424 lines
10 KiB
C
424 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) Rockchip Electronics Co., Ltd.
|
|
*
|
|
* Author: Huang Lee <Putin.li@rock-chips.com>
|
|
*/
|
|
|
|
#include "rga_iommu.h"
|
|
#include "rga_dma_buf.h"
|
|
#include "rga_mm.h"
|
|
#include "rga_job.h"
|
|
#include "rga_common.h"
|
|
#include "rga_hw_config.h"
|
|
|
|
int rga_user_memory_check(struct page **pages, u32 w, u32 h, u32 format, int flag)
|
|
{
|
|
int bits;
|
|
void *vaddr = NULL;
|
|
int taipage_num;
|
|
int taidata_num;
|
|
int *tai_vaddr = NULL;
|
|
|
|
bits = rga_get_format_bits(format);
|
|
if (bits < 0)
|
|
return -1;
|
|
|
|
taipage_num = w * h * bits / 8 / (1024 * 4);
|
|
taidata_num = w * h * bits / 8 % (1024 * 4);
|
|
if (taidata_num == 0) {
|
|
vaddr = kmap(pages[taipage_num - 1]);
|
|
tai_vaddr = (int *)vaddr + 1023;
|
|
} else {
|
|
vaddr = kmap(pages[taipage_num]);
|
|
tai_vaddr = (int *)vaddr + taidata_num / 4 - 1;
|
|
}
|
|
|
|
if (flag == 1) {
|
|
rga_log("src user memory check\n");
|
|
rga_log("tai data is %d\n", *tai_vaddr);
|
|
} else {
|
|
rga_log("dst user memory check\n");
|
|
rga_log("tai data is %d\n", *tai_vaddr);
|
|
}
|
|
|
|
if (taidata_num == 0)
|
|
kunmap(pages[taipage_num - 1]);
|
|
else
|
|
kunmap(pages[taipage_num]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rga_set_mmu_base(struct rga_job *job, struct rga2_req *req)
|
|
{
|
|
if (job->src_buffer.page_table) {
|
|
rga_dma_sync_flush_range(job->src_buffer.page_table,
|
|
(job->src_buffer.page_table +
|
|
job->src_buffer.page_count),
|
|
job->scheduler);
|
|
req->mmu_info.src0_base_addr = virt_to_phys(job->src_buffer.page_table);
|
|
}
|
|
|
|
if (job->src1_buffer.page_table) {
|
|
rga_dma_sync_flush_range(job->src1_buffer.page_table,
|
|
(job->src1_buffer.page_table +
|
|
job->src1_buffer.page_count),
|
|
job->scheduler);
|
|
req->mmu_info.src1_base_addr = virt_to_phys(job->src1_buffer.page_table);
|
|
}
|
|
|
|
if (job->dst_buffer.page_table) {
|
|
rga_dma_sync_flush_range(job->dst_buffer.page_table,
|
|
(job->dst_buffer.page_table +
|
|
job->dst_buffer.page_count),
|
|
job->scheduler);
|
|
req->mmu_info.dst_base_addr = virt_to_phys(job->dst_buffer.page_table);
|
|
|
|
if (((req->alpha_rop_flag & 1) == 1) && (req->bitblt_mode == 0)) {
|
|
req->mmu_info.src1_base_addr = req->mmu_info.dst_base_addr;
|
|
req->mmu_info.src1_mmu_flag = req->mmu_info.dst_mmu_flag;
|
|
}
|
|
}
|
|
|
|
if (job->els_buffer.page_table) {
|
|
rga_dma_sync_flush_range(job->els_buffer.page_table,
|
|
(job->els_buffer.page_table +
|
|
job->els_buffer.page_count),
|
|
job->scheduler);
|
|
req->mmu_info.els_base_addr = virt_to_phys(job->els_buffer.page_table);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rga_mmu_buf_get_try(struct rga_mmu_base *t, uint32_t size)
|
|
{
|
|
int ret = 0;
|
|
|
|
if ((t->back - t->front) > t->size) {
|
|
if (t->front + size > t->back - t->size) {
|
|
rga_log("front %d, back %d dsize %d size %d",
|
|
t->front, t->back, t->size, size);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if ((t->front + size) > t->back) {
|
|
rga_log("front %d, back %d dsize %d size %d",
|
|
t->front, t->back, t->size, size);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (t->front + size > t->size) {
|
|
if (size > (t->back - t->size)) {
|
|
rga_log("front %d, back %d dsize %d size %d",
|
|
t->front, t->back, t->size, size);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
t->front = 0;
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
unsigned int *rga_mmu_buf_get(struct rga_mmu_base *mmu_base, uint32_t size)
|
|
{
|
|
int ret;
|
|
unsigned int *buf = NULL;
|
|
|
|
WARN_ON(!mutex_is_locked(&rga_drvdata->lock));
|
|
|
|
size = ALIGN(size, 16);
|
|
|
|
ret = rga_mmu_buf_get_try(mmu_base, size);
|
|
if (ret < 0) {
|
|
