970 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Chrager driver for cw221x
*
* Copyright (c) 2022 Rockchip Electronics Co., Ltd.
*
* Author: Xu Shengfei <xsf@rock-chips.com>
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/sizes.h>
#include <linux/time.h>
#include <linux/workqueue.h>
/* Module parameters. */
static int debug;
module_param_named(debug, debug, int, 0644);
MODULE_PARM_DESC(debug, "Set to one to enable debugging messages.");
#define cw_printk(fmt, arg...) \
{ \
if (debug) \
pr_info("FG_CW221X: %s-%d:" fmt, __func__, __LINE__, ##arg); \
}
#define CW_PROPERTIES "cw221X-bat"
#define REG_CHIP_ID 0x00
#define REG_VCELL_H 0x02
#define REG_VCELL_L 0x03
#define REG_SOC_INT 0x04
#define REG_SOC_DECIMAL 0x05
#define REG_TEMP 0x06
#define REG_MODE_CONFIG 0x08
#define REG_GPIO_CONFIG 0x0A
#define REG_SOC_ALERT 0x0B
#define REG_TEMP_MAX 0x0C
#define REG_TEMP_MIN 0x0D
#define REG_CURRENT_H 0x0E
#define REG_CURRENT_L 0x0F
#define REG_T_HOST_H 0xA0
#define REG_T_HOST_L 0xA1
#define REG_USER_CONF 0xA2
#define REG_CYCLE_H 0xA4
#define REG_CYCLE_L 0xA5
#define REG_SOH 0xA6
#define REG_IC_STATE 0xA7
#define REG_FW_VERSION 0xAB
#define REG_BAT_PROFILE 0x10
#define CONFIG_MODE_RESTART 0x30
#define CONFIG_MODE_ACTIVE 0x00
#define CONFIG_MODE_SLEEP 0xF0
#define CONFIG_UPDATE_FLG 0x80
#define IC_VCHIP_ID 0xA0
#define IC_READY_MARK 0x0C
#define GPIO_ENABLE_MIN_TEMP 0
#define GPIO_ENABLE_MAX_TEMP 0
#define GPIO_ENABLE_SOC_CHANGE 0
#define GPIO_SOC_IRQ_VALUE 0x0 /* 0x7F */
#define DEFINED_MAX_TEMP 45
#define DEFINED_MIN_TEMP 0
#define CWFG_NAME "cw221X"
#define SIZE_OF_PROFILE 80
/* mhom rsense * 1000 for convenience calculation */
#define USER_RSENSE 1500
#define queue_delayed_work_time 5000
#define queue_start_work_time 50
#define CW_SLEEP_20MS 20
#define CW_SLEEP_10MS 10
#define CW_UI_FULL 100
#define COMPLEMENT_CODE_U16 0x8000
#define CW_SLEEP_100MS 100
#define CW_SLEEP_200MS 200
#define CW_SLEEP_COUNTS 50
#define CW_TRUE 1
#define CW_RETRY_COUNT 3
#define CW_VOL_UNIT 1000
#define CW_LOW_VOLTAGE_REF 2500
#define CW_LOW_VOLTAGE 3000
#define CW_LOW_VOLTAGE_STEP 10
#define CW221X_NOT_ACTIVE 1
#define CW221X_PROFILE_NOT_READY 2
#define CW221X_PROFILE_NEED_UPDATE 3
#define CW2215_MARK 0x80
#define CW2217_MARK 0x40
#define CW2218_MARK 0x00
static unsigned char config_profile_info[SIZE_OF_PROFILE] = {
0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA0, 0xB2,
0xC2, 0xCA, 0xC2, 0xBD, 0x9C, 0x5C, 0x38, 0xFF, 0xFF, 0xC4,
0x86, 0x74, 0x60, 0x55, 0x4F, 0x4D, 0x4B, 0x80, 0xC0, 0xDB,
0xCD, 0xD0, 0xCE, 0xD2, 0xD3, 0xD2, 0xD0, 0xCE, 0xC3, 0xD5,
0xB9, 0xC9, 0xC5, 0xA3, 0x92, 0x8A, 0x80, 0x72, 0x63, 0x62,
0x74, 0x90, 0xA6, 0x7E, 0x5F, 0x48, 0x80, 0x00, 0xAB, 0x10,
0x00, 0xA1, 0xFB, 0x00, 0x00, 0x00, 0x64, 0x1E, 0xB1, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4D,
};
struct cw_battery {
struct i2c_client *client;
struct device *dev;
struct workqueue_struct *cwfg_workqueue;
struct delayed_work battery_delay_work;
struct power_supply *cw_bat;
int user_rsense;
u8 *bat_profile;
int chip_id;
int voltage;
int ic_soc_h;
int ic_soc_l;
int ui_soc;
int temp;
long cw_current;
int cycle;
int soh;
int fw_version;
};
/* CW221X iic read function */
static int cw_read(struct i2c_client *client,
unsigned char reg,
unsigned char buf[])
{
int ret;
ret = i2c_smbus_read_i2c_block_data(client, reg, 1, buf);
