2096 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2096 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| // rc-main.c - Remote Controller core module
 | |
| //
 | |
| // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <media/rc-core.h>
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/input.h>
 | |
| #include <linux/leds.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/module.h>
 | |
| #include "rc-core-priv.h"
 | |
| 
 | |
| /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
 | |
| #define IR_TAB_MIN_SIZE	256
 | |
| #define IR_TAB_MAX_SIZE	8192
 | |
| 
 | |
| static const struct {
 | |
| 	const char *name;
 | |
| 	unsigned int repeat_period;
 | |
| 	unsigned int scancode_bits;
 | |
| } protocols[] = {
 | |
| 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
 | |
| 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
 | |
| 	[RC_PROTO_RC5] = { .name = "rc-5",
 | |
| 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
 | |
| 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
 | |
| 		.scancode_bits = 0x2fff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_JVC] = { .name = "jvc",
 | |
| 		.scancode_bits = 0xffff, .repeat_period = 125 },
 | |
| 	[RC_PROTO_SONY12] = { .name = "sony-12",
 | |
| 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
 | |
| 	[RC_PROTO_SONY15] = { .name = "sony-15",
 | |
| 		.scancode_bits = 0xff007f, .repeat_period = 100 },
 | |
| 	[RC_PROTO_SONY20] = { .name = "sony-20",
 | |
| 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
 | |
| 	[RC_PROTO_NEC] = { .name = "nec",
 | |
| 		.scancode_bits = 0xffff, .repeat_period = 110 },
 | |
| 	[RC_PROTO_NECX] = { .name = "nec-x",
 | |
| 		.scancode_bits = 0xffffff, .repeat_period = 110 },
 | |
| 	[RC_PROTO_NEC32] = { .name = "nec-32",
 | |
| 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
 | |
| 	[RC_PROTO_SANYO] = { .name = "sanyo",
 | |
| 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
 | |
| 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
 | |
| 		.scancode_bits = 0xffffff, .repeat_period = 100 },
 | |
| 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
 | |
| 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
 | |
| 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
 | |
| 		.scancode_bits = 0xffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
 | |
| 		.scancode_bits = 0xfffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
 | |
| 		.scancode_bits = 0xffffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
 | |
| 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
 | |
| 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_SHARP] = { .name = "sharp",
 | |
| 		.scancode_bits = 0x1fff, .repeat_period = 125 },
 | |
| 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
 | |
| 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
 | |
| 	[RC_PROTO_IMON] = { .name = "imon",
 | |
| 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
 | |
| 		.scancode_bits = 0x00000fff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
 | |
| 		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
 | |
| 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
 | |
| 	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
 | |
| };
 | |
| 
 | |
| /* Used to keep track of known keymaps */
 | |
| static LIST_HEAD(rc_map_list);
 | |
| static DEFINE_SPINLOCK(rc_map_lock);
 | |
| static struct led_trigger *led_feedback;
 | |
| 
 | |
| /* Used to keep track of rc devices */
 | |
| static DEFINE_IDA(rc_ida);
 | |
| 
 | |
| static struct rc_map_list *seek_rc_map(const char *name)
 | |
| {
 | |
| 	struct rc_map_list *map = NULL;
 | |
| 
 | |
| 	spin_lock(&rc_map_lock);
 | |
| 	list_for_each_entry(map, &rc_map_list, list) {
 | |
| 		if (!strcmp(name, map->map.name)) {
 | |
| 			spin_unlock(&rc_map_lock);
 | |
| 			return map;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&rc_map_lock);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct rc_map *rc_map_get(const char *name)
 | |
| {
 | |
| 
 | |
| 	struct rc_map_list *map;
 | |
| 
 | |
| 	map = seek_rc_map(name);
 | |
| #ifdef CONFIG_MODULES
 | |
| 	if (!map) {
 | |
| 		int rc = request_module("%s", name);
 | |
| 		if (rc < 0) {
 | |
| 			pr_err("Couldn't load IR keymap %s\n", name);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		msleep(20);	/* Give some time for IR to register */
 | |
| 
 | |
| 		map = seek_rc_map(name);
 | |
| 	}
 | |
| #endif
 | |
| 	if (!map) {
 | |
| 		pr_err("IR keymap %s not found\n", name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 | |
| 
 | |
| 	return &map->map;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_map_get);
 | |
| 
 | |
| int rc_map_register(struct rc_map_list *map)
 | |
| {
 | |
| 	spin_lock(&rc_map_lock);
 | |
| 	list_add_tail(&map->list, &rc_map_list);
 | |
| 	spin_unlock(&rc_map_lock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_map_register);
 | |
| 
 | |
| void rc_map_unregister(struct rc_map_list *map)
 | |
| {
 | |
| 	spin_lock(&rc_map_lock);
 | |
| 	list_del(&map->list);
 | |
| 	spin_unlock(&rc_map_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_map_unregister);
 | |
| 
 | |
| 
 | |
| static struct rc_map_table empty[] = {
 | |
| 	{ 0x2a, KEY_COFFEE },
 | |
| };
 | |
| 
 | |
| static struct rc_map_list empty_map = {
 | |
| 	.map = {
 | |
| 		.scan     = empty,
 | |
| 		.size     = ARRAY_SIZE(empty),
 | |
| 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
 | |
| 		.name     = RC_MAP_EMPTY,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * scancode_to_u64() - converts scancode in &struct input_keymap_entry
 | |
|  * @ke: keymap entry containing scancode to be converted.
 | |
|  * @scancode: pointer to the location where converted scancode should
 | |
|  *	be stored.
 | |
|  *
 | |
|  * This function is a version of input_scancode_to_scalar specialized for
 | |
|  * rc-core.
 | |
|  */
 | |
| static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
 | |
| {
 | |
| 	switch (ke->len) {
 | |
| 	case 1:
 | |
| 		*scancode = *((u8 *)ke->scancode);
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		*scancode = *((u16 *)ke->scancode);
 | |
| 		break;
 | |
| 
 | |
| 	case 4:
 | |
| 		*scancode = *((u32 *)ke->scancode);
 | |
| 		break;
 | |
| 
 | |
| 	case 8:
 | |
| 		*scancode = *((u64 *)ke->scancode);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_create_table() - initializes a scancode table
 | |
|  * @dev:	the rc_dev device
 | |
|  * @rc_map:	the rc_map to initialize
 | |
|  * @name:	name to assign to the table
 | |
|  * @rc_proto:	ir type to assign to the new table
 | |
|  * @size:	initial size of the table
 | |
|  *
 | |
|  * This routine will initialize the rc_map and will allocate
 | |
|  * memory to hold at least the specified number of elements.
 | |
|  *
 | |
|  * return:	zero on success or a negative error code
 | |
|  */
 | |
| static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
 | |
| 			   const char *name, u64 rc_proto, size_t size)
 | |
| {
 | |
| 	rc_map->name = kstrdup(name, GFP_KERNEL);
 | |
| 	if (!rc_map->name)
 | |
| 		return -ENOMEM;
 | |
| 	rc_map->rc_proto = rc_proto;
 | |
| 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 | |
| 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 | |
| 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 | |
| 	if (!rc_map->scan) {
 | |
| 		kfree(rc_map->name);
 | |
| 		rc_map->name = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
 | |
| 		rc_map->size, rc_map->alloc);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_free_table() - frees memory allocated by a scancode table
 | |
|  * @rc_map:	the table whose mappings need to be freed
 | |
|  *
 | |
|  * This routine will free memory alloctaed for key mappings used by given
 | |
|  * scancode table.
 | |
|  */
 | |
| static void ir_free_table(struct rc_map *rc_map)
 | |
| {
 | |
| 	rc_map->size = 0;
 | |
| 	kfree(rc_map->name);
 | |
| 	rc_map->name = NULL;
 | |
| 	kfree(rc_map->scan);
 | |
| 	rc_map->scan = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_resize_table() - resizes a scancode table if necessary
 | |
|  * @dev:	the rc_dev device
 | |
|  * @rc_map:	the rc_map to resize
 | |
|  * @gfp_flags:	gfp flags to use when allocating memory
 | |
|  *
 | |
|  * This routine will shrink the rc_map if it has lots of
 | |
|  * unused entries and grow it if it is full.