rga_err("Get MMU mem failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
buf = mmu_base->buf_virtual + mmu_base->front;
|
|
|
|
mmu_base->front += size;
|
|
|
|
if (mmu_base->back + size > 2 * mmu_base->size)
|
|
mmu_base->back = size + mmu_base->size;
|
|
else
|
|
mmu_base->back += size;
|
|
|
|
return buf;
|
|
}
|
|
|
|
struct rga_mmu_base *rga_mmu_base_init(size_t size)
|
|
{
|
|
int order = 0;
|
|
struct rga_mmu_base *mmu_base;
|
|
|
|
mmu_base = kzalloc(sizeof(*mmu_base), GFP_KERNEL);
|
|
if (mmu_base == NULL) {
|
|
pr_err("Cannot alloc mmu_base!\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* malloc pre scale mid buf mmu table:
|
|
* size * channel_num * address_size
|
|
*/
|
|
order = get_order(size * 3 * sizeof(*mmu_base->buf_virtual));
|
|
if (order >= MAX_ORDER) {
|
|
pr_err("Can not alloc pages with order[%d] for mmu_page_table, max_order = %d\n",
|
|
order, MAX_ORDER);
|
|
goto err_free_mmu_base;
|
|
}
|
|
|
|
mmu_base->buf_virtual = (uint32_t *) __get_free_pages(GFP_KERNEL | GFP_DMA32, order);
|
|
if (mmu_base->buf_virtual == NULL) {
|
|
pr_err("Can not alloc pages for mmu_page_table\n");
|
|
goto err_free_mmu_base;
|
|
}
|
|
mmu_base->buf_order = order;
|
|
|
|
order = get_order(size * sizeof(*mmu_base->pages));
|
|
if (order >= MAX_ORDER) {
|
|
pr_err("Can not alloc pages with order[%d] for mmu_base->pages, max_order = %d\n",
|
|
order, MAX_ORDER);
|
|
goto err_free_buf_virtual;
|
|
}
|
|
|
|
mmu_base->pages = (struct page **)__get_free_pages(GFP_KERNEL | GFP_DMA32, order);
|
|
if (mmu_base->pages == NULL) {
|
|
pr_err("Can not alloc pages for mmu_base->pages\n");
|
|
goto err_free_buf_virtual;
|
|
}
|
|
mmu_base->pages_order = order;
|
|
|
|
mmu_base->front = 0;
|
|
mmu_base->back = RGA2_PHY_PAGE_SIZE * 3;
|
|
mmu_base->size = RGA2_PHY_PAGE_SIZE * 3;
|
|
|
|
return mmu_base;
|
|
|
|
err_free_buf_virtual:
|
|
free_pages((unsigned long)mmu_base->buf_virtual, mmu_base->buf_order);
|
|
mmu_base->buf_order = 0;
|
|
|
|
err_free_mmu_base:
|
|
kfree(mmu_base);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void rga_mmu_base_free(struct rga_mmu_base **mmu_base)
|
|
{
|
|
struct rga_mmu_base *base = *mmu_base;
|
|
|
|
if (base->buf_virtual != NULL) {
|
|
free_pages((unsigned long)base->buf_virtual, base->buf_order);
|
|
base->buf_virtual = NULL;
|
|
base->buf_order = 0;
|
|
}
|
|
|
|
if (base->pages != NULL) {
|
|
free_pages((unsigned long)base->pages, base->pages_order);
|
|
base->pages = NULL;
|
|
base->pages_order = 0;
|
|
}
|
|
|
|
kfree(base);
|
|
*mmu_base = NULL;
|
|
}
|
|
|
|
static int rga_iommu_intr_fault_handler(struct iommu_domain *iommu, struct device *iommu_dev,
|
|
unsigned long iova, int status, void *arg)
|
|
{
|
|
struct rga_scheduler_t *scheduler = (struct rga_scheduler_t *)arg;
|
|
struct rga_job *job = scheduler->running_job;
|
|
|
|
if (job == NULL)
|
|
return 0;
|
|
|
|
rga_err("IOMMU intr fault, IOVA[0x%lx], STATUS[0x%x]\n", iova, status);
|
|
if (scheduler->ops->irq)
|
|
scheduler->ops->irq(scheduler);
|
|
|
|
/* iommu interrupts on rga2 do not affect rga2 itself. */
|
|
if (!test_bit(RGA_JOB_STATE_INTR_ERR, &job->state)) {
|
|
set_bit(RGA_JOB_STATE_INTR_ERR, &job->state);
|
|
scheduler->ops->soft_reset(scheduler);
|
|
}
|
|
|
|
if (status & RGA_IOMMU_IRQ_PAGE_FAULT) {
|
|
rga_err("RGA IOMMU: page fault! Please check the memory size.\n");
|
|
job->ret = -EACCES;
|
|
} else if (status & RGA_IOMMU_IRQ_BUS_ERROR) {
|
|
rga_err("RGA IOMMU: bus error! Please check if the memory is invalid or has been freed.\n");
|
|
job->ret = -EACCES;
|
|
} else {
|
|
rga_err("RGA IOMMU: Wrong IOMMU interrupt signal!\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rga_iommu_detach(struct rga_iommu_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