if (ret < 0)
dev_err(&client->dev, "IIC error %d\n", ret);
return ret;
}
/* CW221X iic write function */
static int cw_write(struct i2c_client *client,
unsigned char reg,
unsigned char const buf[])
{
int ret;
ret = i2c_smbus_write_i2c_block_data(client, reg, 1, &buf[0]);
if (ret < 0)
dev_err(&client->dev, "IIC error %d\n", ret);
return ret;
}
/* CW221X iic read word function */
static int cw_read_word(struct i2c_client *client,
unsigned char reg,
unsigned char buf[])
{
unsigned char reg_val[2] = {0, 0};
unsigned int temp_val_buff;
unsigned int temp_val_second;
int ret;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, reg_val);
if (ret < 0)
dev_err(&client->dev, "IIC error %d\n", ret);
temp_val_buff = (reg_val[0] << 8) + reg_val[1];
msleep(CW_SLEEP_10MS);
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, reg_val);
if (ret < 0)
dev_err(&client->dev, "IIC error %d\n", ret);
temp_val_second = (reg_val[0] << 8) + reg_val[1];
if (temp_val_buff != temp_val_second) {
msleep(CW_SLEEP_10MS);
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, reg_val);
if (ret < 0) {
dev_err(&client->dev, "IIC error %d\n", ret);
return ret;
}
}
buf[0] = reg_val[0];
buf[1] = reg_val[1];
return ret;
}
/* CW221X iic write profile function */
static int cw_write_profile(struct i2c_client *client, unsigned char const buf[])
{
int ret;
int i;
for (i = 0; i < SIZE_OF_PROFILE; i++) {
ret = cw_write(client, REG_BAT_PROFILE + i, &buf[i]);
if (ret < 0) {
dev_err(&client->dev, "IIC error %d\n", ret);
return ret;
}
}
return ret;
}
/*
* CW221X Active function
* The CONFIG register is used for the host MCU to configure the fuel gauge IC.
* The default value is 0xF0, SLEEP and RESTART bits are set. To power up the IC,
* the host MCU needs to write 0x30 to exit shutdown mode, and then write 0x00 to
* restart the gauge to enter active mode. To reset the IC, the host MCU needs
* to write 0xF0, 0x30 and 0x00 in sequence to this register to complete the
* restart procedure. The CW221X will reload relevant parameters and settings and
* restart SOC calculation. Note that the SOC may be a different value after reset
* operation since it is a brand-new calculation based on the latest battery status.
* CONFIG [3:0] is reserved. Don't do any operation with it.
*/
static int cw221X_active(struct cw_battery *cw_bat)
{
unsigned char reg_val = CONFIG_MODE_RESTART;
int ret;
ret = cw_write(cw_bat->client, REG_MODE_CONFIG, &reg_val);
if (ret < 0)
return ret;
msleep(CW_SLEEP_20MS); /* Here delay must >= 20 ms */
reg_val = CONFIG_MODE_ACTIVE;
ret = cw_write(cw_bat->client, REG_MODE_CONFIG, &reg_val);
if (ret < 0)
return ret;
msleep(CW_SLEEP_10MS);
return 0;
}
/*
* CW221X Sleep function
* The CONFIG register is used for the host MCU to configure the fuel gauge IC.
* The default value is 0xF0,SLEEP and RESTART bits are set. To power up the IC,
* the host MCU needs to write 0x30 to exit shutdown mode, and then write 0x00
* to restart the gauge to enter active mode. To reset the IC, the host MCU needs
* to write 0xF0, 0x30 and 0x00 in sequence to this register to complete the restart
* procedure. The CW221X will reload relevant parameters and settings and restart SOC
* calculation. Note that the SOC may be a different value after reset operation since
* it is a brand-new calculation based on the latest battery status.