 | |
|  *
 | |
|  * return:	zero on success or a negative error code
 | |
|  */
 | |
| static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
 | |
| 			   gfp_t gfp_flags)
 | |
| {
 | |
| 	unsigned int oldalloc = rc_map->alloc;
 | |
| 	unsigned int newalloc = oldalloc;
 | |
| 	struct rc_map_table *oldscan = rc_map->scan;
 | |
| 	struct rc_map_table *newscan;
 | |
| 
 | |
| 	if (rc_map->size == rc_map->len) {
 | |
| 		/* All entries in use -> grow keytable */
 | |
| 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		newalloc *= 2;
 | |
| 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
 | |
| 	}
 | |
| 
 | |
| 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 | |
| 		/* Less than 1/3 of entries in use -> shrink keytable */
 | |
| 		newalloc /= 2;
 | |
| 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
 | |
| 	}
 | |
| 
 | |
| 	if (newalloc == oldalloc)
 | |
| 		return 0;
 | |
| 
 | |
| 	newscan = kmalloc(newalloc, gfp_flags);
 | |
| 	if (!newscan)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 | |
| 	rc_map->scan = newscan;
 | |
| 	rc_map->alloc = newalloc;
 | |
| 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 | |
| 	kfree(oldscan);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_update_mapping() - set a keycode in the scancode->keycode table
 | |
|  * @dev:	the struct rc_dev device descriptor
 | |
|  * @rc_map:	scancode table to be adjusted
 | |
|  * @index:	index of the mapping that needs to be updated
 | |
|  * @new_keycode: the desired keycode
 | |
|  *
 | |
|  * This routine is used to update scancode->keycode mapping at given
 | |
|  * position.
 | |
|  *
 | |
|  * return:	previous keycode assigned to the mapping
 | |
|  *
 | |
|  */
 | |
| static unsigned int ir_update_mapping(struct rc_dev *dev,
 | |
| 				      struct rc_map *rc_map,
 | |
| 				      unsigned int index,
 | |
| 				      unsigned int new_keycode)
 | |
| {
 | |
| 	int old_keycode = rc_map->scan[index].keycode;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Did the user wish to remove the mapping? */
 | |
| 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 | |
| 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
 | |
| 			index, rc_map->scan[index].scancode);
 | |
| 		rc_map->len--;
 | |
| 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 | |
| 			(rc_map->len - index) * sizeof(struct rc_map_table));
 | |
| 	} else {
 | |
| 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
 | |
| 			index,
 | |
| 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
 | |
| 			rc_map->scan[index].scancode, new_keycode);
 | |
| 		rc_map->scan[index].keycode = new_keycode;
 | |
| 		__set_bit(new_keycode, dev->input_dev->keybit);
 | |
| 	}
 | |
| 
 | |
| 	if (old_keycode != KEY_RESERVED) {
 | |
| 		/* A previous mapping was updated... */
 | |
| 		__clear_bit(old_keycode, dev->input_dev->keybit);
 | |
| 		/* ... but another scancode might use the same keycode */
 | |
| 		for (i = 0; i < rc_map->len; i++) {
 | |
| 			if (rc_map->scan[i].keycode == old_keycode) {
 | |
| 				__set_bit(old_keycode, dev->input_dev->keybit);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Possibly shrink the keytable, failure is not a problem */
 | |
| 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
 | |
| 	}
 | |
| 
 | |
| 	return old_keycode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_establish_scancode() - set a keycode in the scancode->keycode table
 | |
|  * @dev:	the struct rc_dev device descriptor
 | |
|  * @rc_map:	scancode table to be searched
 | |
|  * @scancode:	the desired scancode
 | |
|  * @resize:	controls whether we allowed to resize the table to
 | |
|  *		accommodate not yet present scancodes
 | |
|  *
 | |
|  * This routine is used to locate given scancode in rc_map.
 | |
|  * If scancode is not yet present the routine will allocate a new slot
 | |
|  * for it.
 | |
|  *
 | |
|  * return:	index of the mapping containing scancode in question
 | |
|  *		or -1U in case of failure.
 | |
|  */
 | |
| static unsigned int ir_establish_scancode(struct rc_dev *dev,
 | |
| 					  struct rc_map *rc_map,
 | |
| 					  u64 scancode, bool resize)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unfortunately, some hardware-based IR decoders don't provide
 | |
| 	 * all bits for the complete IR code. In general, they provide only
 | |
| 	 * the command part of the IR code. Yet, as it is possible to replace
 | |
| 	 * the provided IR with another one, it is needed to allow loading
 | |
| 	 * IR tables from other remotes. So, we support specifying a mask to
 | |
| 	 * indicate the valid bits of the scancodes.
 | |
| 	 */
 | |
| 	if (dev->scancode_mask)
 | |
| 		scancode &= dev->scancode_mask;
 | |
| 
 | |
| 	/* First check if we already have a mapping for this ir command */
 | |
| 	for (i = 0; i < rc_map->len; i++) {
 | |
| 		if (rc_map->scan[i].scancode == scancode)
 | |
| 			return i;
 | |
| 
 | |
| 		/* Keytable is sorted from lowest to highest scancode */
 | |
| 		if (rc_map->scan[i].scancode >= scancode)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* No previous mapping found, we might need to grow the table */
 | |
| 	if (rc_map->size == rc_map->len) {
 | |
| 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
 | |
| 			return -1U;
 | |
| 	}
 | |
| 
 | |
| 	/* i is the proper index to insert our new keycode */
 | |
| 	if (i < rc_map->len)
 | |
| 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 | |
| 			(rc_map->len - i) * sizeof(struct rc_map_table));
 | |
| 	rc_map->scan[i].scancode = scancode;
 | |
| 	rc_map->scan[i].keycode = KEY_RESERVED;
 | |
| 	rc_map->len++;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_setkeycode() - set a keycode in the scancode->keycode table
 | |
|  * @idev:	the struct input_dev device descriptor
 | |
|  * @ke:		Input keymap entry
 | |
|  * @old_keycode: result
 | |
|  *
 | |
|  * This routine is used to handle evdev EVIOCSKEY ioctl.
 | |
|  *
 | |
|  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
 | |
|  */
 | |
| static int ir_setkeycode(struct input_dev *idev,
 | |
| 			 const struct input_keymap_entry *ke,
 | |
| 			 unsigned int *old_keycode)
 | |
| {
 | |
| 	struct rc_dev *rdev = input_get_drvdata(idev);
 | |
| 	struct rc_map *rc_map = &rdev->rc_map;
 | |
| 	unsigned int index;
 | |
| 	u64 scancode;
 | |
| 	int retval = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rc_map->lock, flags);
 | |
| 
 | |
| 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 | |
| 		index = ke->index;
 | |
| 		if (index >= rc_map->len) {
 | |
| 			retval = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		retval = scancode_to_u64(ke, &scancode);
 | |
| 		if (retval)
 | |
| 			goto out;
 | |
| 
 | |
| 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
 | |
| 		if (index >= rc_map->len) {
 | |
| 			retval = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&rc_map->lock, flags);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_setkeytable() - sets several entries in the scancode->keycode table
 | |
|  * @dev:	the struct rc_dev device descriptor
 | |
|  * @from:	the struct rc_map to copy entries from
 | |
|  *
 | |
|  * This routine is used to handle table initialization.
