_low;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	struct cpcap_battery_state_data state, *latest, *previous,
 | |
| 					*empty, *full;
 | |
| 	ktime_t now;
 | |
| 	int error;
 | |
| 
 | |
| 	memset(&state, 0, sizeof(state));
 | |
| 	now = ktime_get();
 | |
| 
 | |
| 	latest = cpcap_battery_latest(ddata);
 | |
| 	if (latest) {
 | |
| 		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
 | |
| 
 | |
| 		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
 | |
| 			return delta_ms;
 | |
| 	}
 | |
| 
 | |
| 	state.time = now;
 | |
| 	state.voltage = cpcap_battery_get_voltage(ddata);
 | |
| 	state.current_ua = cpcap_battery_get_current(ddata);
 | |
| 	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
 | |
| 
 | |
| 	error = cpcap_charger_battery_temperature(ddata,
 | |
| 						  &state.temperature);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	previous = cpcap_battery_previous(ddata);
 | |
| 	memcpy(previous, latest, sizeof(*previous));
 | |
| 	memcpy(latest, &state, sizeof(*latest));
 | |
| 
 | |
| 	if (cpcap_battery_full(ddata)) {
 | |
| 		full = cpcap_battery_get_full(ddata);
 | |
| 		memcpy(full, latest, sizeof(*full));
 | |
| 
 | |
| 		empty = cpcap_battery_get_empty(ddata);
 | |
| 		if (empty->voltage && empty->voltage != -1) {
 | |
| 			empty->voltage = -1;
 | |
| 			ddata->charge_full =
 | |
| 				empty->counter_uah - full->counter_uah;
 | |
| 		} else if (ddata->charge_full) {
 | |
| 			empty->voltage = -1;
 | |
| 			empty->counter_uah =
 | |
| 				full->counter_uah + ddata->charge_full;
 | |
| 		}
 | |
| 	} else if (cpcap_battery_low(ddata)) {
 | |
| 		empty = cpcap_battery_get_empty(ddata);
 | |
| 		memcpy(empty, latest, sizeof(*empty));
 | |
| 
 | |
| 		full = cpcap_battery_get_full(ddata);
 | |
| 		if (full->voltage) {
 | |
| 			full->voltage = 0;
 | |
| 			ddata->charge_full =
 | |
| 				empty->counter_uah - full->counter_uah;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update battery status when cpcap-charger calls power_supply_changed().
 | |
|  * This allows us to detect battery full condition before the charger
 | |
|  * disconnects.
 | |
|  */
 | |
| static void cpcap_battery_external_power_changed(struct power_supply *psy)
 | |
| {
 | |
| 	union power_supply_propval prop;
 | |
| 
 | |
| 	power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
 | |
| }
 | |
| 
 | |
| static enum power_supply_property cpcap_battery_props[] = {
 | |
| 	POWER_SUPPLY_PROP_STATUS,
 | |
| 	POWER_SUPPLY_PROP_PRESENT,
 | |
| 	POWER_SUPPLY_PROP_TECHNOLOGY,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_AVG,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_NOW,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_FULL,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_NOW,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
 | |
| 	POWER_SUPPLY_PROP_POWER_NOW,
 | |
| 	POWER_SUPPLY_PROP_POWER_AVG,
 | |
| 	POWER_SUPPLY_PROP_CAPACITY,
 | |
| 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 | |
| 	POWER_SUPPLY_PROP_SCOPE,
 | |
| 	POWER_SUPPLY_PROP_TEMP,
 | |
| };
 | |
| 
 | |
| static int cpcap_battery_get_property(struct power_supply *psy,
 | |
| 				      enum power_supply_property psp,
 | |
| 				      union power_supply_propval *val)
 | |
| {
 | |
| 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
 | |
| 	struct cpcap_battery_state_data *latest, *previous, *empty;
 | |
| 	u32 sample;
 | |
| 	s32 accumulator;
 | |
| 	int cached;
 | |
| 	s64 tmp;
 | |
| 
 | |
| 	cached = cpcap_battery_update_status(ddata);
 | |
| 	if (cached < 0)
 | |
| 		return cached;
 | |
| 
 | |
| 	latest = cpcap_battery_latest(ddata);
 | |
| 	previous = cpcap_battery_previous(ddata);
 | |
| 
 | |
| 	if (ddata->check_nvmem)
 | |
| 		cpcap_battery_detect_battery_type(ddata);
 | |
| 
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_PRESENT:
 | |
| 		if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
 | |
| 			val->intval = 1;
 | |
| 		else
 | |
| 			val->intval = 0;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_STATUS:
 | |
| 		if (cpcap_battery_full(ddata)) {
 | |
| 			val->intval = POWER_SUPPLY_STATUS_FULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
 | |
| 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
 | |
| 		else
 | |
| 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_TECHNOLOGY:
 | |
| 		val->intval = ddata->config.info.technology;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
 | |
| 		val->intval = cpcap_battery_get_voltage(ddata);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
 | |
| 		val->intval = ddata->config.info.voltage_max_design;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
 | |
| 		val->intval = ddata->config.info.voltage_min_design;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
 | |
