609 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * I2C Link Layer for ST21NFCA HCI based Driver
 | |
|  * Copyright (C) 2014  STMicroelectronics SAS. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/crc-ccitt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/gpio/consumer.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_gpio.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/nfc.h>
 | |
| #include <linux/firmware.h>
 | |
| 
 | |
| #include <net/nfc/hci.h>
 | |
| #include <net/nfc/llc.h>
 | |
| #include <net/nfc/nfc.h>
 | |
| 
 | |
| #include "st21nfca.h"
 | |
| 
 | |
| /*
 | |
|  * Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF.
 | |
|  * Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism
 | |
|  * called byte stuffing has been introduced.
 | |
|  *
 | |
|  * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
 | |
|  * - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
 | |
|  * - xor byte with ST21NFCA_BYTE_STUFFING_MASK
 | |
|  */
 | |
| #define ST21NFCA_SOF_EOF		0x7e
 | |
| #define ST21NFCA_BYTE_STUFFING_MASK	0x20
 | |
| #define ST21NFCA_ESCAPE_BYTE_STUFFING	0x7d
 | |
| 
 | |
| /* SOF + 00 */
 | |
| #define ST21NFCA_FRAME_HEADROOM			2
 | |
| 
 | |
| /* 2 bytes crc + EOF */
 | |
| #define ST21NFCA_FRAME_TAILROOM 3
 | |
| #define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \
 | |
| 				buf[1] == 0)
 | |
| 
 | |
| #define ST21NFCA_HCI_DRIVER_NAME "st21nfca_hci"
 | |
| #define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c"
 | |
| 
 | |
| struct st21nfca_i2c_phy {
 | |
| 	struct i2c_client *i2c_dev;
 | |
| 	struct nfc_hci_dev *hdev;
 | |
| 
 | |
| 	struct gpio_desc *gpiod_ena;
 | |
| 	struct st21nfca_se_status se_status;
 | |
| 
 | |
| 	struct sk_buff *pending_skb;
 | |
| 	int current_read_len;
 | |
| 	/*
 | |
| 	 * crc might have fail because i2c macro
 | |
| 	 * is disable due to other interface activity
 | |
| 	 */
 | |
| 	int crc_trials;
 | |
| 
 | |
| 	int powered;
 | |
| 	int run_mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * < 0 if hardware error occured (e.g. i2c err)
 | |
| 	 * and prevents normal operation.
 | |
| 	 */
 | |
| 	int hard_fault;
 | |
| 	struct mutex phy_lock;
 | |
| };
 | |
| 
 | |
| static const u8 len_seq[] = { 16, 24, 12, 29 };
 | |
| static const u16 wait_tab[] = { 2, 3, 5, 15, 20, 40};
 | |
| 
 | |
| #define I2C_DUMP_SKB(info, skb)					\
 | |
| do {								\
 | |
| 	pr_debug("%s:\n", info);				\
 | |
| 	print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET,	\
 | |
| 		       16, 1, (skb)->data, (skb)->len, 0);	\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * In order to get the CLF in a known state we generate an internal reboot
 | |
|  * using a proprietary command.
 | |
|  * Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF
 | |
|  * fill buffer.
 | |
|  */
 | |
| static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy)
 | |
| {
 | |
| 	u16 wait_reboot[] = { 50, 300, 1000 };
 | |
| 	char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E };
 | |
| 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE];
 | |
| 	int i, r = -1;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
 | |
| 		r = i2c_master_send(phy->i2c_dev, reboot_cmd,
 | |
| 				    sizeof(reboot_cmd));
 | |
| 		if (r < 0)
 | |
| 			msleep(wait_reboot[i]);
 | |
| 	}
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	/* CLF is spending about 20ms to do an internal reboot */
 | |
| 	msleep(20);
 | |
| 	r = -1;
 | |
| 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
 | |
| 		r = i2c_master_recv(phy->i2c_dev, tmp,
 | |
| 				    ST21NFCA_HCI_LLC_MAX_SIZE);
 | |
| 		if (r < 0)
 | |
| 			msleep(wait_reboot[i]);
 | |
| 	}
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE &&
 | |
| 		tmp[i] == ST21NFCA_SOF_EOF; i++)
 | |
| 		;
 | |
| 
 | |
| 	if (r != ST21NFCA_HCI_LLC_MAX_SIZE)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	usleep_range(1000, 1500);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int st21nfca_hci_i2c_enable(void *phy_id)
 | |
| {
 | |
| 	struct st21nfca_i2c_phy *phy = phy_id;
 | |
| 
 | |
| 	gpiod_set_value(phy->gpiod_ena, 1);
 | |
| 	phy->powered = 1;
 | |
| 	phy->run_mode = ST21NFCA_HCI_MODE;