 | |
|  *
 | |
|  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
 | |
|  */
 | |
| static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
 | |
| {
 | |
| 	struct rc_map *rc_map = &dev->rc_map;
 | |
| 	unsigned int i, index;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
 | |
| 			     from->size);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (i = 0; i < from->size; i++) {
 | |
| 		index = ir_establish_scancode(dev, rc_map,
 | |
| 					      from->scan[i].scancode, false);
 | |
| 		if (index >= rc_map->len) {
 | |
| 			rc = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ir_update_mapping(dev, rc_map, index,
 | |
| 				  from->scan[i].keycode);
 | |
| 	}
 | |
| 
 | |
| 	if (rc)
 | |
| 		ir_free_table(rc_map);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int rc_map_cmp(const void *key, const void *elt)
 | |
| {
 | |
| 	const u64 *scancode = key;
 | |
| 	const struct rc_map_table *e = elt;
 | |
| 
 | |
| 	if (*scancode < e->scancode)
 | |
| 		return -1;
 | |
| 	else if (*scancode > e->scancode)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_lookup_by_scancode() - locate mapping by scancode
 | |
|  * @rc_map:	the struct rc_map to search
 | |
|  * @scancode:	scancode to look for in the table
 | |
|  *
 | |
|  * This routine performs binary search in RC keykeymap table for
 | |
|  * given scancode.
 | |
|  *
 | |
|  * return:	index in the table, -1U if not found
 | |
|  */
 | |
| static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 | |
| 					  u64 scancode)
 | |
| {
 | |
| 	struct rc_map_table *res;
 | |
| 
 | |
| 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
 | |
| 		      sizeof(struct rc_map_table), rc_map_cmp);
 | |
| 	if (!res)
 | |
| 		return -1U;
 | |
| 	else
 | |
| 		return res - rc_map->scan;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_getkeycode() - get a keycode from the scancode->keycode table
 | |
|  * @idev:	the struct input_dev device descriptor
 | |
|  * @ke:		Input keymap entry
 | |
|  *
 | |
|  * This routine is used to handle evdev EVIOCGKEY ioctl.
 | |
|  *
 | |
|  * return:	always returns zero.
 | |
|  */
 | |
| static int ir_getkeycode(struct input_dev *idev,
 | |
| 			 struct input_keymap_entry *ke)
 | |
| {
 | |
| 	struct rc_dev *rdev = input_get_drvdata(idev);
 | |
| 	struct rc_map *rc_map = &rdev->rc_map;
 | |
| 	struct rc_map_table *entry;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int index;
 | |
| 	u64 scancode;
 | |
| 	int retval;
 | |
| 
 | |
| 	spin_lock_irqsave(&rc_map->lock, flags);
 | |
| 
 | |
| 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 | |
| 		index = ke->index;
 | |
| 	} else {
 | |
| 		retval = scancode_to_u64(ke, &scancode);
 | |
| 		if (retval)
 | |
| 			goto out;
 | |
| 
 | |
| 		index = ir_lookup_by_scancode(rc_map, scancode);
 | |
| 	}
 | |
| 
 | |
| 	if (index < rc_map->len) {
 | |
| 		entry = &rc_map->scan[index];
 | |
| 
 | |
| 		ke->index = index;
 | |
| 		ke->keycode = entry->keycode;
 | |
| 		ke->len = sizeof(entry->scancode);
 | |
| 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 | |
| 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 | |
| 		/*
 | |
| 		 * We do not really know the valid range of scancodes
 | |
| 		 * so let's respond with KEY_RESERVED to anything we
 | |
| 		 * do not have mapping for [yet].
 | |
| 		 */
 | |
| 		ke->index = index;
 | |
| 		ke->keycode = KEY_RESERVED;
 | |
| 	} else {
 | |
| 		retval = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	retval = 0;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&rc_map->lock, flags);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @scancode:	the scancode to look for
 | |
|  *
 | |
|  * This routine is used by drivers which need to convert a scancode to a
 | |
|  * keycode. Normally it should not be used since drivers should have no
 | |
|  * interest in keycodes.
 | |
|  *
 | |
|  * return:	the corresponding keycode, or KEY_RESERVED
 | |
|  */
 | |
| u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
 | |
| {
 | |
| 	struct rc_map *rc_map = &dev->rc_map;
 | |
| 	unsigned int keycode;
 | |
| 	unsigned int index;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rc_map->lock, flags);
 | |
| 
 | |
| 	index = ir_lookup_by_scancode(rc_map, scancode);
 | |
| 	keycode = index < rc_map->len ?
 | |
| 			rc_map->scan[index].keycode : KEY_RESERVED;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rc_map->lock, flags);
 | |
| 
 | |
| 	if (keycode != KEY_RESERVED)
 | |
| 		dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
 | |
| 			dev->device_name, scancode, keycode);
 | |
| 
 | |
| 	return keycode;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 | |
| 
 | |
| /**
 | |
|  * ir_do_keyup() - internal function to signal the release of a keypress
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @sync:	whether or not to call input_sync
 | |
|  *
 | |
|  * This function is used internally to release a keypress, it must be
 | |
|  * called with keylock held.
 | |
|  */
 | |
| static void ir_do_keyup(struct rc_dev *dev, bool sync)
 | |
| {
 | |
| 	if (!dev->keypressed)
 | |
| 		return;
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
 | |
| 	del_timer(&dev->timer_repeat);
 | |
| 	input_report_key(dev->input_dev, dev->last_keycode, 0);
 | |
| 	led_trigger_event(led_feedback, LED_OFF);
 | |
| 	if (sync)
 | |
| 		input_sync(dev->input_dev);
 | |
| 	dev->keypressed = false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rc_keyup() - signals the release of a keypress
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  *
 | |
|  * This routine is used to signal that a key has been released on the
 | |
|  * remote control.
 | |
|  */
 | |
| void rc_keyup(struct rc_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 	ir_do_keyup(dev, true);
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_keyup);
 | |
| 
 | |
| /**
 | |
|  * ir_timer_keyup() - generates a keyup event after a timeout
 | |
|  *
 | |
|  * @t:		a pointer to the struct timer_list
 | |
|  *
 | |
|  * This routine will generate a keyup event some time after a keydown event
 | |
|  * is generated when no further activity has been detected.
 | |
|  */
 | |
| static void ir_timer_keyup(struct timer_list *t)
 | |
| {
 | |
| 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * ir->keyup_jiffies is used to prevent a race condition if a
 | |
| 	 * hardware interrupt occurs at this point and the keyup timer
 | |
| 	 * event is moved further into the future as a result.
 | |
| 	 *
 | |
| 	 * The timer will then be reactivated and this function called
 | |
| 	 * again in the future. We need to exit gracefully in that case
 | |
| 	 * to allow the input subsystem to do its auto-repeat magic or
 | |
| 	 * a keyup event might follow immediately after the keydown.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 | |
| 		ir_do_keyup(dev, true);
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ir_timer_repeat() - generates a repeat event after a timeout
 | |
|  *
 | |
|  * @t:		a pointer to the struct timer_list
 | |
|  *
 | |
|  * This routine will generate a soft repeat event every REP_PERIOD
 | |
|  * milliseconds.
 | |
|  */
 | |
| static void ir_timer_repeat(struct timer_list *t)
 | |
| {
 | |
| 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 | |
| 	struct input_dev *input = dev->input_dev;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 	if (dev->keypressed) {
 | |
| 		input_event(input, EV_KEY, dev->last_keycode, 2);
 | |
| 		input_sync(input);
 | |
| 		if (input->rep[REP_PERIOD])
 | |
| 			mod_timer(&dev->timer_repeat, jiffies +
 | |
| 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned int repeat_period(int protocol)
 | |
| {
 | |
| 	if (protocol >= ARRAY_SIZE(protocols))
 | |
| 		return 100;
 | |
| 
 | |
| 	return protocols[protocol].repeat_period;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rc_repeat() - signals that a key is still pressed
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  *
 | |
|  * This routine is used by IR decoders when a repeat message which does
 | |
|  * not include the necessary bits to reproduce the scancode has been
 | |
|  * received.