| 		val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_AVG:
 | |
| 		sample = latest->cc.sample - previous->cc.sample;
 | |
| 		if (!sample) {
 | |
| 			val->intval = cpcap_battery_cc_get_avg_current(ddata);
 | |
| 			break;
 | |
| 		}
 | |
| 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
 | |
| 		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
 | |
| 						     accumulator,
 | |
| 						     latest->cc.offset);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_NOW:
 | |
| 		val->intval = latest->current_ua;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
 | |
| 		val->intval = latest->counter_uah;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_POWER_NOW:
 | |
| 		tmp = (latest->voltage / 10000) * latest->current_ua;
 | |
| 		val->intval = div64_s64(tmp, 100);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_POWER_AVG:
 | |
| 		sample = latest->cc.sample - previous->cc.sample;
 | |
| 		if (!sample) {
 | |
| 			tmp = cpcap_battery_cc_get_avg_current(ddata);
 | |
| 			tmp *= (latest->voltage / 10000);
 | |
| 			val->intval = div64_s64(tmp, 100);
 | |
| 			break;
 | |
| 		}
 | |
| 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
 | |
| 		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
 | |
| 					     latest->cc.offset);
 | |
| 		tmp *= ((latest->voltage + previous->voltage) / 20000);
 | |
| 		val->intval = div64_s64(tmp, 100);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY:
 | |
| 		empty = cpcap_battery_get_empty(ddata);
 | |
| 		if (!empty->voltage || !ddata->charge_full)
 | |
| 			return -ENODATA;
 | |
| 		/* (ddata->charge_full / 200) is needed for rounding */
 | |
| 		val->intval = empty->counter_uah - latest->counter_uah +
 | |
| 			ddata->charge_full / 200;
 | |
| 		val->intval = clamp(val->intval, 0, ddata->charge_full);
 | |
| 		val->intval = val->intval * 100 / ddata->charge_full;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
 | |
| 		if (cpcap_battery_full(ddata))
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
 | |
| 		else if (latest->voltage >= 3750000)
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
 | |
| 		else if (latest->voltage >= 3300000)
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
 | |
| 		else if (latest->voltage > 3100000)
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
 | |
| 		else if (latest->voltage <= 3100000)
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
 | |
| 		else
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_NOW:
 | |
| 		empty = cpcap_battery_get_empty(ddata);
 | |
| 		if (!empty->voltage)
 | |
| 			return -ENODATA;
 | |
| 		val->intval = empty->counter_uah - latest->counter_uah;
 | |
| 		if (val->intval < 0) {
 | |
| 			/* Assume invalid config if CHARGE_NOW is -20% */
 | |
| 			if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
 | |
| 				empty->voltage = 0;
 | |
| 				ddata->charge_full = 0;
 | |
| 				return -ENODATA;
 | |
| 			}
 | |
| 			val->intval = 0;
 | |
| 		} else if (ddata->charge_full && ddata->charge_full < val->intval) {
 | |
| 			/* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
 | |
| 			if (val->intval > (6*ddata->charge_full)/5) {
 | |
| 				empty->voltage = 0;
 | |
| 				ddata->charge_full = 0;
 | |
| 				return -ENODATA;
 | |
| 			}
 | |
| 			val->intval = ddata->charge_full;
 | |
| 		}
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL:
 | |
| 		if (!ddata->charge_full)
 | |
| 			return -ENODATA;
 | |
| 		val->intval = ddata->charge_full;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
 | |
| 		val->intval = ddata->config.info.charge_full_design;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_SCOPE:
 | |
| 		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_TEMP:
 | |
| 		if (ignore_temperature_probe)
 | |
| 			return -ENODATA;
 | |
| 		val->intval = latest->temperature;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
 | |
| 					int const_charge_voltage)
 | |
| {
 | |
| 	union power_supply_propval prop;
 | |
| 	union power_supply_propval val;
 | |
| 	struct power_supply *charger;
 | |
| 	int error;
 | |
| 
 | |
| 	charger = power_supply_get_by_name("usb");
 | |
| 	if (!charger)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	error = power_supply_get_property(charger,
 | |
| 				POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
 | |
| 				&prop);
 | |
| 	if (error)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	/* Allow charger const voltage lower than battery const voltage */
 | |
| 	if (const_charge_voltage > prop.intval)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	val.intval = const_charge_voltage;
 | |
| 
 | |
| 	error = power_supply_set_property(charger,
 | |
| 			POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
 | |
| 			&val);
 | |
| out_put:
 | |
