458 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 *  cx18 ADEC audio functions
 | 
						|
 *
 | 
						|
 *  Derived from cx25840-audio.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
 | 
						|
 *  Copyright (C) 2008  Andy Walls <awalls@md.metrocast.net>
 | 
						|
 */
 | 
						|
 | 
						|
#include "cx18-driver.h"
 | 
						|
 | 
						|
static int set_audclk_freq(struct cx18 *cx, u32 freq)
 | 
						|
{
 | 
						|
	struct cx18_av_state *state = &cx->av_state;
 | 
						|
 | 
						|
	if (freq != 32000 && freq != 44100 && freq != 48000)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The PLL parameters are based on the external crystal frequency that
 | 
						|
	 * would ideally be:
 | 
						|
	 *
 | 
						|
	 * NTSC Color subcarrier freq * 8 =
 | 
						|
	 *	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
 | 
						|
	 *
 | 
						|
	 * The accidents of history and rationale that explain from where this
 | 
						|
	 * combination of magic numbers originate can be found in:
 | 
						|
	 *
 | 
						|
	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
 | 
						|
	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
 | 
						|
	 *
 | 
						|
	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
 | 
						|
	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
 | 
						|
	 *
 | 
						|
	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
 | 
						|
	 * frequency that matters, only that all parts of the driver and
 | 
						|
	 * firmware are using the same value (close to the ideal value).
 | 
						|
	 *
 | 
						|
	 * Since I have a strong suspicion that, if the firmware ever assumes a
 | 
						|
	 * crystal value at all, it will assume 28.636360 MHz, the crystal
 | 
						|
	 * freq used in calculations in this driver will be:
 | 
						|
	 *
 | 
						|
	 *	xtal_freq = 28.636360 MHz
 | 
						|
	 *
 | 
						|
	 * an error of less than 0.13 ppm which is way, way better than any off
 | 
						|
	 * the shelf crystal will have for accuracy anyway.
 | 
						|
	 *
 | 
						|
	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimize error.
 | 
						|
	 *
 | 
						|
	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
 | 
						|
	 * investigation, experimentation, testing, and suggested solutions of
 | 
						|
	 * audio/video sync problems with SVideo and CVBS captures.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		switch (freq) {
 | 
						|
		case 32000:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x200d040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x176740c */
 | 
						|
			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x0176740c);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x0801f77f);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x0801f77f);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x0801f77f);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x60);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x11202fff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
 | 
						|
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
 | 
						|
			break;
 | 
						|
 | 
						|
		case 44100:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x180e040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x062a1f2 */
 | 
						|
			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x0062a1f2);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x08016d59);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x08016d59);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x08016d59);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x58);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x112092ff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
 | 
						|
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
 | 
						|
			break;
 | 
						|
 | 
						|
		case 48000:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x160e040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x05227ad */
 | 
						|
			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x005227ad);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x08014faa);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x08014faa);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x08014faa);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x56);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x11205fff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
 | 
						|
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa01193f8);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		switch (freq) {
 | 
						|
		case 32000:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x300d040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x176740c */
 | 
						|
			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x0176740c);
 | 
						|
 | 
						|
			/* src1_ctl */
 | 
						|
			/* 0x1.0000 = 32000/32000 */
 | 
						|
			cx18_av_write4(cx, 0x8f8, 0x08010000);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x2.0000 = 2 * (32000/32000) */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x08020000);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x08020000);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x08020000);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x70);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x11201fff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
 | 
						|
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
 | 
						|
			break;
 | 
						|
 | 
						|
		case 44100:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x240e040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x062a1f2 */
 | 
						|
			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x0062a1f2);
 | 
						|
 | 
						|
			/* src1_ctl */
 | 
						|
			/* 0x1.60cd = 44100/32000 */
 | 
						|
			cx18_av_write4(cx, 0x8f8, 0x080160cd);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x1.7385 = 2 * (32000/44100) */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x08017385);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x08017385);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x08017385);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x64);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x112061ff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
 | 
						|
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
 | 
						|
			break;
 | 
						|
 | 
						|
		case 48000:
 | 
						|
			/*
 | 
						|
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
 | 
						|
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x108, 0x200d040f);
 | 
						|
 | 
						|
			/* VID_PLL Fraction = 0x2be2fe */
 | 
						|
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
 | 
						|
			cx18_av_write4(cx, 0x10c, 0x002be2fe);
 | 
						|
 | 
						|
			/* AUX_PLL Fraction = 0x176740c */
 | 
						|
			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
 | 
						|
			cx18_av_write4(cx, 0x110, 0x0176740c);
 | 
						|
 | 
						|
			/* src1_ctl */
 | 
						|
			/* 0x1.8000 = 48000/32000 */
 | 
						|
			cx18_av_write4(cx, 0x8f8, 0x08018000);
 | 
						|
 | 
						|
			/* src3/4/6_ctl */
 | 
						|
			/* 0x1.5555 = 2 * (32000/48000) */
 | 
						|
			cx18_av_write4(cx, 0x900, 0x08015555);
 | 
						|
			cx18_av_write4(cx, 0x904, 0x08015555);
 | 
						|
			cx18_av_write4(cx, 0x90c, 0x08015555);
 | 
						|
 | 
						|
			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
 | 
						|
			cx18_av_write(cx, 0x127, 0x60);
 | 
						|
 | 
						|
			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
 | 
						|
			cx18_av_write4(cx, 0x12c, 0x11203fff);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * EN_AV_LOCK = 0
 | 
						|
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
 | 
						|
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
 | 
						|
			 */
 | 
						|
			cx18_av_write4(cx, 0x128, 0xa01193f8);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	state->audclk_freq = freq;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void cx18_av_audio_set_path(struct cx18 *cx)
 | 
						|
{
 | 
						|
	struct cx18_av_state *state = &cx->av_state;
 | 
						|
	u8 v;
 | 
						|
 | 
						|
	/* stop microcontroller */
 | 
						|
	v = cx18_av_read(cx, 0x803) & ~0x10;
 | 
						|
	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
 | 
						|
	/* assert soft reset */
 | 
						|
	v = cx18_av_read(cx, 0x810) | 0x01;
 | 
						|
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
 | 
						|
 | 
						|
	/* Mute everything to prevent the PFFT! */
 | 
						|
	cx18_av_write(cx, 0x8d3, 0x1f);
 | 
						|
 | 
						|
	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		/* Set Path1 to Serial Audio Input */
 | 
						|
		cx18_av_write4(cx, 0x8d0, 0x01011012);
 | 
						|
 | 
						|
		/* The microcontroller should not be started for the
 | 
						|
		 * non-tuner inputs: autodetection is specific for
 | 
						|
		 * TV audio. */
 | 
						|
	} else {
 | 
						|
		/* Set Path1 to Analog Demod Main Channel */
 | 
						|
		cx18_av_write4(cx, 0x8d0, 0x1f063870);
 | 
						|
	}
 | 
						|
 | 
						|
	set_audclk_freq(cx, state->audclk_freq);
 | 
						|
 | 
						|
	/* deassert soft reset */
 | 
						|
	v = cx18_av_read(cx, 0x810) & ~0x01;
 | 
						|
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
 | 
						|
 | 
						|
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		/* When the microcontroller detects the
 | 
						|
		 * audio format, it will unmute the lines */
 | 
						|
		v = cx18_av_read(cx, 0x803) | 0x10;
 | 
						|
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_volume(struct cx18 *cx, int volume)
 | 
						|
{
 | 
						|
	/* First convert the volume to msp3400 values (0-127) */
 | 
						|
	int vol = volume >> 9;
 | 
						|
	/* now scale it up to cx18_av values
 | 
						|
	 * -114dB to -96dB maps to 0
 | 
						|
	 * this should be 19, but in my testing that was 4dB too loud */
 | 
						|
	if (vol <= 23)
 | 
						|
		vol = 0;
 | 
						|
	else
 | 
						|
		vol -= 23;
 | 
						|
 | 
						|
	/* PATH1_VOLUME */
 | 
						|
	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
 | 
						|
}
 | 
						|
 | 
						|
static void set_bass(struct cx18 *cx, int bass)
 | 
						|
{
 | 
						|
	/* PATH1_EQ_BASS_VOL */
 | 
						|
	cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
 | 
						|
}
 | 
						|
 | 
						|
static void set_treble(struct cx18 *cx, int treble)
 | 
						|
{
 | 
						|
	/* PATH1_EQ_TREBLE_VOL */
 | 
						|
	cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
 | 
						|
}
 | 
						|
 | 
						|
static void set_balance(struct cx18 *cx, int balance)
 | 
						|
{
 | 
						|
	int bal = balance >> 8;
 | 
						|
	if (bal > 0x80) {
 | 
						|
		/* PATH1_BAL_LEFT */
 | 
						|
		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
 | 
						|
		/* PATH1_BAL_LEVEL */
 | 
						|
		cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
 | 
						|
	} else {
 | 
						|
		/* PATH1_BAL_LEFT */
 | 
						|
		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
 | 
						|
		/* PATH1_BAL_LEVEL */
 | 
						|
		cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_mute(struct cx18 *cx, int mute)
 | 
						|
{
 | 
						|
	struct cx18_av_state *state = &cx->av_state;
 | 
						|
	u8 v;
 | 
						|
 | 
						|
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		/* Must turn off microcontroller in order to mute sound.
 | 
						|
		 * Not sure if this is the best method, but it does work.
 | 
						|
		 * If the microcontroller is running, then it will undo any
 | 
						|
		 * changes to the mute register. */
 | 
						|
		v = cx18_av_read(cx, 0x803);
 | 
						|
		if (mute) {
 | 
						|
			/* disable microcontroller */
 | 
						|
			v &= ~0x10;
 | 
						|
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
			cx18_av_write(cx, 0x8d3, 0x1f);
 | 
						|
		} else {
 | 
						|
			/* enable microcontroller */
 | 
						|
			v |= 0x10;
 | 
						|
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* SRC1_MUTE_EN */
 | 
						|
		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
 | 
						|
{
 | 
						|
	struct cx18 *cx = v4l2_get_subdevdata(sd);
 | 
						|
	struct cx18_av_state *state = &cx->av_state;
 | 
						|
	int retval;
 | 
						|
	u8 v;
 | 
						|
 | 
						|
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		v = cx18_av_read(cx, 0x803) & ~0x10;
 | 
						|
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
		cx18_av_write(cx, 0x8d3, 0x1f);
 | 
						|
	}
 | 
						|
	v = cx18_av_read(cx, 0x810) | 0x1;
 | 
						|
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
 | 
						|
 | 
						|
	retval = set_audclk_freq(cx, freq);
 | 
						|
 | 
						|
	v = cx18_av_read(cx, 0x810) & ~0x1;
 | 
						|
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
 | 
						|
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
 | 
						|
		v = cx18_av_read(cx, 0x803) | 0x10;
 | 
						|
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
 | 
						|
	}
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
 | 
						|
{
 | 
						|
	struct v4l2_subdev *sd = to_sd(ctrl);
 | 
						|
	struct cx18 *cx = v4l2_get_subdevdata(sd);
 | 
						|
 | 
						|
	switch (ctrl->id) {
 | 
						|
	case V4L2_CID_AUDIO_VOLUME:
 | 
						|
		set_volume(cx, ctrl->val);
 | 
						|
		break;
 | 
						|
	case V4L2_CID_AUDIO_BASS:
 | 
						|
		set_bass(cx, ctrl->val);
 | 
						|
		break;
 | 
						|
	case V4L2_CID_AUDIO_TREBLE:
 | 
						|
		set_treble(cx, ctrl->val);
 | 
						|
		break;
 | 
						|
	case V4L2_CID_AUDIO_BALANCE:
 | 
						|
		set_balance(cx, ctrl->val);
 | 
						|
		break;
 | 
						|
	case V4L2_CID_AUDIO_MUTE:
 | 
						|
		set_mute(cx, ctrl->val);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = {
 | 
						|
	.s_ctrl = cx18_av_audio_s_ctrl,
 | 
						|
};
 |