 | |
|  */
 | |
| void rc_repeat(struct rc_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned int timeout = usecs_to_jiffies(dev->timeout) +
 | |
| 		msecs_to_jiffies(repeat_period(dev->last_protocol));
 | |
| 	struct lirc_scancode sc = {
 | |
| 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 | |
| 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 | |
| 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
 | |
| 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 | |
| 	};
 | |
| 
 | |
| 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 | |
| 		lirc_scancode_event(dev, &sc);
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 
 | |
| 	if (dev->last_scancode <= U32_MAX) {
 | |
| 		input_event(dev->input_dev, EV_MSC, MSC_SCAN,
 | |
| 			    dev->last_scancode);
 | |
| 		input_sync(dev->input_dev);
 | |
| 	}
 | |
| 
 | |
| 	if (dev->keypressed) {
 | |
| 		dev->keyup_jiffies = jiffies + timeout;
 | |
| 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_repeat);
 | |
| 
 | |
| /**
 | |
|  * ir_do_keydown() - internal function to process a keypress
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @protocol:	the protocol of the keypress
 | |
|  * @scancode:   the scancode of the keypress
 | |
|  * @keycode:    the keycode of the keypress
 | |
|  * @toggle:     the toggle value of the keypress
 | |
|  *
 | |
|  * This function is used internally to register a keypress, it must be
 | |
|  * called with keylock held.
 | |
|  */
 | |
| static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 | |
| 			  u64 scancode, u32 keycode, u8 toggle)
 | |
| {
 | |
| 	bool new_event = (!dev->keypressed		 ||
 | |
| 			  dev->last_protocol != protocol ||
 | |
| 			  dev->last_scancode != scancode ||
 | |
| 			  dev->last_toggle   != toggle);
 | |
| 	struct lirc_scancode sc = {
 | |
| 		.scancode = scancode, .rc_proto = protocol,
 | |
| 		.flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
 | |
| 			 (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
 | |
| 		.keycode = keycode
 | |
| 	};
 | |
| 
 | |
| 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 | |
| 		lirc_scancode_event(dev, &sc);
 | |
| 
 | |
| 	if (new_event && dev->keypressed)
 | |
| 		ir_do_keyup(dev, false);
 | |
| 
 | |
| 	if (scancode <= U32_MAX)
 | |
| 		input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 | |
| 
 | |
| 	dev->last_protocol = protocol;
 | |
| 	dev->last_scancode = scancode;
 | |
| 	dev->last_toggle = toggle;
 | |
| 	dev->last_keycode = keycode;
 | |
| 
 | |
| 	if (new_event && keycode != KEY_RESERVED) {
 | |
| 		/* Register a keypress */
 | |
| 		dev->keypressed = true;
 | |
| 
 | |
| 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
 | |
| 			dev->device_name, keycode, protocol, scancode);
 | |
| 		input_report_key(dev->input_dev, keycode, 1);
 | |
| 
 | |
| 		led_trigger_event(led_feedback, LED_FULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For CEC, start sending repeat messages as soon as the first
 | |
| 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 | |
| 	 * is non-zero. Otherwise, the input layer will generate repeat
 | |
| 	 * messages.
 | |
| 	 */
 | |
| 	if (!new_event && keycode != KEY_RESERVED &&
 | |
| 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 | |
| 	    !timer_pending(&dev->timer_repeat) &&
 | |
| 	    dev->input_dev->rep[REP_PERIOD] &&
 | |
| 	    !dev->input_dev->rep[REP_DELAY]) {
 | |
| 		input_event(dev->input_dev, EV_KEY, keycode, 2);
 | |
| 		mod_timer(&dev->timer_repeat, jiffies +
 | |
| 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 | |
| 	}
 | |
| 
 | |
| 	input_sync(dev->input_dev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rc_keydown() - generates input event for a key press
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @protocol:	the protocol for the keypress
 | |
|  * @scancode:	the scancode for the keypress
 | |
|  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 | |
|  *              support toggle values, this should be set to zero)
 | |
|  *
 | |
|  * This routine is used to signal that a key has been pressed on the
 | |
|  * remote control.
 | |
|  */
 | |
| void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
 | |
| 		u8 toggle)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 | |
| 
 | |
| 	if (dev->keypressed) {
 | |
| 		dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
 | |
| 			msecs_to_jiffies(repeat_period(protocol));
 | |
| 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_keydown);
 | |
| 
 | |
| /**
 | |
|  * rc_keydown_notimeout() - generates input event for a key press without
 | |
|  *                          an automatic keyup event at a later time
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @protocol:	the protocol for the keypress
 | |
|  * @scancode:	the scancode for the keypress
 | |
|  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 | |
|  *              support toggle values, this should be set to zero)
 | |
|  *
 | |
|  * This routine is used to signal that a key has been pressed on the
 | |
|  * remote control. The driver must manually call rc_keyup() at a later stage.
 | |
|  */
 | |
| void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 | |
| 			  u64 scancode, u8 toggle)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->keylock, flags);
 | |
| 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 | |
| 	spin_unlock_irqrestore(&dev->keylock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 | |
| 
 | |
| /**
 | |
|  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 | |
|  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 | |
|  * @proto:	protocol
 | |
|  * @scancode:	scancode
 | |
|  */
 | |
| bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 | |
| {
 | |
| 	switch (proto) {
 | |
| 	/*
 | |
| 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
 | |
| 	 * 8 bits inverted, then the address would match regular nec.
 | |
| 	 */
 | |
| 	case RC_PROTO_NECX:
 | |
| 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	/*
 | |
| 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 | |
| 	 * of the command match the upper 8 bits inverted, then it would
 | |
| 	 * be either NEC or NECX.
 | |
| 	 */
 | |
| 	case RC_PROTO_NEC32:
 | |
| 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	/*
 | |
| 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 | |
| 	 * is regular mode-6a 32 bit
 | |
| 	 */
 | |
| 	case RC_PROTO_RC6_MCE:
 | |
| 		if ((scancode & 0xffff0000) != 0x800f0000)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case RC_PROTO_RC6_6A_32:
 | |
| 		if ((scancode & 0xffff0000) == 0x800f0000)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rc_validate_filter() - checks that the scancode and mask are valid and
 | |
|  *			  provides sensible defaults
 | |
|  * @dev:	the struct rc_dev descriptor of the device
 | |
|  * @filter:	the scancode and mask
 | |
|  *
 | |
|  * return:	0 or -EINVAL if the filter is not valid
 | |
|  */
 | |
| static int rc_validate_filter(struct rc_dev *dev,
 | |
| 			      struct rc_scancode_filter *filter)
 | |
| {
 | |
| 	u32 mask, s = filter->data;
 | |
| 	enum rc_proto protocol = dev->wakeup_protocol;
 | |
| 
 | |
| 	if (protocol >= ARRAY_SIZE(protocols))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mask = protocols[protocol].scancode_bits;
 | |
| 
 | |
| 	if (!rc_validate_scancode(protocol, s))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	filter->data &= mask;
 | |
| 	filter->mask &= mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
 | |
| 	 */
 | |
| 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int rc_open(struct rc_dev *rdev)
 | |
| {
 | |
| 	int rval = 0;
 | |
| 
 | |
| 	if (!rdev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&rdev->lock);
 | |
| 
 | |
| 	if (!rdev->registered) {
 | |
| 		rval = -ENODEV;
 | |
| 	} else {
 | |
| 		if (!rdev->users++ && rdev->open)
 | |
| 			rval = rdev->open(rdev);
 | |
| 
 | |
| 		if (rval)
 | |
| 			rdev->users--;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rdev->lock);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static int ir_open(struct input_dev *idev)
 | |
| {
 | |
| 	struct rc_dev *rdev = input_get_drvdata(idev);
 | |
| 
 | |
| 	return rc_open(rdev);
 | |
| }
 | |
| 
 | |
| void rc_close(struct rc_dev *rdev)
 | |
| {
 | |
| 	if (rdev) {
 | |
| 		mutex_lock(&rdev->lock);
 | |
| 
 | |
| 		if (!--rdev->users && rdev->close && rdev->registered)
 | |
| 			rdev->close(rdev);
 | |
| 
 | |
| 		mutex_unlock(&rdev->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ir_close(struct input_dev *idev)
 | |
| {
 | |
| 	struct rc_dev *rdev = input_get_drvdata(idev);
 | |
| 	rc_close(rdev);
 | |
| }
 | |
| 
 | |
| /* class for /sys/class/rc */
 | |
| static char *rc_devnode(struct device *dev, umode_t *mode)
 | |
| {
 | |
| 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 | |
| }
 | |
| 
 | |
| static struct class rc_class = {
 | |
| 	.name		= "rc",
 | |
| 	.devnode	= rc_devnode,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are the protocol textual descriptions that are
 | |
|  * used by the sysfs protocols file. Note that the order
 | |
|  * of the entries is relevant.