* CONFIG [3:0] is reserved. Don't do any operation with it.
*/
static int cw221X_sleep(struct cw_battery *cw_bat)
{
unsigned char reg_val = CONFIG_MODE_RESTART;
int ret;
ret = cw_write(cw_bat->client, REG_MODE_CONFIG, &reg_val);
if (ret < 0)
return ret;
msleep(CW_SLEEP_20MS); /* Here delay must >= 20 ms */
reg_val = CONFIG_MODE_SLEEP;
ret = cw_write(cw_bat->client, REG_MODE_CONFIG, &reg_val);
if (ret < 0)
return ret;
msleep(CW_SLEEP_10MS);
return 0;
}
/*
* The 0x00 register is an UNSIGNED 8bit read-only register. Its value is
* fixed to 0xA0 in shutdown mode and active mode.
*/
static int cw_get_chip_id(struct cw_battery *cw_bat)
{
unsigned char reg_val;
int chip_id;
int ret;
ret = cw_read(cw_bat->client, REG_CHIP_ID, &reg_val);
if (ret < 0)
return ret;
chip_id = reg_val; /* This value must be 0xA0! */
pr_info("CW: chip_id = 0x%x\n", chip_id);
cw_bat->chip_id = chip_id;
return 0;
}
/*
* The VCELL register(0x02 0x03) is an UNSIGNED 14bit read-only register that
* updates the battery voltage continuously. Battery voltage is measured between
* the VCELL pin and VSS pin, which is the ground reference. A 14bit
* sigma-delta A/D converter is used and the voltage resolution is 312.5uV. (0.3125mV is *5/16)
*/
static int cw_get_voltage(struct cw_battery *cw_bat)
{
unsigned char reg_val[2] = {0, 0};
unsigned int voltage;
int ret;
ret = cw_read_word(cw_bat->client, REG_VCELL_H, reg_val);
if (ret < 0)
return ret;
voltage = (reg_val[0] << 8) + reg_val[1];
voltage = voltage * 5 / 16;
cw_bat->voltage = voltage;
return 0;
}
/*
* The SOC register(0x04 0x05) is an UNSIGNED 16bit read-only register that indicates
* the SOC of the battery. The SOC shows in % format, which means how much percent of
* the battery's total available capacity is remaining in the battery now. The SOC can
* intrinsically adjust itself to cater to the change of battery status,
* including load, temperature and aging etc.
* The high byte(0x04) contains the SOC in 1% unit which can be directly used if
* this resolution is good enough for the application. The low byte(0x05) provides
* more accurate fractional part of the SOC and its
* LSB is (1/256) %.
*/
static int cw_get_capacity(struct cw_battery *cw_bat)
{
unsigned char reg_val[2] = {0, 0};
int ui_100 = CW_UI_FULL;
int ui_soc;
int soc_h;
int soc_l;
int ret;
ret = cw_read_word(cw_bat->client, REG_SOC_INT, reg_val);
if (ret < 0)
return ret;
soc_h = reg_val[0];
soc_l = reg_val[1];
ui_soc = ((soc_h * 256 + soc_l) * 100) / (ui_100 * 256);
/* remainder = (((soc_h * 256 + soc_l) * 100 * 100) / (ui_100 * 256)) % 100; */
if (ui_soc >= 100) {
cw_printk("CW221x[%d]: UI_SOC = %d larger 100!\n", __LINE__, ui_soc);
ui_soc = 100;
}
cw_bat->ic_soc_h = soc_h;
cw_bat->ic_soc_l = soc_l;
cw_bat->ui_soc = ui_soc;
return 0;
}
/*
* The TEMP register is an UNSIGNED 8bit read only register.