 | |
| 
 | |
| 	usleep_range(10000, 15000);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void st21nfca_hci_i2c_disable(void *phy_id)
 | |
| {
 | |
| 	struct st21nfca_i2c_phy *phy = phy_id;
 | |
| 
 | |
| 	gpiod_set_value(phy->gpiod_ena, 0);
 | |
| 
 | |
| 	phy->powered = 0;
 | |
| }
 | |
| 
 | |
| static void st21nfca_hci_add_len_crc(struct sk_buff *skb)
 | |
| {
 | |
| 	u16 crc;
 | |
| 	u8 tmp;
 | |
| 
 | |
| 	*(u8 *)skb_push(skb, 1) = 0;
 | |
| 
 | |
| 	crc = crc_ccitt(0xffff, skb->data, skb->len);
 | |
| 	crc = ~crc;
 | |
| 
 | |
| 	tmp = crc & 0x00ff;
 | |
| 	skb_put_u8(skb, tmp);
 | |
| 
 | |
| 	tmp = (crc >> 8) & 0x00ff;
 | |
| 	skb_put_u8(skb, tmp);
 | |
| }
 | |
| 
 | |
| static void st21nfca_hci_remove_len_crc(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_pull(skb, ST21NFCA_FRAME_HEADROOM);
 | |
| 	skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writing a frame must not return the number of written bytes.
 | |
|  * It must return either zero for success, or <0 for error.
 | |
|  * In addition, it must not alter the skb
 | |
|  */
 | |
| static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb)
 | |
| {
 | |
| 	int r = -1, i, j;
 | |
| 	struct st21nfca_i2c_phy *phy = phy_id;
 | |
| 	struct i2c_client *client = phy->i2c_dev;
 | |
| 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2];
 | |
| 
 | |
| 	I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb);
 | |
| 
 | |
| 	if (phy->hard_fault != 0)
 | |
| 		return phy->hard_fault;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute CRC before byte stuffing computation on frame
 | |
| 	 * Note st21nfca_hci_add_len_crc is doing a byte stuffing
 | |
| 	 * on its own value
 | |
| 	 */
 | |
| 	st21nfca_hci_add_len_crc(skb);
 | |
| 
 | |
| 	/* add ST21NFCA_SOF_EOF on tail */
 | |
| 	skb_put_u8(skb, ST21NFCA_SOF_EOF);
 | |
| 	/* add ST21NFCA_SOF_EOF on head */
 | |
| 	*(u8 *)skb_push(skb, 1) = ST21NFCA_SOF_EOF;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute byte stuffing
 | |
| 	 * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
 | |
| 	 * insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
 | |
| 	 * xor byte with ST21NFCA_BYTE_STUFFING_MASK
 | |
| 	 */
 | |
| 	tmp[0] = skb->data[0];
 | |
| 	for (i = 1, j = 1; i < skb->len - 1; i++, j++) {
 | |
| 		if (skb->data[i] == ST21NFCA_SOF_EOF
 | |
| 		    || skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) {
 | |
| 			tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING;
 | |
| 			j++;
 | |
| 			tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK;
 | |
| 		} else {
 | |
| 			tmp[j] = skb->data[i];
 | |
| 		}
 | |
| 	}
 | |
| 	tmp[j] = skb->data[i];
 | |
| 	j++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Manage sleep mode
 | |
| 	 * Try 3 times to send data with delay between each
 | |
| 	 */
 | |
| 	mutex_lock(&phy->phy_lock);
 | |
| 	for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) {
 | |
| 		r = i2c_master_send(client, tmp, j);
 | |
| 		if (r < 0)
 | |
| 			msleep(wait_tab[i]);
 | |
| 	}
 | |
| 	mutex_unlock(&phy->phy_lock);
 | |
| 
 | |
| 	if (r >= 0) {
 | |
| 		if (r != j)
 | |
| 			r = -EREMOTEIO;
 | |
| 		else
 | |
| 			r = 0;
 | |
| 	}
 | |
| 
 | |
| 	st21nfca_hci_remove_len_crc(skb);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int get_frame_size(u8 *buf, int buflen)
 | |
| {
 | |
| 	int len = 0;
 | |
| 
 | |
| 	if (buf[len + 1] == ST21NFCA_SOF_EOF)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++)
 | |
| 		;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int check_crc(u8 *buf, int buflen)
 | |
| {
 | |
| 	u16 crc;
 | |
| 
 | |
| 	crc = crc_ccitt(0xffff, buf, buflen - 2);
 | |
| 	crc = ~crc;
 | |
| 
 | |
| 	if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) {
 | |
| 		pr_err(ST21NFCA_HCI_DRIVER_NAME
 | |
| 		       ": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1],
 | |
| 		       buf[buflen - 2]);
 | |
| 
 | |
| 		pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
 | |
| 		print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE,
 | |
| 			       16, 2, buf, buflen, false);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare received data for upper layer.