 | |
|  */
 | |
| static const struct {
 | |
| 	u64	type;
 | |
| 	const char	*name;
 | |
| 	const char	*module_name;
 | |
| } proto_names[] = {
 | |
| 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
 | |
| 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
 | |
| 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
 | |
| 	{ RC_PROTO_BIT_RC5 |
 | |
| 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
 | |
| 	{ RC_PROTO_BIT_NEC |
 | |
| 	  RC_PROTO_BIT_NECX |
 | |
| 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
 | |
| 	{ RC_PROTO_BIT_RC6_0 |
 | |
| 	  RC_PROTO_BIT_RC6_6A_20 |
 | |
| 	  RC_PROTO_BIT_RC6_6A_24 |
 | |
| 	  RC_PROTO_BIT_RC6_6A_32 |
 | |
| 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
 | |
| 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
 | |
| 	{ RC_PROTO_BIT_SONY12 |
 | |
| 	  RC_PROTO_BIT_SONY15 |
 | |
| 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
 | |
| 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
 | |
| 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
 | |
| 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
 | |
| 	{ RC_PROTO_BIT_MCIR2_KBD |
 | |
| 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
 | |
| 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
 | |
| 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
 | |
| 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
 | |
| 	{ RC_PROTO_BIT_RCMM12 |
 | |
| 	  RC_PROTO_BIT_RCMM24 |
 | |
| 	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
 | |
| 	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct rc_filter_attribute - Device attribute relating to a filter type.
 | |
|  * @attr:	Device attribute.
 | |
|  * @type:	Filter type.
 | |
|  * @mask:	false for filter value, true for filter mask.
 | |
|  */
 | |
| struct rc_filter_attribute {
 | |
| 	struct device_attribute		attr;
 | |
| 	enum rc_filter_type		type;
 | |
| 	bool				mask;
 | |
| };
 | |
| #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 | |
| 
 | |
| #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
 | |
| 	struct rc_filter_attribute dev_attr_##_name = {			\
 | |
| 		.attr = __ATTR(_name, _mode, _show, _store),		\
 | |
| 		.type = (_type),					\
 | |
| 		.mask = (_mask),					\
 | |
| 	}
 | |
| 
 | |
| /**
 | |
|  * show_protocols() - shows the current IR protocol(s)
 | |
|  * @device:	the device descriptor
 | |
|  * @mattr:	the device attribute struct
 | |
|  * @buf:	a pointer to the output buffer
 | |
|  *
 | |
|  * This routine is a callback routine for input read the IR protocol type(s).
 | |
|  * it is triggered by reading /sys/class/rc/rc?/protocols.
 | |
|  * It returns the protocol names of supported protocols.
 | |
|  * Enabled protocols are printed in brackets.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_protocols and show_protocols.
 | |
|  */
 | |
| static ssize_t show_protocols(struct device *device,
 | |
| 			      struct device_attribute *mattr, char *buf)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	u64 allowed, enabled;
 | |
| 	char *tmp = buf;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 
 | |
| 	enabled = dev->enabled_protocols;
 | |
| 	allowed = dev->allowed_protocols;
 | |
| 	if (dev->raw && !allowed)
 | |
| 		allowed = ir_raw_get_allowed_protocols();
 | |
| 
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
 | |
| 		__func__, (long long)allowed, (long long)enabled);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 | |
| 		if (allowed & enabled & proto_names[i].type)
 | |
| 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 | |
| 		else if (allowed & proto_names[i].type)
 | |
| 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
 | |
| 
 | |
| 		if (allowed & proto_names[i].type)
 | |
| 			allowed &= ~proto_names[i].type;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_LIRC
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW)
 | |
| 		tmp += sprintf(tmp, "[lirc] ");
 | |
| #endif
 | |
| 
 | |
| 	if (tmp != buf)
 | |
| 		tmp--;
 | |
| 	*tmp = '\n';
 | |
| 
 | |
| 	return tmp + 1 - buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * parse_protocol_change() - parses a protocol change request
 | |
|  * @dev:	rc_dev device
 | |
|  * @protocols:	pointer to the bitmask of current protocols
 | |
|  * @buf:	pointer to the buffer with a list of changes
 | |
|  *
 | |
|  * Writing "+proto" will add a protocol to the protocol mask.
 | |
|  * Writing "-proto" will remove a protocol from protocol mask.
 | |
|  * Writing "proto" will enable only "proto".
 | |
|  * Writing "none" will disable all protocols.
 | |
|  * Returns the number of changes performed or a negative error code.
 | |
|  */
 | |
| static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
 | |
| 				 const char *buf)
 | |
| {
 | |
| 	const char *tmp;
 | |
| 	unsigned count = 0;
 | |
| 	bool enable, disable;
 | |
| 	u64 mask;
 | |
| 	int i;
 | |
| 
 | |
| 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
 | |
| 		if (!*tmp)
 | |
| 			break;
 | |
| 
 | |
| 		if (*tmp == '+') {
 | |
| 			enable = true;
 | |
| 			disable = false;
 | |
| 			tmp++;
 | |
| 		} else if (*tmp == '-') {
 | |
| 			enable = false;
 | |
| 			disable = true;
 | |
| 			tmp++;
 | |
| 		} else {
 | |
| 			enable = false;
 | |
| 			disable = false;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 | |
| 			if (!strcasecmp(tmp, proto_names[i].name)) {
 | |
| 				mask = proto_names[i].type;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (i == ARRAY_SIZE(proto_names)) {
 | |
| 			if (!strcasecmp(tmp, "lirc"))
 | |
| 				mask = 0;
 | |
| 			else {
 | |
| 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
 | |
| 					tmp);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		count++;
 | |
| 
 | |
| 		if (enable)
 | |
| 			*protocols |= mask;
 | |
| 		else if (disable)
 | |
| 			*protocols &= ~mask;
 | |
| 		else
 | |
| 			*protocols = mask;
 | |
| 	}
 | |
| 
 | |
| 	if (!count) {
 | |
| 		dev_dbg(&dev->dev, "Protocol not specified\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| void ir_raw_load_modules(u64 *protocols)
 | |
| {
 | |
| 	u64 available;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 | |
| 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
 | |
| 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
 | |
| 					   RC_PROTO_BIT_UNKNOWN))
 | |
| 			continue;
 | |
| 
 | |
| 		available = ir_raw_get_allowed_protocols();
 | |
| 		if (!(*protocols & proto_names[i].type & ~available))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!proto_names[i].module_name) {
 | |
| 			pr_err("Can't enable IR protocol %s\n",
 | |
| 			       proto_names[i].name);
 | |
| 			*protocols &= ~proto_names[i].type;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = request_module("%s", proto_names[i].module_name);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("Couldn't load IR protocol module %s\n",
 | |
| 			       proto_names[i].module_name);
 | |
| 			*protocols &= ~proto_names[i].type;
 | |
| 			continue;
 | |
| 		}
 | |
| 		msleep(20);
 | |
| 		available = ir_raw_get_allowed_protocols();
 | |
| 		if (!(*protocols & proto_names[i].type & ~available))
 | |
| 			continue;
 | |
| 
 | |
| 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
 | |
| 		       proto_names[i].module_name,
 | |
| 		       proto_names[i].name);
 | |
| 		*protocols &= ~proto_names[i].type;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * store_protocols() - changes the current/wakeup IR protocol(s)
 | |
|  * @device:	the device descriptor
 | |
|  * @mattr:	the device attribute struct
 | |
|  * @buf:	a pointer to the input buffer
 | |
|  * @len:	length of the input buffer
 | |
|  *
 | |
|  * This routine is for changing the IR protocol type.
 | |
|  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 | |
|  * See parse_protocol_change() for the valid commands.
 | |
|  * Returns @len on success or a negative error code.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_protocols and show_protocols.
 | |
|  */
 | |
| static ssize_t store_protocols(struct device *device,
 | |
| 			       struct device_attribute *mattr,
 | |
| 			       const char *buf, size_t len)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	u64 *current_protocols;
 | |
| 	struct rc_scancode_filter *filter;
 | |
| 	u64 old_protocols, new_protocols;
 | |
| 	ssize_t rc;
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
 | |
| 	current_protocols = &dev->enabled_protocols;
 | |
| 	filter = &dev->scancode_filter;
 | |
| 
 | |
| 	if (!dev->change_protocol) {
 | |
| 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 	if (!dev->registered) {
 | |
| 		mutex_unlock(&dev->lock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	old_protocols = *current_protocols;
 | |
| 	new_protocols = old_protocols;
 | |
| 	rc = parse_protocol_change(dev, &new_protocols, buf);
 | |
| 	if (rc < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW)
 | |
| 		ir_raw_load_modules(&new_protocols);
 | |
| 
 | |
| 	rc = dev->change_protocol(dev, &new_protocols);
 | |
| 	if (rc < 0) {
 | |
| 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
 | |
| 			(long long)new_protocols);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (new_protocols != old_protocols) {
 | |
| 		*current_protocols = new_protocols;
 | |
| 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
 | |
| 			(long long)new_protocols);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a protocol change was attempted the filter may need updating, even
 | |
| 	 * if the actual protocol mask hasn't changed (since the driver may have
 | |
| 	 * cleared the filter).
 | |
| 	 * Try setting the same filter with the new protocol (if any).
 | |
| 	 * Fall back to clearing the filter.
 | |
| 	 */
 | |
| 	if (dev->s_filter && filter->mask) {
 | |
| 		if (new_protocols)
 | |
| 			rc = dev->s_filter(dev, filter);
 | |
| 		else
 | |
| 			rc = -1;
 | |
| 
 | |
| 		if (rc < 0) {
 | |
| 			filter->data = 0;
 | |
| 			filter->mask = 0;
 | |
| 			dev->s_filter(dev, filter);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = len;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * show_filter() - shows the current scancode filter value or mask
 | |
|  * @device:	the device descriptor
 | |
|  * @attr:	the device attribute struct
 | |
|  * @buf:	a pointer to the output buffer
 | |
|  *
 | |
|  * This routine is a callback routine to read a scancode filter value or mask.
 | |
|  * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 | |
|  * It prints the current scancode filter value or mask of the appropriate filter
 | |
|  * type in hexadecimal into @buf and returns the size of the buffer.
 | |
|  *
 | |
|  * Bits of the filter value corresponding to set bits in the filter mask are
 | |
|  * compared against input scancodes and non-matching scancodes are discarded.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_filter and show_filter.
 | |
|  */
 | |
| static ssize_t show_filter(struct device *device,
 | |
| 			   struct device_attribute *attr,
 | |
| 			   char *buf)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
 | |
| 	struct rc_scancode_filter *filter;
 | |
| 	u32 val;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 
 | |
| 	if (fattr->type == RC_FILTER_NORMAL)
 | |
| 		filter = &dev->scancode_filter;
 | |
| 	else
 | |
| 		filter = &dev->scancode_wakeup_filter;
 | |
| 
 | |
| 	if (fattr->mask)
 | |
| 		val = filter->mask;
 | |
| 	else
 | |
| 		val = filter->data;
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 
 | |
| 	return sprintf(buf, "%#x\n", val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * store_filter() - changes the scancode filter value
 | |
|  * @device:	the device descriptor
 | |
|  * @attr:	the device attribute struct
 | |
|  * @buf:	a pointer to the input buffer
 | |
|  * @len:	length of the input buffer
 | |
|  *
 | |
|  * This routine is for changing a scancode filter value or mask.
 | |
|  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 | |
|  * Returns -EINVAL if an invalid filter value for the current protocol was
 | |
|  * specified or if scancode filtering is not supported by the driver, otherwise
 | |
|  * returns @len.
 | |
|  *
 | |
|  * Bits of the filter value corresponding to set bits in the filter mask are
 | |
|  * compared against input scancodes and non-matching scancodes are discarded.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_filter and show_filter.
 | |
|  */
 | |
| static ssize_t store_filter(struct device *device,
 | |
| 			    struct device_attribute *attr,
 | |
| 			    const char *buf, size_t len)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
 | |
| 	struct rc_scancode_filter new_filter, *filter;
 | |
| 	int ret;
 | |
| 	unsigned long val;
 | |
| 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
 | |
| 
 | |
| 	ret = kstrtoul(buf, 0, &val);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (fattr->type == RC_FILTER_NORMAL) {
 | |
| 		set_filter = dev->s_filter;
 | |
| 		filter = &dev->scancode_filter;
 | |
| 	} else {
 | |
| 		set_filter = dev->s_wakeup_filter;
 | |
| 		filter = &dev->scancode_wakeup_filter;
 | |
| 	}
 | |
| 
 | |
| 	if (!set_filter)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 	if (!dev->registered) {
 | |
| 		mutex_unlock(&dev->lock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	new_filter = *filter;
 | |
| 	if (fattr->mask)
 | |
| 		new_filter.mask = val;
 | |
| 	else
 | |
| 		new_filter.data = val;
 | |
| 
 | |
| 	if (fattr->type == RC_FILTER_WAKEUP) {
 | |
| 		/*
 | |
| 		 * Refuse to set a filter unless a protocol is enabled
 | |
| 		 * and the filter is valid for that protocol
 | |
| 		 */
 | |
| 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
 | |
| 			ret = rc_validate_filter(dev, &new_filter);
 | |
| 		else
 | |
| 			ret = -EINVAL;
 | |
| 
 | |
| 		if (ret != 0)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
 | |
| 	    val) {
 | |
| 		/* refuse to set a filter unless a protocol is enabled */
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = set_filter(dev, &new_filter);
 | |
| 	if (ret < 0)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	*filter = new_filter;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 	return (ret < 0) ? ret : len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * show_wakeup_protocols() - shows the wakeup IR protocol
 | |
|  * @device:	the device descriptor
 | |
|  * @mattr:	the device attribute struct
 | |
|  * @buf:	a pointer to the output buffer
 | |
|  *
 | |
|  * This routine is a callback routine for input read the IR protocol type(s).
 | |
|  * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
 | |
|  * It returns the protocol names of supported protocols.
 | |
|  * The enabled protocols are printed in brackets.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_wakeup_protocols and show_wakeup_protocols.
 | |
|  */
 | |
| static ssize_t show_wakeup_protocols(struct device *device,
 | |
| 				     struct device_attribute *mattr,
 | |
| 				     char *buf)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	u64 allowed;
 | |
| 	enum rc_proto enabled;
 | |
| 	char *tmp = buf;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 
 | |
| 	allowed = dev->allowed_wakeup_protocols;
 | |
| 	enabled = dev->wakeup_protocol;
 | |
| 
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
 | |
| 		__func__, (long long)allowed, enabled);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
 | |
| 		if (allowed & (1ULL << i)) {
 | |
| 			if (i == enabled)
 | |
| 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
 | |
| 			else
 | |
| 				tmp += sprintf(tmp, "%s ", protocols[i].name);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tmp != buf)
 | |
| 		tmp--;
 | |
| 	*tmp = '\n';
 | |
| 
 | |
| 	return tmp + 1 - buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
 | |
|  * @device:	the device descriptor
 | |
|  * @mattr:	the device attribute struct
 | |
|  * @buf:	a pointer to the input buffer
 | |
|  * @len:	length of the input buffer
 | |
|  *
 | |
|  * This routine is for changing the IR protocol type.
 | |
|  * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
 | |
|  * Returns @len on success or a negative error code.
 | |
|  *
 | |
|  * dev->lock is taken to guard against races between
 | |
|  * store_wakeup_protocols and show_wakeup_protocols.