* It reports the real-time battery temperature
* measured at TS pin. The scope is from -40 to 87.5 degrees Celsius,
* LSB is 0.5 degree Celsius. TEMP(C) = - 40 + Value(0x06 Reg) / 2
*/
static int cw_get_temp(struct cw_battery *cw_bat)
{
unsigned char reg_val;
int temp;
int ret;
ret = cw_read(cw_bat->client, REG_TEMP, &reg_val);
if (ret < 0)
return ret;
temp = (int)reg_val * 10 / 2 - 400;
cw_bat->temp = temp;
return 0;
}
/* get complement code function, unsigned short must be U16 */
static long get_complement_code(unsigned short raw_code)
{
long complement_code;
int dir;
if (0 != (raw_code & COMPLEMENT_CODE_U16)) {
dir = -1;
raw_code = (0xFFFF - raw_code) + 1;
} else {
dir = 1;
}
complement_code = (long)raw_code * dir;
return complement_code;
}
/*
* CURRENT is a SIGNED 16bit register(0x0E 0x0F) that reports current A/D converter
* result of the voltage across the current sense resistor, 10mohm typical.
* The result is stored as a two's complement value to show positive and negative current.
* Voltages outside the minimum and maximum register values are reported as the
* minimum or maximum value. The register value should be divided by the sense
* resistance to convert to amperes. The value of the sense resistor determines
* the resolution and the full-scale range of the current readings. The LSB of 0x0F
* is (52.4/32768)uV for CW2215 and CW2217. The LSB of 0x0F is (125/32768)uV for CW2218.
* The default value is 0x0000, stands for 0mA. 0x7FFF stands for the maximum charging
* current and 0x8001 stands for the maximum discharging current.
*/
static int cw_get_current(struct cw_battery *cw_bat)
{
unsigned char reg_val[2] = {0, 0};
unsigned short current_reg; /* unsigned short must u16 */
long long cw_current; /* use long long type to guarantee 8 bytes space */
int ret;
ret = cw_read_word(cw_bat->client, REG_CURRENT_H, reg_val);
if (ret < 0)
return ret;
current_reg = (reg_val[0] << 8) + reg_val[1];
cw_current = get_complement_code(current_reg);
if (((cw_bat->fw_version & CW2215_MARK) != 0) || ((cw_bat->fw_version & CW2217_MARK) != 0))
cw_current = cw_current * 1600 / cw_bat->user_rsense;
else if ((cw_bat->fw_version != 0) && ((cw_bat->fw_version & 0xC0) == CW2218_MARK))
cw_current = cw_current * 3815 / cw_bat->user_rsense;
else {
cw_bat->cw_current = 0;
dev_err(cw_bat->dev, "error! cw221x firmware read error!\n");
}
cw_bat->cw_current = cw_current;
return 0;
}
/*
* CYCLECNT is an UNSIGNED 16bit register(0xA4 0xA5) that counts cycle life of the battery.
* The LSB of 0xA5 stands for 1/16 cycle. This register will be clear after enters shutdown mode
*/
static int cw_get_cycle_count(struct cw_battery *cw_bat)
{
unsigned char reg_val[2] = {0, 0};
int cycle;
int ret;
ret = cw_read_word(cw_bat->client, REG_CYCLE_H, reg_val);
if (ret < 0)
return ret;
cycle = (reg_val[0] << 8) + reg_val[1];
cw_bat->cycle = cycle / 16;
return 0;
}
/*
* SOH (State of Health) is an UNSIGNED 8bit register(0xA6) that represents the level of
* battery aging by tracking battery internal impedance increment. When the device enters
* active mode, this register refresh to 0x64 by default. Its range is 0x00 to 0x64,
* indicating 0 to 100%. This register will be clear after enters shutdown mode.
*/
static int cw_get_soh(struct cw_battery *cw_bat)
{
int ret;
unsigned char reg_val;
int soh;
ret = cw_read(cw_bat->client, REG_SOH, &reg_val);
if (ret < 0)
return ret;
soh = reg_val;
cw_bat->soh = soh;
return 0;
}
/*
* FW_VERSION register reports the firmware (FW) running in the chip. It is fixed to
* 0x00 when the chip is in shutdown mode. When in active mode, Bit [7:6] = '01' stand
* for the CW2217, Bit [7:6] = '00' stand for the CW2218 and Bit [7:6] = '10' stand for CW2215.
* Bit[5:0] stand for the FW version running in the chip. Note that the FW version is
* subject to update and contact sales office for confirmation when necessary.