iommu_detach_group(info->domain, info->group);
|
|
return 0;
|
|
}
|
|
|
|
int rga_iommu_attach(struct rga_iommu_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return iommu_attach_group(info->domain, info->group);
|
|
}
|
|
|
|
struct rga_iommu_info *rga_iommu_probe(struct device *dev)
|
|
{
|
|
int ret = 0;
|
|
struct rga_iommu_info *info = NULL;
|
|
struct iommu_domain *domain = NULL;
|
|
struct iommu_group *group = NULL;
|
|
|
|
group = iommu_group_get(dev);
|
|
if (!group)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (!domain) {
|
|
ret = -EINVAL;
|
|
goto err_put_group;
|
|
}
|
|
|
|
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
ret = -ENOMEM;
|
|
goto err_put_group;
|
|
}
|
|
|
|
info->dev = dev;
|
|
info->default_dev = info->dev;
|
|
info->group = group;
|
|
info->domain = domain;
|
|
|
|
return info;
|
|
|
|
err_put_group:
|
|
if (group)
|
|
iommu_group_put(group);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
int rga_iommu_remove(struct rga_iommu_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
iommu_group_put(info->group);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rga_iommu_bind(void)
|
|
{
|
|
int i;
|
|
int ret;
|
|
struct rga_scheduler_t *scheduler = NULL;
|
|
struct rga_iommu_info *main_iommu = NULL;
|
|
int main_iommu_index = -1;
|
|
int main_mmu_index = -1;
|
|
int another_index = -1;
|
|
|
|
for (i = 0; i < rga_drvdata->num_of_scheduler; i++) {
|
|
scheduler = rga_drvdata->scheduler[i];
|
|
|
|
switch (scheduler->data->mmu) {
|
|
case RGA_IOMMU:
|
|
if (scheduler->iommu_info == NULL)
|
|
continue;
|
|
|
|
if (main_iommu == NULL) {
|
|
main_iommu = scheduler->iommu_info;
|
|
main_iommu_index = i;
|
|
iommu_set_fault_handler(main_iommu->domain,
|
|
rga_iommu_intr_fault_handler,
|
|
(void *)scheduler);
|
|
} else {
|
|
scheduler->iommu_info->domain = main_iommu->domain;
|
|
scheduler->iommu_info->default_dev = main_iommu->default_dev;
|
|
rga_iommu_attach(scheduler->iommu_info);
|
|
}
|
|
|
|
break;
|
|
|
|
case RGA_MMU:
|
|
if (rga_drvdata->mmu_base != NULL)
|
|
continue;
|
|
|
|
rga_drvdata->mmu_base = rga_mmu_base_init(RGA2_PHY_PAGE_SIZE);
|
|
if (IS_ERR(rga_drvdata->mmu_base)) {
|
|
dev_err(scheduler->dev, "rga mmu base init failed!\n");
|
|
ret = PTR_ERR(rga_drvdata->mmu_base);
|
|
rga_drvdata->mmu_base = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
main_mmu_index = i;
|
|
|
|
break;
|
|
default:
|
|
if (another_index != RGA_NONE_CORE)
|
|
another_index = i;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* priority order: iommu > mmu > another
|
|
* The scheduler core with IOMMU will be used preferentially as the
|
|
* default memory-mapped core. This ensures that all cores can obtain
|
|
* the required memory data when they are equipped with different
|
|
* versions of cores.
|
|
*/
|
|
if (main_iommu_index >= 0) {
|
|
rga_drvdata->map_scheduler_index = main_iommu_index;
|
|
} else if (main_mmu_index >= 0) {
|
|
rga_drvdata->map_scheduler_index = main_mmu_index;
|
|
} else if (another_index >= 0) {
|
|
rga_drvdata->map_scheduler_index = another_index;
|
|
} else {
|
|
rga_drvdata->map_scheduler_index = -1;
|
|
pr_err("%s, binding map scheduler failed!\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
pr_info("IOMMU binding successfully, default mapping core[0x%x]\n",
|
|
rga_drvdata->scheduler[rga_drvdata->map_scheduler_index]->core);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rga_iommu_unbind(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rga_drvdata->num_of_scheduler; i++)
|
|
if (rga_drvdata->scheduler[i]->iommu_info != NULL)
|
|
rga_iommu_detach(rga_drvdata->scheduler[i]->iommu_info);
|
|
|
|
if (rga_drvdata->mmu_base)
|
|
rga_mmu_base_free(&rga_drvdata->mmu_base);
|
|
|
|
rga_drvdata->map_scheduler_index = -1;
|
|
}
|