 | |
|  */
 | |
| static ssize_t store_wakeup_protocols(struct device *device,
 | |
| 				      struct device_attribute *mattr,
 | |
| 				      const char *buf, size_t len)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	enum rc_proto protocol = RC_PROTO_UNKNOWN;
 | |
| 	ssize_t rc;
 | |
| 	u64 allowed;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 	if (!dev->registered) {
 | |
| 		mutex_unlock(&dev->lock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	allowed = dev->allowed_wakeup_protocols;
 | |
| 
 | |
| 	if (!sysfs_streq(buf, "none")) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
 | |
| 			if ((allowed & (1ULL << i)) &&
 | |
| 			    sysfs_streq(buf, protocols[i].name)) {
 | |
| 				protocol = i;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (i == ARRAY_SIZE(protocols)) {
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (dev->encode_wakeup) {
 | |
| 			u64 mask = 1ULL << protocol;
 | |
| 
 | |
| 			ir_raw_load_modules(&mask);
 | |
| 			if (!mask) {
 | |
| 				rc = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (dev->wakeup_protocol != protocol) {
 | |
| 		dev->wakeup_protocol = protocol;
 | |
| 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
 | |
| 
 | |
| 		if (protocol == RC_PROTO_RC6_MCE)
 | |
| 			dev->scancode_wakeup_filter.data = 0x800f0000;
 | |
| 		else
 | |
| 			dev->scancode_wakeup_filter.data = 0;
 | |
| 		dev->scancode_wakeup_filter.mask = 0;
 | |
| 
 | |
| 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
 | |
| 		if (rc == 0)
 | |
| 			rc = len;
 | |
| 	} else {
 | |
| 		rc = len;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void rc_dev_release(struct device *device)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 
 | |
| 	kfree(dev);
 | |
| }
 | |
| 
 | |
| static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
 | |
| {
 | |
| 	struct rc_dev *dev = to_rc_dev(device);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 
 | |
| 	if (!dev->registered)
 | |
| 		ret = -ENODEV;
 | |
| 	if (ret == 0 && dev->rc_map.name)
 | |
| 		ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
 | |
| 	if (ret == 0 && dev->driver_name)
 | |
| 		ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
 | |
| 	if (ret == 0 && dev->device_name)
 | |
| 		ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
 | |
| 
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Static device attribute struct with the sysfs attributes for IR's
 | |
|  */
 | |
| static struct device_attribute dev_attr_ro_protocols =
 | |
| __ATTR(protocols, 0444, show_protocols, NULL);
 | |
| static struct device_attribute dev_attr_rw_protocols =
 | |
| __ATTR(protocols, 0644, show_protocols, store_protocols);
 | |
| static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
 | |
| 		   store_wakeup_protocols);
 | |
| static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
 | |
| 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
 | |
| static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
 | |
| 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
 | |
| static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
 | |
| 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
 | |
| static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
 | |
| 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
 | |
| 
 | |
| static struct attribute *rc_dev_rw_protocol_attrs[] = {
 | |
| 	&dev_attr_rw_protocols.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
 | |
| 	.attrs	= rc_dev_rw_protocol_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute *rc_dev_ro_protocol_attrs[] = {
 | |
| 	&dev_attr_ro_protocols.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
 | |
| 	.attrs	= rc_dev_ro_protocol_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute *rc_dev_filter_attrs[] = {
 | |
| 	&dev_attr_filter.attr.attr,
 | |
| 	&dev_attr_filter_mask.attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group rc_dev_filter_attr_grp = {
 | |
| 	.attrs	= rc_dev_filter_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute *rc_dev_wakeup_filter_attrs[] = {
 | |
| 	&dev_attr_wakeup_filter.attr.attr,
 | |
| 	&dev_attr_wakeup_filter_mask.attr.attr,
 | |
| 	&dev_attr_wakeup_protocols.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
 | |
| 	.attrs	= rc_dev_wakeup_filter_attrs,
 | |
| };
 | |
| 
 | |
| static const struct device_type rc_dev_type = {
 | |
| 	.release	= rc_dev_release,
 | |
| 	.uevent		= rc_dev_uevent,
 | |
| };
 | |
| 
 | |
| struct rc_dev *rc_allocate_device(enum rc_driver_type type)
 | |
| {
 | |
| 	struct rc_dev *dev;
 | |
| 
 | |
| 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 | |
| 	if (!dev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (type != RC_DRIVER_IR_RAW_TX) {
 | |
| 		dev->input_dev = input_allocate_device();
 | |
| 		if (!dev->input_dev) {
 | |
| 			kfree(dev);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		dev->input_dev->getkeycode = ir_getkeycode;
 | |
| 		dev->input_dev->setkeycode = ir_setkeycode;
 | |
| 		input_set_drvdata(dev->input_dev, dev);
 | |
| 
 | |
| 		dev->timeout = IR_DEFAULT_TIMEOUT;
 | |
| 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
 | |
| 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
 | |
| 
 | |
| 		spin_lock_init(&dev->rc_map.lock);
 | |
| 		spin_lock_init(&dev->keylock);
 | |
| 	}
 | |
| 	mutex_init(&dev->lock);
 | |
| 
 | |
| 	dev->dev.type = &rc_dev_type;
 | |
| 	dev->dev.class = &rc_class;
 | |
| 	device_initialize(&dev->dev);
 | |
| 
 | |
| 	dev->driver_type = type;
 | |
| 
 | |
| 	__module_get(THIS_MODULE);
 | |
| 	return dev;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_allocate_device);
 | |
| 
 | |
| void rc_free_device(struct rc_dev *dev)
 | |
| {
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	input_free_device(dev->input_dev);
 | |
| 
 | |
| 	put_device(&dev->dev);
 | |
| 
 | |
| 	/* kfree(dev) will be called by the callback function
 | |
| 	   rc_dev_release() */
 | |
| 
 | |
| 	module_put(THIS_MODULE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_free_device);
 | |
| 
 | |
| static void devm_rc_alloc_release(struct device *dev, void *res)
 | |
| {
 | |
| 	rc_free_device(*(struct rc_dev **)res);
 | |
| }
 | |
| 
 | |
| struct rc_dev *devm_rc_allocate_device(struct device *dev,
 | |
| 				       enum rc_driver_type type)
 | |
| {
 | |
| 	struct rc_dev **dr, *rc;
 | |
| 
 | |
| 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
 | |
| 	if (!dr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rc = rc_allocate_device(type);
 | |
| 	if (!rc) {
 | |
| 		devres_free(dr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	rc->dev.parent = dev;
 | |
| 	rc->managed_alloc = true;
 | |
| 	*dr = rc;
 | |
| 	devres_add(dev, dr);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
 | |
| 
 | |
| static int rc_prepare_rx_device(struct rc_dev *dev)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct rc_map *rc_map;
 | |
| 	u64 rc_proto;
 | |
| 
 | |
| 	if (!dev->map_name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rc_map = rc_map_get(dev->map_name);
 | |
| 	if (!rc_map)
 | |
| 		rc_map = rc_map_get(RC_MAP_EMPTY);
 | |
| 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rc = ir_setkeytable(dev, rc_map);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc_proto = BIT_ULL(rc_map->rc_proto);
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
 | |
| 		dev->enabled_protocols = dev->allowed_protocols;
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW)
 | |
| 		ir_raw_load_modules(&rc_proto);
 | |
| 
 | |
| 	if (dev->change_protocol) {
 | |
| 		rc = dev->change_protocol(dev, &rc_proto);
 | |
| 		if (rc < 0)
 | |
| 			goto out_table;
 | |
| 		dev->enabled_protocols = rc_proto;
 | |
| 	}
 | |
| 
 | |
| 	/* Keyboard events */
 | |
| 	set_bit(EV_KEY, dev->input_dev->evbit);
 | |
| 	set_bit(EV_REP, dev->input_dev->evbit);
 | |
| 	set_bit(EV_MSC, dev->input_dev->evbit);
 | |
| 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
 | |
| 
 | |
| 	/* Pointer/mouse events */
 | |
| 	set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
 | |
| 	set_bit(EV_REL, dev->input_dev->evbit);
 | |
| 	set_bit(REL_X, dev->input_dev->relbit);
 | |
| 	set_bit(REL_Y, dev->input_dev->relbit);
 | |
| 
 | |
| 	if (dev->open)
 | |
| 		dev->input_dev->open = ir_open;
 | |
| 	if (dev->close)
 | |
| 		dev->input_dev->close = ir_close;
 | |
| 
 | |
| 	dev->input_dev->dev.parent = &dev->dev;
 | |
| 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
 | |
| 	dev->input_dev->phys = dev->input_phys;
 | |
| 	dev->input_dev->name = dev->device_name;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_table:
 | |
| 	ir_free_table(&dev->rc_map);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int rc_setup_rx_device(struct rc_dev *dev)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* rc_open will be called here */
 | |
| 	rc = input_register_device(dev->input_dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Default delay of 250ms is too short for some protocols, especially
 | |
| 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
 | |
| 	 * to avoid wrong repetition of the keycodes. Note that this must be
 | |
| 	 * set after the call to input_register_device().