*/
static int cw_get_fw_version(struct cw_battery *cw_bat)
{
int ret;
unsigned char reg_val;
int fw_version;
ret = cw_read(cw_bat->client, REG_FW_VERSION, &reg_val);
if (ret < 0)
return ret;
fw_version = reg_val;
cw_bat->fw_version = fw_version;
return 0;
}
static int cw_update_data(struct cw_battery *cw_bat)
{
int ret = 0;
ret += cw_get_voltage(cw_bat);
ret += cw_get_capacity(cw_bat);
ret += cw_get_temp(cw_bat);
ret += cw_get_current(cw_bat);
ret += cw_get_cycle_count(cw_bat);
ret += cw_get_soh(cw_bat);
cw_printk("vol = %d current = %ld cap = %d temp = %d\n",
cw_bat->voltage, cw_bat->cw_current, cw_bat->ui_soc, cw_bat->temp);
return ret;
}
static int cw_init_data(struct cw_battery *cw_bat)
{
int ret = 0;
ret = cw_get_fw_version(cw_bat);
if (ret != 0)
return ret;
ret += cw_get_chip_id(cw_bat);
ret += cw_get_voltage(cw_bat);
ret += cw_get_capacity(cw_bat);
ret += cw_get_temp(cw_bat);
ret += cw_get_current(cw_bat);
ret += cw_get_cycle_count(cw_bat);
ret += cw_get_soh(cw_bat);
cw_printk("chip_id = %d vol = %d cur = %ld cap = %d temp = %d fw_version = %d\n",
cw_bat->chip_id, cw_bat->voltage, cw_bat->cw_current,
cw_bat->ui_soc, cw_bat->temp, cw_bat->fw_version);
return ret;
}
static int cw221x_parse_properties(struct cw_battery *cw_bat)
{
struct device *dev = cw_bat->dev;
int length;
int ret;
ret = device_property_read_u32(dev,
"cw,user_rsense",
&cw_bat->user_rsense);
if (ret)
cw_bat->user_rsense = USER_RSENSE;
if (cw_bat->user_rsense == 0)
cw_bat->user_rsense = USER_RSENSE;
cw_printk("user_rsense: %d\n", cw_bat->user_rsense);
length = device_property_count_u8(dev, "cellwise,battery-profile");
if (length < 0) {
dev_warn(cw_bat->dev,
"No battery-profile found, using current flash contents\n");
} else if (length != SIZE_OF_PROFILE) {
dev_err(cw_bat->dev, "battery-profile must be %d bytes\n",
SIZE_OF_PROFILE);
return -EINVAL;
}
cw_bat->bat_profile = devm_kzalloc(dev, length, GFP_KERNEL);
if (!cw_bat->bat_profile)
return -ENOMEM;
ret = device_property_read_u8_array(dev,
"cellwise,battery-profile",
cw_bat->bat_profile,
length);
return ret;
}
static void cw_config_profile_init(struct cw_battery *cw_bat)
{
int i, ret;
ret = cw221x_parse_properties(cw_bat);
if (ret) {
/* update new battery info */
cw_bat->bat_profile = config_profile_info;
cw_printk("the driver profile:\n");
}
for (i = 0; i < SIZE_OF_PROFILE; i++)
cw_printk("[%d]: 0x%x\n", i, cw_bat->bat_profile[i]);
}
/*CW221X update profile function, Often called during initialization*/
static int cw_config_start_ic(struct cw_battery *cw_bat)
{
unsigned char reg_val;
int count = 0;
int i, ret;
ret = cw221X_sleep(cw_bat);
if (ret < 0)
return ret;
/* update new battery info */
ret = cw_write_profile(cw_bat->client, cw_bat->bat_profile);
if (ret < 0)
return ret;
cw_printk("the driver profile:\n");
for (i = 0; i < SIZE_OF_PROFILE; i++)
cw_printk("[%d]: 0x%x\n", i, cw_bat->bat_profile[i]);
/* set UPDATE_FLAG AND SOC INTTERRUP VALUE */
reg_val = CONFIG_UPDATE_FLG | GPIO_SOC_IRQ_VALUE;
ret = cw_write(cw_bat->client, REG_SOC_ALERT, &reg_val);
if (ret < 0)
return ret;
/* close all interruptes */
reg_val = 0;
ret = cw_write(cw_bat->client, REG_GPIO_CONFIG, &reg_val);
if (ret < 0)
return ret;
ret = cw221X_active(cw_bat);
if (ret < 0)
return ret;
while (CW_TRUE) {
msleep(CW_SLEEP_100MS);
cw_read(cw_bat->client, REG_IC_STATE, &reg_val);
if (IC_READY_MARK == (reg_val & IC_READY_MARK))
break;
count++;
if (count >= CW_SLEEP_COUNTS) {
cw221X_sleep(cw_bat);
return -1;
}
}
return 0;
}
/*
* Get the cw221X running state
* Determine whether the profile needs to be updated
*/
static int cw221X_get_state(struct cw_battery *cw_bat)
{
int ret;
unsigned char reg_val;
int i;
int reg_profile;
ret = cw_read(cw_bat->client, REG_MODE_CONFIG, &reg_val);
if (ret < 0)
return ret;
if (reg_val != CONFIG_MODE_ACTIVE)
return CW221X_NOT_ACTIVE;
ret = cw_read(cw_bat->client, REG_SOC_ALERT, &reg_val);
if (ret < 0)
return ret;
if (0x00 == (reg_val & CONFIG_UPDATE_FLG))
return CW221X_PROFILE_NOT_READY;
for (i = 0; i < SIZE_OF_PROFILE; i++) {
ret = cw_read(cw_bat->client, (REG_BAT_PROFILE + i), &reg_val);
if (ret < 0)
return ret;
reg_profile = REG_BAT_PROFILE + i;
cw_printk("fuelgauge: 0x%2x = 0x%2x\n", reg_profile, reg_val);
if (cw_bat->bat_profile[i] != reg_val)
break;
}
if (i != SIZE_OF_PROFILE)
return CW221X_PROFILE_NEED_UPDATE;
return 0;
}
/* CW221X init function, Often called during initialization */
static int cw_init(struct cw_battery *cw_bat)
{
int ret;
ret = cw_get_chip_id(cw_bat);
if (ret < 0) {
dev_err(cw_bat->dev, "iic read write error");
return ret;
}
if (cw_bat->chip_id != IC_VCHIP_ID) {
dev_err(cw_bat->dev, "not cw221X\n");
return -1;
}
ret = cw221X_get_state(cw_bat);
if (ret < 0) {
dev_err(cw_bat->dev, "iic read write error");
return ret;
}
if (ret != 0) {
cw_printk("need update profile\n");
ret = cw_config_start_ic(cw_bat);
if (ret < 0)
return ret;
} else
cw_printk("not need update profile\n");
cw_printk("cw221X init success!\n");
return 0;
}
static void cw_bat_work(struct work_struct *work)
{
struct delayed_work *delay_work;
struct cw_battery *cw_bat;
static int soc;
int ret;
delay_work = container_of(work,
struct delayed_work,
work);
cw_bat = container_of(delay_work,
struct cw_battery,
battery_delay_work);
ret = cw_update_data(cw_bat);
if (ret < 0)
dev_err(cw_bat->dev, "i2c read error when update data");
if (cw_bat->ui_soc != soc) {
soc = cw_bat->ui_soc;
power_supply_changed(cw_bat->cw_bat);
}
queue_delayed_work(cw_bat->cwfg_workqueue,
&cw_bat->battery_delay_work,
msecs_to_jiffies(queue_delayed_work_time));
}
static int cw_battery_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
/* struct cw_battery *cw_bat = power_supply_get_drvdata(psy); */
int ret = 0;
switch (psp) {
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cw_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct cw_battery *cw_bat = power_supply_get_drvdata(psy);
int ret = 0;
switch (psp) {
case POWER_SUPPLY_PROP_CYCLE_COUNT:
val->intval = cw_bat->cycle;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = cw_bat->ui_soc;
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
if ((cw_bat->ui_soc < 1) && (!power_supply_is_system_supplied()))
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else if (cw_bat->ui_soc <= 20)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (cw_bat->ui_soc <= 70)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else if (cw_bat->ui_soc <= 90)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
else
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
break;
case POWER_SUPPLY_PROP_STATUS:
if (cw_bat->ui_soc == 100 * 1000)
val->intval = POWER_SUPPLY_STATUS_FULL;
else {
if (power_supply_is_system_supplied())
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
}
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = 10 * 1000 * 1000;/* uAh */
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = POWER_SUPPLY_HEALTH_GOOD;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = (cw_bat->voltage <= 0) ? 0 : 1;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
cw_get_voltage(cw_bat);
val->intval = cw_bat->voltage * CW_VOL_UNIT;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
cw_get_current(cw_bat);
val->intval = cw_bat->cw_current * 1000; /* uA */
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = cw_bat->temp;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static enum power_supply_property cw_battery_properties[] = {
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_TEMP,
};
static int cw221X_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct power_supply_config psy_cfg = {0};
struct power_supply_desc *psy_desc;
struct cw_battery *cw_bat;
int loop = 0;
int ret;
cw_bat = devm_kzalloc(&client->dev, sizeof(*cw_bat), GFP_KERNEL);
if (!cw_bat)
return -ENOMEM;
i2c_set_clientdata(client, cw_bat);
cw_bat->client = client;
cw_bat->dev = &client->dev;
dev_dbg(cw_bat->dev, "cw221X driver versions-%d\n", 20220830);
cw_config_profile_init(cw_bat);
ret = cw_init(cw_bat);
while ((loop++ < CW_RETRY_COUNT) && (ret != 0)) {
msleep(CW_SLEEP_200MS);
ret = cw_init(cw_bat);
}
if (ret) {
dev_err(cw_bat->dev, "cw221X init fail!\n");
return ret;
}
ret = cw_init_data(cw_bat);
if (ret) {
dev_err(cw_bat->dev, "cw221X init data fail!\n");
return ret;
}
psy_desc = devm_kzalloc(&client->dev, sizeof(*psy_desc), GFP_KERNEL);
if (!psy_desc)
return -ENOMEM;
psy_cfg.drv_data = cw_bat;
psy_desc->name = CW_PROPERTIES;
psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
psy_desc->properties = cw_battery_properties;
psy_desc->num_properties = ARRAY_SIZE(cw_battery_properties);
psy_desc->get_property = cw_battery_get_property;
psy_desc->set_property = cw_battery_set_property;
cw_bat->cw_bat = devm_power_supply_register(&client->dev, psy_desc, &psy_cfg);
if (IS_ERR(cw_bat->cw_bat)) {
ret = PTR_ERR(cw_bat->cw_bat);
dev_err(cw_bat->dev, "failed to register battery: %d\n", ret);
return ret;
}
cw_bat->cwfg_workqueue = create_singlethread_workqueue("cwfg_gauge");
INIT_DELAYED_WORK(&cw_bat->battery_delay_work, cw_bat_work);
queue_delayed_work(cw_bat->cwfg_workqueue,
&cw_bat->battery_delay_work,
msecs_to_jiffies(queue_start_work_time));
cw_printk("cw221X driver probe success!\n");
return 0;
}
static void cw221X_remove(struct i2c_client *client)
{
struct cw_battery *cw_bat = i2c_get_clientdata(client);
cancel_delayed_work_sync(&cw_bat->battery_delay_work);
destroy_workqueue(cw_bat->cwfg_workqueue);
}
#ifdef CONFIG_PM
static int cw_bat_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct cw_battery *cw_bat = i2c_get_clientdata(client);
cancel_delayed_work(&cw_bat->battery_delay_work);
return 0;
}
static int cw_bat_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct cw_battery *cw_bat = i2c_get_clientdata(client);
queue_delayed_work(cw_bat->cwfg_workqueue,
&cw_bat->battery_delay_work,
msecs_to_jiffies(20));
return 0;
}
static const struct dev_pm_ops cw_bat_pm_ops = {
.suspend = cw_bat_suspend,
.resume = cw_bat_resume,
};
#endif
static const struct i2c_device_id cw221X_id_table[] = {
{ CWFG_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, cw221X_id_table);
#ifdef CONFIG_OF
static const struct of_device_id cw221X_match_table[] = {
{ .compatible = "cellwise,cw221X", },
{ },
};
MODULE_DEVICE_TABLE(of, cw221X_match_table);
#endif
static struct i2c_driver cw221X_driver = {
.driver = {
.name = CWFG_NAME,
#ifdef CONFIG_PM
.pm = &cw_bat_pm_ops,
#endif
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(cw221X_match_table),
},
.probe = cw221X_probe,
.remove = cw221X_remove,
.id_table = cw221X_id_table,
};
module_i2c_driver(cw221X_driver);
MODULE_AUTHOR("Xu Shengfei <xsf@rock-chips.com>");
MODULE_DESCRIPTION("CW221X FGADC Device Driver V0.1");
MODULE_LICENSE("GPL");