417 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * drivers/media/i2c/ccs/ccs-reg-access.c
 | |
|  *
 | |
|  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
 | |
|  *
 | |
|  * Copyright (C) 2020 Intel Corporation
 | |
|  * Copyright (C) 2011--2012 Nokia Corporation
 | |
|  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
 | |
|  */
 | |
| 
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/i2c.h>
 | |
| 
 | |
| #include "ccs.h"
 | |
| #include "ccs-limits.h"
 | |
| 
 | |
| static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
 | |
| {
 | |
| 	s32 exp;
 | |
| 	u64 man;
 | |
| 
 | |
| 	if (phloat >= 0x80000000) {
 | |
| 		dev_err(&client->dev, "this is a negative number\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (phloat == 0x7f800000)
 | |
| 		return ~0; /* Inf. */
 | |
| 
 | |
| 	if ((phloat & 0x7f800000) == 0x7f800000) {
 | |
| 		dev_err(&client->dev, "NaN or other special number\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Valid cases begin here */
 | |
| 	if (phloat == 0)
 | |
| 		return 0; /* Valid zero */
 | |
| 
 | |
| 	if (phloat > 0x4f800000)
 | |
| 		return ~0; /* larger than 4294967295 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Unbias exponent (note how phloat is now guaranteed to
 | |
| 	 * have 0 in the high bit)
 | |
| 	 */
 | |
| 	exp = ((int32_t)phloat >> 23) - 127;
 | |
| 
 | |
| 	/* Extract mantissa, add missing '1' bit and it's in MHz */
 | |
| 	man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
 | |
| 
 | |
| 	if (exp < 0)
 | |
| 		man >>= -exp;
 | |
| 	else
 | |
| 		man <<= exp;
 | |
| 
 | |
| 	man >>= 23; /* Remove mantissa bias */
 | |
| 
 | |
| 	return man & 0xffffffff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
 | |
|  * Returns zero if successful, or non-zero otherwise.
 | |
|  */
 | |
| static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
 | |
| 			     u32 *val)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	struct i2c_msg msg;
 | |
| 	unsigned char data_buf[sizeof(u32)] = { 0 };
 | |
| 	unsigned char offset_buf[sizeof(u16)];
 | |
| 	int r;
 | |
| 
 | |
| 	if (len > sizeof(data_buf))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	msg.addr = client->addr;
 | |
| 	msg.flags = 0;
 | |
| 	msg.len = sizeof(offset_buf);
 | |
| 	msg.buf = offset_buf;
 | |
| 	put_unaligned_be16(reg, offset_buf);
 | |
| 
 | |
| 	r = i2c_transfer(client->adapter, &msg, 1);
 | |
| 	if (r != 1) {
 | |
| 		if (r >= 0)
 | |
| 			r = -EBUSY;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	msg.len = len;
 | |
| 	msg.flags = I2C_M_RD;
 | |
| 	msg.buf = &data_buf[sizeof(data_buf) - len];
 | |
| 
 | |
| 	r = i2c_transfer(client->adapter, &msg, 1);
 | |
| 	if (r != 1) {
 | |
| 		if (r >= 0)
 | |
| 			r = -EBUSY;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	*val = get_unaligned_be32(data_buf);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* Read a register using 8-bit access only. */
 | |
| static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
 | |
| 				   u16 len, u32 *val)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int rval;
 | |
| 
 | |
| 	*val = 0;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		u32 val8;
 | |
| 
 | |
| 		rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
 | |
| 		if (rval < 0)
 | |
| 			return rval;
 | |
| 		*val |= val8 << ((len - i - 1) << 3);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned int ccs_reg_width(u32 reg)
 | |
| {
 | |
| 	if (reg & CCS_FL_16BIT)
 | |
| 		return sizeof(u16);
 | |
| 	if (reg & CCS_FL_32BIT)
 | |
| 		return sizeof(u32);
 | |
| 
 | |
| 	return sizeof(u8);
 | |
| }
 | |
| 
 | |
| static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
 | |
| {
 | |
| 	if (val >> 10 > U32_MAX / 15625) {
 | |
| 		dev_warn(&client->dev, "value %u overflows!\n", val);
 | |
| 		return U32_MAX;
 | |
| 	}
 | |
| 
 | |
| 	return ((val >> 10) * 15625) +
 | |
| 		(val & GENMASK(9, 0)) * 15625 / 1024;
 | |
| }
 | |
| 
 | |
| u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 
 | |
| 	if (reg & CCS_FL_FLOAT_IREAL) {
 | |
| 		if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
 | |
| 		    CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
 | |
| 			val = ireal32_to_u32_mul_1000000(client, val);
 | |
| 		else
 | |
| 			val = float_to_u32_mul_1000000(client, val);
 | |
| 	} else if (reg & CCS_FL_IREAL) {
 | |
| 		val = ireal32_to_u32_mul_1000000(client, val);
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
 | |
|  * Returns zero if successful, or non-zero otherwise.