| 	power_supply_put(charger);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_set_property(struct power_supply *psy,
 | |
| 				      enum power_supply_property psp,
 | |
| 				      const union power_supply_propval *val)
 | |
| {
 | |
| 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
 | |
| 		if (val->intval < ddata->config.info.voltage_min_design)
 | |
| 			return -EINVAL;
 | |
| 		if (val->intval > ddata->config.info.voltage_max_design)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
 | |
| 
 | |
| 		return cpcap_battery_update_charger(ddata, val->intval);
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL:
 | |
| 		if (val->intval < 0)
 | |
| 			return -EINVAL;
 | |
| 		if (val->intval > (6*ddata->config.info.charge_full_design)/5)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ddata->charge_full = val->intval;
 | |
| 
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_property_is_writeable(struct power_supply *psy,
 | |
| 					       enum power_supply_property psp)
 | |
| {
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL:
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
 | |
| {
 | |
| 	struct cpcap_battery_ddata *ddata = data;
 | |
| 	struct cpcap_battery_state_data *latest;
 | |
| 	struct cpcap_interrupt_desc *d;
 | |
| 
 | |
| 	if (!atomic_read(&ddata->active))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	list_for_each_entry(d, &ddata->irq_list, node) {
 | |
| 		if (irq == d->irq)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (list_entry_is_head(d, &ddata->irq_list, node))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	latest = cpcap_battery_latest(ddata);
 | |
| 
 | |
| 	switch (d->action) {
 | |
| 	case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
 | |
| 		dev_info(ddata->dev, "Coulomb counter calibration done\n");
 | |
| 		break;
 | |
| 	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
 | |
| 		if (latest->current_ua >= 0)
 | |
| 			dev_warn(ddata->dev, "Battery low at %imV!\n",
 | |
| 				latest->voltage / 1000);
 | |
| 		break;
 | |
| 	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
 | |
| 		if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
 | |
| 			dev_emerg(ddata->dev,
 | |
| 				  "Battery empty at %imV, powering off\n",
 | |
| 				  latest->voltage / 1000);
 | |
| 			orderly_poweroff(true);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	power_supply_changed(ddata->psy);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_init_irq(struct platform_device *pdev,
 | |
| 				  struct cpcap_battery_ddata *ddata,
 | |
| 				  const char *name)
 | |
| {
 | |
| 	struct cpcap_interrupt_desc *d;
 | |
| 	int irq, error;
 | |
| 
 | |
| 	irq = platform_get_irq_byname(pdev, name);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
 | |
| 					  cpcap_battery_irq_thread,
 | |
| 					  IRQF_SHARED | IRQF_ONESHOT,
 | |
| 					  name, ddata);
 | |
| 	if (error) {
 | |
| 		dev_err(ddata->dev, "could not get irq %s: %i\n",
 | |
| 			name, error);
 | |
| 
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
 | |
| 	if (!d)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	d->name = name;
 | |
| 	d->irq = irq;
 | |
| 
 | |
| 	if (!strncmp(name, "cccal", 5))
 | |
| 		d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
 | |
| 	else if (!strncmp(name, "lowbph", 6))
 | |
| 		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
 | |
| 	else if (!strncmp(name, "lowbpl", 6))
 | |
| 		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
 | |
| 
 | |
| 	list_add(&d->node, &ddata->irq_list);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_init_interrupts(struct platform_device *pdev,
 | |
| 					 struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	static const char * const cpcap_battery_irqs[] = {
 | |
| 		"eol", "lowbph", "lowbpl",
 | |
| 		"chrgcurr1", "battdetb"
 | |
| 	};
 | |
| 	int i, error;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
 | |
| 		error = cpcap_battery_init_irq(pdev, ddata,
 | |
| 					       cpcap_battery_irqs[i]);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable calibration interrupt if already available in dts */
 | |
| 	cpcap_battery_init_irq(pdev, ddata, "cccal");
 | |
| 
 | |
| 	/* Enable low battery interrupts for 3.3V high and 3.1V low */
 | |
| 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
 | |
| 				   0xffff,
 | |
| 				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	const char * const names[CPCAP_BATTERY_IIO_NR] = {
 | |
| 		"battdetb", "battp", "chg_isense", "batti",
 | |
| 	};
 | |
| 	int error, i;
 | |
| 
 | |
| 	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
 | |
| 		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
 | |
| 							  names[i]);
 | |
| 		if (IS_ERR(ddata->channels[i])) {
 | |
| 			error = PTR_ERR(ddata->channels[i]);
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 
 | |
| 		if (!ddata->channels[i]->indio_dev) {
 | |
| 			error = -ENXIO;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	return dev_err_probe(ddata->dev, error,
 | |
| 			     "could not initialize VBUS or ID IIO\n");
 | |
| }
 | |
| 
 | |
| /* Calibrate coulomb counter */
 | |
| static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
 | |
| {
 | |
| 	int error, ccc1, value;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	timeout = jiffies + msecs_to_jiffies(6000);
 | |
| 
 | |
| 	/* Start calibration */
 | |
| 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
 | |
| 				   0xffff,
 | |
| 				   CPCAP_REG_CCC1_CAL_EN);
 | |
| 	if (error)
 | |
| 		goto restore;
 | |
| 
 | |
| 	while (time_before(jiffies, timeout)) {
 | |
| 		error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
 | |
| 		if (error)
 | |
| 			goto restore;
 | |
| 
 | |
| 		if (!(value & CPCAP_REG_CCC1_CAL_EN))
 | |
| 			break;
 | |
| 
 | |
| 		error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
 | |
| 		if (error)
 | |
| 			goto restore;
 | |
| 
 | |
| 		msleep(300);
 | |
| 	}
 | |
| 
 | |
| 	/* Read calibration offset from CCM */
 | |
| 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
 | |
| 	if (error)
 | |
| 		goto restore;
 | |
| 
 | |
| 	dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
 | |
| 
 | |
| restore:
 | |
| 	if (error)
 | |
| 		dev_err(ddata->dev, "%s: error %i\n", __func__, error);
 | |
| 
 | |
| 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
 | |
| 				   0xffff, ccc1);
 | |
| 	if (error)
 | |
| 		dev_err(ddata->dev, "%s: restore error %i\n",
 | |
| 			__func__, error);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static const struct of_device_id cpcap_battery_id_table[] = {
 | |
| 	{
 | |
| 		.compatible = "motorola,cpcap-battery",
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
 | |
| #endif
 | |
| 
 | |
| static const struct power_supply_desc cpcap_charger_battery_desc = {
 | |
| 	.name		= "battery",
 | |
| 	.type		= POWER_SUPPLY_TYPE_BATTERY,
 | |
| 	.properties	= cpcap_battery_props,
 | |
| 	.num_properties	= ARRAY_SIZE(cpcap_battery_props),
 | |
| 	.get_property	= cpcap_battery_get_property,
 | |
| 	.set_property	= cpcap_battery_set_property,
 | |
| 	.property_is_writeable = cpcap_battery_property_is_writeable,
 | |
| 	.external_power_changed = cpcap_battery_external_power_changed,
 | |
| };
 | |
| 
 | |
| static int cpcap_battery_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct cpcap_battery_ddata *ddata;
 | |
| 	struct power_supply_config psy_cfg = {};
 | |
| 	int error;
 | |
| 
 | |
| 	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
 | |
| 	if (!ddata)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cpcap_battery_detect_battery_type(ddata);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ddata->irq_list);
 | |
| 	ddata->dev = &pdev->dev;
 | |
| 
 | |
| 	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
 | |
| 	if (!ddata->reg)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	switch (ddata->vendor) {
 | |
| 	case CPCAP_VENDOR_ST:
 | |
| 		ddata->cc_lsb = 95374;	/* μAms per LSB */
 | |
| 		break;
 | |
| 	case CPCAP_VENDOR_TI:
 | |
| 		ddata->cc_lsb = 91501;	/* μAms per LSB */
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, ddata);
 | |
| 
 | |
| 	error = cpcap_battery_init_interrupts(pdev, ddata);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = cpcap_battery_init_iio(ddata);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	psy_cfg.of_node = pdev->dev.of_node;
 | |
| 	psy_cfg.drv_data = ddata;
 | |
| 
 | |
| 	ddata->psy = devm_power_supply_register(ddata->dev,
 | |
| 						&cpcap_charger_battery_desc,
 | |
| 						&psy_cfg);
 | |
| 	error = PTR_ERR_OR_ZERO(ddata->psy);
 | |
| 	if (error) {
 | |
| 		dev_err(ddata->dev, "failed to register power supply\n");
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&ddata->active, 1);
 | |
| 
 | |
| 	error = cpcap_battery_calibrate(ddata);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpcap_battery_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
 | |
| 	int error;
 | |
| 
 | |
| 	atomic_set(&ddata->active, 0);
 | |
| 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
 | |
| 				   0xffff, 0);
 | |
| 	if (error)
 | |
| 		dev_err(&pdev->dev, "could not disable: %i\n", error);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver cpcap_battery_driver = {
 | |
| 	.driver	= {
 | |
| 		.name		= "cpcap_battery",
 | |
| 		.of_match_table = of_match_ptr(cpcap_battery_id_table),
 | |
| 	},
 | |
| 	.probe	= cpcap_battery_probe,
 | |
| 	.remove = cpcap_battery_remove,
 | |
| };
 | |
| module_platform_driver(cpcap_battery_driver);
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
 | |
| MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
 |