 | |
|  * Received data include byte stuffing, crc and sof/eof
 | |
|  * which is not usable by hci part.
 | |
|  * returns:
 | |
|  * frame size without sof/eof, header and byte stuffing
 | |
|  * -EBADMSG : frame was incorrect and discarded
 | |
|  */
 | |
| static int st21nfca_hci_i2c_repack(struct sk_buff *skb)
 | |
| {
 | |
| 	int i, j, r, size;
 | |
| 
 | |
| 	if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0))
 | |
| 		return -EBADMSG;
 | |
| 
 | |
| 	size = get_frame_size(skb->data, skb->len);
 | |
| 	if (size > 0) {
 | |
| 		skb_trim(skb, size);
 | |
| 		/* remove ST21NFCA byte stuffing for upper layer */
 | |
| 		for (i = 1, j = 0; i < skb->len; i++) {
 | |
| 			if (skb->data[i + j] ==
 | |
| 					(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) {
 | |
| 				skb->data[i] = skb->data[i + j + 1]
 | |
| 						| ST21NFCA_BYTE_STUFFING_MASK;
 | |
| 				i++;
 | |
| 				j++;
 | |
| 			}
 | |
| 			skb->data[i] = skb->data[i + j];
 | |
| 		}
 | |
| 		/* remove byte stuffing useless byte */
 | |
| 		skb_trim(skb, i - j);
 | |
| 		/* remove ST21NFCA_SOF_EOF from head */
 | |
| 		skb_pull(skb, 1);
 | |
| 
 | |
| 		r = check_crc(skb->data, skb->len);
 | |
| 		if (r != 0)
 | |
| 			return -EBADMSG;
 | |
| 
 | |
| 		/* remove headbyte */
 | |
| 		skb_pull(skb, 1);
 | |
| 		/* remove crc. Byte Stuffing is already removed here */
 | |
| 		skb_trim(skb, skb->len - 2);
 | |
| 		return skb->len;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees
 | |
|  * that i2c bus will be flushed and that next read will start on a new frame.
 | |
|  * returned skb contains only LLC header and payload.
 | |
|  * returns:
 | |
|  * frame size : if received frame is complete (find ST21NFCA_SOF_EOF at
 | |
|  * end of read)
 | |
|  * -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF
 | |
|  * at end of read)
 | |
|  * -EREMOTEIO : i2c read error (fatal)
 | |
|  * -EBADMSG : frame was incorrect and discarded
 | |
|  * (value returned from st21nfca_hci_i2c_repack)
 | |
|  * -EIO : if no ST21NFCA_SOF_EOF is found after reaching
 | |
|  * the read length end sequence
 | |
|  */
 | |
| static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy,
 | |
| 				 struct sk_buff *skb)
 | |
| {
 | |
| 	int r, i;
 | |
| 	u8 len;
 | |
| 	u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD];
 | |
| 	struct i2c_client *client = phy->i2c_dev;
 | |
| 
 | |
| 	if (phy->current_read_len < ARRAY_SIZE(len_seq)) {
 | |
| 		len = len_seq[phy->current_read_len];
 | |
| 
 | |
| 		/*
 | |
| 		 * Add retry mecanism
 | |
| 		 * Operation on I2C interface may fail in case of operation on
 | |
| 		 * RF or SWP interface
 | |
| 		 */
 | |
| 		r = 0;
 | |
| 		mutex_lock(&phy->phy_lock);
 | |
| 		for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) {
 | |
| 			r = i2c_master_recv(client, buf, len);
 | |
| 			if (r < 0)
 | |
| 				msleep(wait_tab[i]);
 | |
| 		}
 | |
| 		mutex_unlock(&phy->phy_lock);
 | |
| 
 | |
| 		if (r != len) {
 | |
| 			phy->current_read_len = 0;
 | |
| 			return -EREMOTEIO;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The first read sequence does not start with SOF.
 | |
| 		 * Data is corrupeted so we drop it.
 | |
| 		 */
 | |
| 		if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) {
 | |
| 			skb_trim(skb, 0);
 | |
| 			phy->current_read_len = 0;
 | |
| 			return -EIO;
 | |
| 		} else if (phy->current_read_len && IS_START_OF_FRAME(buf)) {
 | |
| 			/*
 | |
| 			 * Previous frame transmission was interrupted and
 | |
| 			 * the frame got repeated.
 | |
| 			 * Received frame start with ST21NFCA_SOF_EOF + 00.
 | |
| 			 */
 | |
| 			skb_trim(skb, 0);
 | |
| 			phy->current_read_len = 0;
 | |
| 		}
 | |
| 
 | |
| 		skb_put_data(skb, buf, len);
 | |
| 
 | |
| 		if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) {
 | |
| 			phy->current_read_len = 0;
 | |
| 			return st21nfca_hci_i2c_repack(skb);
 | |
| 		}
 | |
| 		phy->current_read_len++;
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads an shdlc frame from the chip. This is not as straightforward as it
 | |
|  * seems. The frame format is data-crc, and corruption can occur anywhere
 | |
|  * while transiting on i2c bus, such that we could read an invalid data.
 | |
|  * The tricky case is when we read a corrupted data or crc. We must detect
 | |
|  * this here in order to determine that data can be transmitted to the hci
 | |
|  * core. This is the reason why we check the crc here.
 | |
|  * The CLF will repeat a frame until we send a RR on that frame.
 | |
|  *
 | |
|  * On ST21NFCA, IRQ goes in idle when read starts. As no size information are
 | |
|  * available in the incoming data, other IRQ might come. Every IRQ will trigger
 | |
|  * a read sequence with different length and will fill the current frame.
 | |
|  * The reception is complete once we reach a ST21NFCA_SOF_EOF.
 | |
|  */
 | |
| static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id)
 | |
| {
 | |
| 	struct st21nfca_i2c_phy *phy = phy_id;
 | |
| 
 | |
| 	int r;
 | |
| 
 | |
| 	if (!phy || irq != phy->i2c_dev->irq) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (phy->hard_fault != 0)
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	r = st21nfca_hci_i2c_read(phy, phy->pending_skb);
 | |
| 	if (r == -EREMOTEIO) {
 | |
| 		phy->hard_fault = r;
 | |
| 
 | |
| 		nfc_hci_recv_frame(phy->hdev, NULL);
 | |
| 
 | |
| 		return IRQ_HANDLED;
 | |
| 	} else if (r == -EAGAIN || r == -EIO) {
 | |
| 		return IRQ_HANDLED;
 | |
| 	} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) {
 | |
| 		/*
 | |
| 		 * With ST21NFCA, only one interface (I2C, RF or SWP)
 | |
| 		 * may be active at a time.
 | |
| 		 * Having incorrect crc is usually due to i2c macrocell
 | |
| 		 * deactivation in the middle of a transmission.
 | |
| 		 * It may generate corrupted data on i2c.
 | |
| 		 * We give sometime to get i2c back.
 | |
| 		 * The complete frame will be repeated.
 | |
| 		 */
 | |
| 		msleep(wait_tab[phy->crc_trials]);
 | |
| 		phy->crc_trials++;
 | |
| 		phy->current_read_len = 0;
 | |
| 		kfree_skb(phy->pending_skb);
 | |
| 	} else if (r > 0) {
 | |
| 		/*
 | |
| 		 * We succeeded to read data from the CLF and
 | |
| 		 * data is valid.
 | |
| 		 * Reset counter.
 | |
| 		 */
 | |
| 		nfc_hci_recv_frame(phy->hdev, phy->pending_skb);
 | |
| 		phy->crc_trials = 0;
 | |
| 	} else {
 | |
| 		kfree_skb(phy->pending_skb);
 | |
| 	}
 | |
| 
 | |
| 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
 | |
| 	if (phy->pending_skb == NULL) {
 | |
| 		phy->hard_fault = -ENOMEM;
 | |
| 		nfc_hci_recv_frame(phy->hdev, NULL);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static const struct nfc_phy_ops i2c_phy_ops = {
 | |
| 	.write = st21nfca_hci_i2c_write,
 | |
| 	.enable = st21nfca_hci_i2c_enable,
 | |
| 	.disable = st21nfca_hci_i2c_disable,
 | |
| };
 | |
| 
 | |
| static const struct acpi_gpio_params enable_gpios = { 1, 0, false };
 | |
| 
 | |
| static const struct acpi_gpio_mapping acpi_st21nfca_gpios[] = {
 | |
| 	{ "enable-gpios", &enable_gpios, 1 },
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| static int st21nfca_hci_i2c_probe(struct i2c_client *client,
 | |
| 				  const struct i2c_device_id *id)
 | |
| {
 | |
| 	struct device *dev = &client->dev;
 | |
| 	struct st21nfca_i2c_phy *phy;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
 | |
| 		nfc_err(&client->dev, "Need I2C_FUNC_I2C\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!phy)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	phy->i2c_dev = client;
 | |
| 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
 | |
| 	if (phy->pending_skb == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	phy->current_read_len = 0;
 | |
| 	phy->crc_trials = 0;
 | |
| 	mutex_init(&phy->phy_lock);
 | |
| 	i2c_set_clientdata(client, phy);
 | |
| 
 | |
| 	r = devm_acpi_dev_add_driver_gpios(dev, acpi_st21nfca_gpios);
 | |
| 	if (r)
 | |
| 		dev_dbg(dev, "Unable to add GPIO mapping table\n");
 | |
| 
 | |
| 	/* Get EN GPIO from resource provider */
 | |
| 	phy->gpiod_ena = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
 | |
| 	if (IS_ERR(phy->gpiod_ena)) {
 | |
| 		nfc_err(dev, "Unable to get ENABLE GPIO\n");
 | |
| 		r = PTR_ERR(phy->gpiod_ena);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	phy->se_status.is_ese_present =
 | |
| 			device_property_read_bool(&client->dev, "ese-present");
 | |
| 	phy->se_status.is_uicc_present =
 | |
| 			device_property_read_bool(&client->dev, "uicc-present");
 | |
| 
 | |
| 	r = st21nfca_hci_platform_init(phy);
 | |
| 	if (r < 0) {
 | |
| 		nfc_err(&client->dev, "Unable to reboot st21nfca\n");
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	r = devm_request_threaded_irq(&client->dev, client->irq, NULL,
 | |
| 				st21nfca_hci_irq_thread_fn,
 | |
| 				IRQF_ONESHOT,
 | |
| 				ST21NFCA_HCI_DRIVER_NAME, phy);
 | |
| 	if (r < 0) {
 | |
| 		nfc_err(&client->dev, "Unable to register IRQ handler\n");
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	r = st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
 | |
| 			       ST21NFCA_FRAME_HEADROOM,
 | |
| 			       ST21NFCA_FRAME_TAILROOM,
 | |
| 			       ST21NFCA_HCI_LLC_MAX_PAYLOAD,
 | |
| 			       &phy->hdev,
 | |
| 			       &phy->se_status);
 | |
| 	if (r)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	kfree_skb(phy->pending_skb);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void st21nfca_hci_i2c_remove(struct i2c_client *client)
 | |
| {
 | |
| 	struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
 | |
| 
 | |
| 	st21nfca_hci_remove(phy->hdev);
 | |
| 
 | |
| 	if (phy->powered)
 | |
| 		st21nfca_hci_i2c_disable(phy);
 | |
| 	kfree_skb(phy->pending_skb);
 | |
| }
 | |
| 
 | |
| static const struct i2c_device_id st21nfca_hci_i2c_id_table[] = {
 | |
| 	{ST21NFCA_HCI_DRIVER_NAME, 0},
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table);
 | |
| 
 | |
| static const struct acpi_device_id st21nfca_hci_i2c_acpi_match[] __maybe_unused = {
 | |
| 	{"SMO2100", 0},
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(acpi, st21nfca_hci_i2c_acpi_match);
 | |
| 
 | |
| static const struct of_device_id of_st21nfca_i2c_match[] __maybe_unused = {
 | |
| 	{ .compatible = "st,st21nfca-i2c", },
 | |
| 	{ .compatible = "st,st21nfca_i2c", },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, of_st21nfca_i2c_match);
 | |
| 
 | |
| static struct i2c_driver st21nfca_hci_i2c_driver = {
 | |
| 	.driver = {
 | |
| 		.name = ST21NFCA_HCI_I2C_DRIVER_NAME,
 | |
| 		.of_match_table = of_match_ptr(of_st21nfca_i2c_match),
 | |
| 		.acpi_match_table = ACPI_PTR(st21nfca_hci_i2c_acpi_match),
 | |
| 	},
 | |
| 	.probe = st21nfca_hci_i2c_probe,
 | |
| 	.id_table = st21nfca_hci_i2c_id_table,
 | |
| 	.remove = st21nfca_hci_i2c_remove,
 | |
| };
 | |
| module_i2c_driver(st21nfca_hci_i2c_driver);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION(DRIVER_DESC);
 |