 | |
|  */
 | |
| static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
 | |
| 			   bool only8, bool conv)
 | |
| {
 | |
| 	unsigned int len = ccs_reg_width(reg);
 | |
| 	int rval;
 | |
| 
 | |
| 	if (!only8)
 | |
| 		rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
 | |
| 	else
 | |
| 		rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
 | |
| 					       val);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	if (!conv)
 | |
| 		return 0;
 | |
| 
 | |
| 	*val = ccs_reg_conv(sensor, reg, *val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
 | |
| 			   u32 reg, u32 *val)
 | |
| {
 | |
| 	unsigned int width = ccs_reg_width(reg);
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < num_regs; i++, regs++) {
 | |
| 		u8 *data;
 | |
| 
 | |
| 		if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
 | |
| 			continue;
 | |
| 
 | |
| 		if (regs->addr > CCS_REG_ADDR(reg))
 | |
| 			break;
 | |
| 
 | |
| 		data = ®s->value[CCS_REG_ADDR(reg) - regs->addr];
 | |
| 
 | |
| 		switch (width) {
 | |
| 		case sizeof(u8):
 | |
| 			*val = *data;
 | |
| 			break;
 | |
| 		case sizeof(u16):
 | |
| 			*val = get_unaligned_be16(data);
 | |
| 			break;
 | |
| 		case sizeof(u32):
 | |
| 			*val = get_unaligned_be32(data);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
 | |
| {
 | |
| 	if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
 | |
| 			     sensor->sdata.num_sensor_read_only_regs,
 | |
| 			     reg, val))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __ccs_read_data(sensor->mdata.module_read_only_regs,
 | |
| 			       sensor->mdata.num_module_read_only_regs,
 | |
| 			       reg, val);
 | |
| }
 | |
| 
 | |
| static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
 | |
| 			     bool force8, bool quirk, bool conv, bool data)
 | |
| {
 | |
| 	int rval;
 | |
| 
 | |
| 	if (data) {
 | |
| 		rval = ccs_read_data(sensor, reg, val);
 | |
| 		if (!rval)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (quirk) {
 | |
| 		*val = 0;
 | |
| 		rval = ccs_call_quirk(sensor, reg_access, false, ®, val);
 | |
| 		if (rval == -ENOIOCTLCMD)
 | |
| 			return 0;
 | |
| 		if (rval < 0)
 | |
| 			return rval;
 | |
| 
 | |
| 		if (force8)
 | |
| 			return __ccs_read_addr(sensor, reg, val, true, conv);
 | |
| 	}
 | |
| 
 | |
| 	return __ccs_read_addr(sensor, reg, val,
 | |
| 			       ccs_needs_quirk(sensor,
 | |
| 					       CCS_QUIRK_FLAG_8BIT_READ_ONLY),
 | |
| 			       conv);
 | |
| }
 | |
| 
 | |
| int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
 | |
| {
 | |
| 	return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
 | |
| }
 | |
| 
 | |
| int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
 | |
| {
 | |
| 	return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
 | |
| }
 | |
| 
 | |
| int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
 | |
| {
 | |
| 	return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
 | |
| }
 | |
| 
 | |
| static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
 | |
| {
 | |
| 	unsigned int retries;
 | |
| 	int r;
 | |
| 
 | |
| 	for (retries = 0; retries < 10; retries++) {
 | |
| 		/*
 | |
| 		 * Due to unknown reason sensor stops responding. This
 | |
| 		 * loop is a temporaty solution until the root cause
 | |
| 		 * is found.