 | |
| 	 */
 | |
| 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
 | |
| 		dev->input_dev->rep[REP_DELAY] = 0;
 | |
| 	else
 | |
| 		dev->input_dev->rep[REP_DELAY] = 500;
 | |
| 
 | |
| 	/*
 | |
| 	 * As a repeat event on protocols like RC-5 and NEC take as long as
 | |
| 	 * 110/114ms, using 33ms as a repeat period is not the right thing
 | |
| 	 * to do.
 | |
| 	 */
 | |
| 	dev->input_dev->rep[REP_PERIOD] = 125;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rc_free_rx_device(struct rc_dev *dev)
 | |
| {
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	if (dev->input_dev) {
 | |
| 		input_unregister_device(dev->input_dev);
 | |
| 		dev->input_dev = NULL;
 | |
| 	}
 | |
| 
 | |
| 	ir_free_table(&dev->rc_map);
 | |
| }
 | |
| 
 | |
| int rc_register_device(struct rc_dev *dev)
 | |
| {
 | |
| 	const char *path;
 | |
| 	int attr = 0;
 | |
| 	int minor;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
 | |
| 	if (minor < 0)
 | |
| 		return minor;
 | |
| 
 | |
| 	dev->minor = minor;
 | |
| 	dev_set_name(&dev->dev, "rc%u", dev->minor);
 | |
| 	dev_set_drvdata(&dev->dev, dev);
 | |
| 
 | |
| 	dev->dev.groups = dev->sysfs_groups;
 | |
| 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
 | |
| 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
 | |
| 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
 | |
| 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
 | |
| 	if (dev->s_filter)
 | |
| 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
 | |
| 	if (dev->s_wakeup_filter)
 | |
| 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
 | |
| 	dev->sysfs_groups[attr++] = NULL;
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
 | |
| 		rc = ir_raw_event_prepare(dev);
 | |
| 		if (rc < 0)
 | |
| 			goto out_minor;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
 | |
| 		rc = rc_prepare_rx_device(dev);
 | |
| 		if (rc)
 | |
| 			goto out_raw;
 | |
| 	}
 | |
| 
 | |
| 	dev->registered = true;
 | |
| 
 | |
| 	rc = device_add(&dev->dev);
 | |
| 	if (rc)
 | |
| 		goto out_rx_free;
 | |
| 
 | |
| 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
 | |
| 	dev_info(&dev->dev, "%s as %s\n",
 | |
| 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
 | |
| 	kfree(path);
 | |
| 
 | |
| 	/*
 | |
| 	 * once the input device is registered in rc_setup_rx_device,
 | |
| 	 * userspace can open the input device and rc_open() will be called
 | |
| 	 * as a result. This results in driver code being allowed to submit
 | |
| 	 * keycodes with rc_keydown, so lirc must be registered first.
 | |
| 	 */
 | |
| 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
 | |
| 		rc = lirc_register(dev);
 | |
| 		if (rc < 0)
 | |
| 			goto out_dev;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
 | |
| 		rc = rc_setup_rx_device(dev);
 | |
| 		if (rc)
 | |
| 			goto out_lirc;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
 | |
| 		rc = ir_raw_event_register(dev);
 | |
| 		if (rc < 0)
 | |
| 			goto out_rx;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
 | |
| 		dev->driver_name ? dev->driver_name : "unknown");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_rx:
 | |
| 	rc_free_rx_device(dev);
 | |
| out_lirc:
 | |
| 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 | |
| 		lirc_unregister(dev);
 | |
| out_dev:
 | |
| 	device_del(&dev->dev);
 | |
| out_rx_free:
 | |
| 	ir_free_table(&dev->rc_map);
 | |
| out_raw:
 | |
| 	ir_raw_event_free(dev);
 | |
| out_minor:
 | |
| 	ida_free(&rc_ida, minor);
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rc_register_device);
 | |
| 
 | |
| static void devm_rc_release(struct device *dev, void *res)
 | |
| {
 | |
| 	rc_unregister_device(*(struct rc_dev **)res);
 | |
| }
 | |
| 
 | |
| int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
 | |
| {
 | |
| 	struct rc_dev **dr;
 | |
| 	int ret;
 | |
| 
 | |
| 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
 | |
| 	if (!dr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = rc_register_device(dev);
 | |
| 	if (ret) {
 | |
| 		devres_free(dr);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*dr = dev;
 | |
| 	devres_add(parent, dr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(devm_rc_register_device);
 | |
| 
 | |
| void rc_unregister_device(struct rc_dev *dev)
 | |
| {
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	if (dev->driver_type == RC_DRIVER_IR_RAW)
 | |
| 		ir_raw_event_unregister(dev);
 | |
| 
 | |
| 	del_timer_sync(&dev->timer_keyup);
 | |
| 	del_timer_sync(&dev->timer_repeat);
 | |
| 
 | |
| 	mutex_lock(&dev->lock);
 | |
| 	if (dev->users && dev->close)
 | |
| 		dev->close(dev);
 | |
| 	dev->registered = false;
 | |
| 	mutex_unlock(&dev->lock);
 | |
| 
 | |
| 	rc_free_rx_device(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * lirc device should be freed with dev->registered = false, so
 | |
| 	 * that userspace polling will get notified.
 | |
| 	 */
 | |
| 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 | |
| 		lirc_unregister(dev);
 | |
| 
 | |
| 	device_del(&dev->dev);
 | |
| 
 | |
| 	ida_free(&rc_ida, dev->minor);
 | |
| 
 | |
| 	if (!dev->managed_alloc)
 | |
| 		rc_free_device(dev);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(rc_unregister_device);
 | |
| 
 | |
| /*
 | |
|  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 | |
|  */
 | |
| 
 | |
| static int __init rc_core_init(void)
 | |
| {
 | |
| 	int rc = class_register(&rc_class);
 | |
| 	if (rc) {
 | |
| 		pr_err("rc_core: unable to register rc class\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = lirc_dev_init();
 | |
| 	if (rc) {
 | |
| 		pr_err("rc_core: unable to init lirc\n");
 | |
| 		class_unregister(&rc_class);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	led_trigger_register_simple("rc-feedback", &led_feedback);
 | |
| 	rc_map_register(&empty_map);
 | |
| #ifdef CONFIG_MEDIA_CEC_RC
 | |
| 	rc_map_register(&cec_map);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit rc_core_exit(void)
 | |
| {
 | |
| 	lirc_dev_exit();
 | |
| 	class_unregister(&rc_class);
 | |
| 	led_trigger_unregister_simple(led_feedback);
 | |
| #ifdef CONFIG_MEDIA_CEC_RC
 | |
| 	rc_map_unregister(&cec_map);
 | |
| #endif
 | |
| 	rc_map_unregister(&empty_map);
 | |
| }
 | |
| 
 | |
| subsys_initcall(rc_core_init);
 | |
| module_exit(rc_core_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Mauro Carvalho Chehab");
 | |
| MODULE_LICENSE("GPL v2");
 |