 | |
| 		 */
 | |
| 		r = i2c_transfer(client->adapter, msg, 1);
 | |
| 		if (r != 1) {
 | |
| 			usleep_range(1000, 2000);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (retries)
 | |
| 			dev_err(&client->dev,
 | |
| 				"sensor i2c stall encountered. retries: %d\n",
 | |
| 				retries);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	struct i2c_msg msg;
 | |
| 	unsigned char data[6];
 | |
| 	unsigned int len = ccs_reg_width(reg);
 | |
| 	int r;
 | |
| 
 | |
| 	if (len > sizeof(data) - 2)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	msg.addr = client->addr;
 | |
| 	msg.flags = 0; /* Write */
 | |
| 	msg.len = 2 + len;
 | |
| 	msg.buf = data;
 | |
| 
 | |
| 	put_unaligned_be16(CCS_REG_ADDR(reg), data);
 | |
| 	put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
 | |
| 		CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
 | |
| 		ccs_reg_width(reg) << 1, val, val);
 | |
| 
 | |
| 	r = ccs_write_retry(client, &msg);
 | |
| 	if (r)
 | |
| 		dev_err(&client->dev,
 | |
| 			"wrote 0x%x to offset 0x%x error %d\n", val,
 | |
| 			CCS_REG_ADDR(reg), r);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write to a 8/16-bit register.
 | |
|  * Returns zero if successful, or non-zero otherwise.
 | |
|  */
 | |
| int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
 | |
| {
 | |
| 	int rval;
 | |
| 
 | |
| 	rval = ccs_call_quirk(sensor, reg_access, true, ®, &val);
 | |
| 	if (rval == -ENOIOCTLCMD)
 | |
| 		return 0;
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	return ccs_write_addr_no_quirk(sensor, reg, val);
 | |
| }
 | |
| 
 | |
| #define MAX_WRITE_LEN	32U
 | |
| 
 | |
| int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
 | |
| 			size_t num_regs)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned char buf[2 + MAX_WRITE_LEN];
 | |
| 	struct i2c_msg msg = {
 | |
| 		.addr = client->addr,
 | |
| 		.buf = buf,
 | |
| 	};
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < num_regs; i++, regs++) {
 | |
| 		unsigned char *regdata = regs->value;
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		for (j = 0; j < regs->len;
 | |
| 		     j += msg.len - 2, regdata += msg.len - 2) {
 | |
| 			char printbuf[(MAX_WRITE_LEN << 1) +
 | |
| 				      1 /* \0 */] = { 0 };
 | |
| 			int rval;
 | |
| 
 | |
| 			msg.len = min(regs->len - j, MAX_WRITE_LEN);
 | |
| 
 | |
| 			bin2hex(printbuf, regdata, msg.len);
 | |
| 			dev_dbg(&client->dev,
 | |
| 				"writing msr reg 0x%4.4x value 0x%s\n",
 | |
| 				regs->addr + j, printbuf);
 | |
| 
 | |
| 			put_unaligned_be16(regs->addr + j, buf);
 | |
| 			memcpy(buf + 2, regdata, msg.len);
 | |
| 
 | |
| 			msg.len += 2;
 | |
| 
 | |
| 			rval = ccs_write_retry(client, &msg);
 | |
| 			if (rval) {
 | |
| 				dev_err(&client->dev,
 | |
| 					"error writing %u octets to address 0x%4.4x\n",
 | |
| 					msg.len, regs->addr + j);
 | |
| 				return rval;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |