1015 lines
34 KiB
C
Executable File

/*++
Copyright (c) 2021 Motor-comm Corporation.
Confidential and Proprietary. All rights reserved.
This is Motor-comm Corporation NIC driver relevant files. Please don't copy, modify,
distribute without commercial permission.
--*/
#include <linux/kernel.h>
#include <linux/module.h>
#include "fuxi-os.h"
#include "fuxi-gmac.h"
#include "fuxi-gmac-reg.h"
MODULE_LICENSE("Dual BSD/GPL");
static int debug = 16;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "FUXI ethernet debug level (0=none,...,16=all)");
static unsigned char dev_addr[6] = {0, 0x55, 0x7b, 0xb5, 0x7d, 0xf7};
static void fxgmac_read_mac_addr(struct fxgmac_pdata *pdata)
{
struct net_device *netdev = pdata->netdev;
struct fxgmac_hw_ops *hw_ops = &pdata->hw_ops;
DPRINTK("read mac from eFuse\n");
// if efuse have mac addr,use it.if not,use static mac address.
hw_ops->read_mac_subsys_from_efuse(pdata, pdata->mac_addr, NULL, NULL);
if (ETH_IS_ZEROADDRESS(pdata->mac_addr)) {
/* Currently it uses a static mac address for test */
memcpy(pdata->mac_addr, dev_addr, netdev->addr_len);
}
}
static void fxgmac_default_config(struct fxgmac_pdata *pdata)
{
pdata->tx_osp_mode = DMA_OSP_ENABLE;
pdata->tx_sf_mode = MTL_TSF_ENABLE;
pdata->rx_sf_mode = MTL_RSF_DISABLE;//MTL_RSF_DISABLE 20210514
pdata->pblx8 = DMA_PBL_X8_ENABLE;//DMA_PBL_X8_ENABLE 20210514
pdata->tx_pbl = DMA_PBL_32;
pdata->rx_pbl = DMA_PBL_32;//DMA_PBL_32 20210514
pdata->tx_threshold = MTL_TX_THRESHOLD_128;
pdata->rx_threshold = MTL_RX_THRESHOLD_128;
#if 1
pdata->tx_pause = 1;
pdata->rx_pause = 1;
#else
pdata->tx_pause = 0;
pdata->rx_pause = 0;
#endif
#if FXGMAC_RSS_FEATURE_ENABLED
pdata->rss = 1;
#else
pdata->rss = 0;
#endif
// open interrupt moderation default
pdata->intr_mod = 1;
pdata->crc_check = 1;
//yzhang, set based on phy status. pdata->phy_speed = SPEED_1000;
pdata->sysclk_rate = FXGMAC_SYSCLOCK;
pdata->phy_autoeng = AUTONEG_ENABLE; // default to autoneg
pdata->phy_duplex = DUPLEX_FULL;
pdata->expansion.phy_link = false;
pdata->phy_speed = SPEED_1000;
// default to magic
pdata->expansion.wol = WAKE_MAGIC;
strlcpy(pdata->drv_name, FXGMAC_DRV_NAME, sizeof(pdata->drv_name));
strlcpy(pdata->drv_ver, FXGMAC_DRV_VERSION, sizeof(pdata->drv_ver));
printk("FXGMAC_DRV_NAME:%s, FXGMAC_DRV_VERSION:%s\n", FXGMAC_DRV_NAME, FXGMAC_DRV_VERSION);
}
static void fxgmac_init_all_ops(struct fxgmac_pdata *pdata)
{
fxgmac_init_desc_ops(&pdata->desc_ops);
fxgmac_init_hw_ops(&pdata->hw_ops);
DPRINTK("register desc_ops and hw ops\n");
}
int fxgmac_init(struct fxgmac_pdata *pdata, bool save_private_reg)
{
struct fxgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct net_device *netdev = pdata->netdev;
unsigned int i,dma_width;
int ret;
/* Set all the function pointers */
fxgmac_init_all_ops(pdata);
/* Set default configuration data */
fxgmac_default_config(pdata);
/* Set irq, base_addr, MAC address, */
netdev->irq = pdata->dev_irq;
netdev->base_addr = (unsigned long)pdata->base_mem;
fxgmac_read_mac_addr(pdata);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,17,0))
eth_hw_addr_set(netdev, pdata->mac_addr);
#else
memcpy(netdev->dev_addr, pdata->mac_addr, netdev->addr_len);
#endif
if (save_private_reg) {
hw_ops->save_nonstick_reg(pdata);
}
// reset here to get hw features correctly
hw_ops->exit(pdata);
/* Populate the hardware features */
fxgmac_get_all_hw_features(pdata);
fxgmac_print_all_hw_features(pdata);
/* TODO: Set the PHY mode to XLGMII */
/* Set the DMA mask */
#ifdef CONFIG_ARM64
dma_width = FUXI_DMA_BIT_MASK;
#else
dma_width = pdata->hw_feat.dma_width;
#endif
ret = dma_set_mask_and_coherent(pdata->dev,
DMA_BIT_MASK(dma_width));
if (ret) {
dev_err(pdata->dev, "dma_set_mask_and_coherent failed\n");
return ret;
}
/* Channel and ring params initializtion
* pdata->channel_count;
* pdata->tx_ring_count;
* pdata->rx_ring_count;
* pdata->tx_desc_count;
* pdata->rx_desc_count;
*/
BUILD_BUG_ON_NOT_POWER_OF_2(FXGMAC_TX_DESC_CNT);
pdata->tx_desc_count = FXGMAC_TX_DESC_CNT;
if (pdata->tx_desc_count & (pdata->tx_desc_count - 1)) {
dev_err(pdata->dev, "tx descriptor count (%d) is not valid\n",
pdata->tx_desc_count);
ret = -EINVAL;
return ret;
}
BUILD_BUG_ON_NOT_POWER_OF_2(FXGMAC_RX_DESC_CNT);
pdata->rx_desc_count = FXGMAC_RX_DESC_CNT;
if (pdata->rx_desc_count & (pdata->rx_desc_count - 1)) {
dev_err(pdata->dev, "rx descriptor count (%d) is not valid\n",
pdata->rx_desc_count);
ret = -EINVAL;
return ret;
}
pdata->tx_ring_count = min_t(unsigned int, num_online_cpus(),
pdata->hw_feat.tx_ch_cnt);
pdata->tx_ring_count = min_t(unsigned int, pdata->tx_ring_count,
pdata->hw_feat.tx_q_cnt);
pdata->tx_q_count = pdata->tx_ring_count;
#if !(FXGMAC_NUM_OF_TX_Q_USED)
ret = netif_set_real_num_tx_queues(netdev, pdata->tx_q_count);
#else
ret = netif_set_real_num_tx_queues(netdev, FXGMAC_NUM_OF_TX_Q_USED /*pdata->tx_q_count*/);
#endif
DPRINTK("num_online_cpus:%u, tx_ch_cnt:%u, tx_q_cnt:%u, tx_ring_count:%u\n",
num_online_cpus(), pdata->hw_feat.tx_ch_cnt, pdata->hw_feat.tx_q_cnt,
pdata->tx_ring_count);
if (ret) {
dev_err(pdata->dev, "error setting real tx queue count\n");
return ret;
}
#if 0
DPRINTK("num_online_cpus:%u, tx_ch_cnt:%u, tx_q_cnt:%u, tx_ring_count:%u\n",
num_online_cpus(), pdata->hw_feat.tx_ch_cnt, pdata->hw_feat.tx_q_cnt,
pdata->tx_ring_count);
#endif
pdata->rx_ring_count = min_t(unsigned int,
netif_get_num_default_rss_queues(),
pdata->hw_feat.rx_ch_cnt);
#ifdef FXGMAC_ONE_CHANNEL
pdata->rx_ring_count = 1;
pdata->hw_feat.rx_q_cnt = pdata->rx_ring_count;
#else
pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count,
pdata->hw_feat.rx_q_cnt);
#endif
pdata->rx_q_count = pdata->rx_ring_count;
ret = netif_set_real_num_rx_queues(netdev, pdata->rx_q_count);
if (ret) {
dev_err(pdata->dev, "error setting real rx queue count\n");
return ret;
}
pdata->channel_count =
max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count);
DPRINTK("default rss queues:%u, rx_ch_cnt:%u, rx_q_cnt:%u, rx_ring_count:%u\n",
netif_get_num_default_rss_queues(), pdata->hw_feat.rx_ch_cnt, pdata->hw_feat.rx_q_cnt,
pdata->rx_ring_count);
DPRINTK("channel_count:%u, netdev tx channel_num=%u\n", pdata->channel_count, netdev->num_tx_queues);
/* Initialize RSS hash key and lookup table */
#if FXGMAC_RSS_HASH_KEY_LINUX
netdev_rss_key_fill(pdata->rss_key, sizeof(pdata->rss_key));
#else
//this is for test only. HW does not want to change Hash key, 20210617
hw_ops->get_rss_hash_key(pdata, (u8 *)pdata->rss_key);
#endif
#if FXGMAC_MSIX_CH0RXDIS_EN
for (i = 0; i < FXGMAC_RSS_MAX_TABLE_SIZE; i++) {
pdata->rss_table[i] = FXGMAC_SET_REG_BITS(
pdata->rss_table[i],
MAC_RSSDR_DMCH_POS,
MAC_RSSDR_DMCH_LEN,
(i % 3) + 1); //eliminate ch0
}
#else
for (i = 0; i < FXGMAC_RSS_MAX_TABLE_SIZE; i++) {
pdata->rss_table[i] = FXGMAC_SET_REG_BITS(
pdata->rss_table[i],
MAC_RSSDR_DMCH_POS,
MAC_RSSDR_DMCH_LEN,
i % pdata->rx_ring_count); //note, rx_ring_count should be equal to IRQ requsted for MSIx, 4
}
#endif
pdata->rss_options = FXGMAC_SET_REG_BITS(
pdata->rss_options,
MAC_RSSCR_IP4TE_POS,
MAC_RSSCR_IP4TE_LEN, 1);
pdata->rss_options = FXGMAC_SET_REG_BITS(
pdata->rss_options,
MAC_RSSCR_TCP4TE_POS,
MAC_RSSCR_TCP4TE_LEN, 1);
pdata->rss_options = FXGMAC_SET_REG_BITS(
pdata->rss_options,
MAC_RSSCR_UDP4TE_POS,
MAC_RSSCR_UDP4TE_LEN, 1);
/* config MTU supported, 20210726 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = FXGMAC_JUMBO_PACKET_MTU + (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
#endif
/*
netdev->extended->min_mtu = netdev->min_mtu;
netdev->extended->max_mtu = netdev->max_mtu;
*/
DPRINTK("rss_options:0x%x\n", pdata->rss_options);
/* Set device operations */
netdev->netdev_ops = fxgmac_get_netdev_ops();
netdev->ethtool_ops = fxgmac_get_ethtool_ops();
/* Set device features */
if (pdata->hw_feat.tso) {
netdev->hw_features = NETIF_F_TSO;
netdev->hw_features |= NETIF_F_TSO6;
netdev->hw_features |= NETIF_F_SG;
netdev->hw_features |= NETIF_F_IP_CSUM;
netdev->hw_features |= NETIF_F_IPV6_CSUM;
} else if (pdata->hw_feat.tx_coe) {
netdev->hw_features = NETIF_F_IP_CSUM;
netdev->hw_features |= NETIF_F_IPV6_CSUM;
}
if (pdata->hw_feat.rx_coe) {
netdev->hw_features |= NETIF_F_RXCSUM;
netdev->hw_features |= NETIF_F_GRO;
}
if (pdata->hw_feat.rss) {
netdev->hw_features |= NETIF_F_RXHASH; //it is NETIF_F_RXHASH_BIT finally
}
netdev->vlan_features |= netdev->hw_features;
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
pdata->vlan_strip = 1;
if (pdata->hw_feat.sa_vlan_ins) {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
}
#if FXGMAC_FILTER_SINGLE_VLAN_ENABLED
/* only can filter one vlan id */
pdata->hw_feat.vlhash = 1 ;
#else
pdata->hw_feat.vlhash = 0 ;
#endif
if (pdata->hw_feat.vlhash) {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
pdata->vlan_filter = 1;
}
netdev->features |= netdev->hw_features;
pdata->expansion.netdev_features = netdev->features;
netdev->priv_flags |= IFF_UNICAST_FLT;
/* Use default watchdog timeout */
netdev->watchdog_timeo = msecs_to_jiffies(5000);//refer to sunxi-gmac, 5s
netdev->gso_max_size = NIC_MAX_TCP_OFFLOAD_SIZE;
/* Tx coalesce parameters initialization */
pdata->tx_usecs = FXGMAC_INIT_DMA_TX_USECS;
pdata->tx_frames = FXGMAC_INIT_DMA_TX_FRAMES;
/* Rx coalesce parameters initialization */
pdata->rx_riwt = hw_ops->usec_to_riwt(pdata, FXGMAC_INIT_DMA_RX_USECS);
pdata->rx_usecs = FXGMAC_INIT_DMA_RX_USECS;
pdata->rx_frames = FXGMAC_INIT_DMA_RX_FRAMES;
DPRINTK("fxgmac_init callout,ok.\n");
return 0;
}
static void fxgmac_init_interrupt_scheme(struct fxgmac_pdata *pdata)
{
#ifdef CONFIG_PCI_MSI
int vectors, rc, i, req_vectors;
/* check cpu core number.
* since we have 4 channels, we must ensure the number of cpu core > 4
* otherwise, just roll back to legacy
*/
vectors = num_online_cpus();
DPRINTK("num of cpu=%d\n", vectors);
if(vectors >= FXGMAC_MAX_DMA_CHANNELS) {
// 0-3 for rx, 4 for tx, 5 for phy
req_vectors = FXGMAC_MSIX_INT_NUMS;
pdata->expansion.msix_entries = kcalloc(req_vectors,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!pdata->expansion.msix_entries) {
DPRINTK("MSIx, kcalloc err for msix entries, rollback to MSI..\n");
goto enable_msi_interrupt;
}else {
for (i = 0; i < req_vectors; i++)
pdata->expansion.msix_entries[i].entry = i;
rc = pci_enable_msix_range(pdata->pdev,
pdata->expansion.msix_entries,
req_vectors,
req_vectors);
if (rc < 0) {
DPRINTK("enable MSIx failed,%d.\n", rc);
req_vectors = 0; //indicate failure
} else {
req_vectors = rc;
}
if(req_vectors >= FXGMAC_MAX_DMA_CHANNELS_PLUS_1TX) {
DPRINTK("enable MSIx ok, cpu=%d,vectors=%d.\n",
vectors, req_vectors);
pdata->expansion.int_flags = FXGMAC_SET_REG_BITS(pdata->expansion.int_flags,
FXGMAC_FLAG_INTERRUPT_POS,
FXGMAC_FLAG_INTERRUPT_LEN,
FXGMAC_FLAG_MSIX_ENABLED);
pdata->per_channel_irq = 1;
pdata->expansion.phy_irq =
pdata->expansion.msix_entries[MSI_ID_PHY_OTHER].vector;
return;
}else if (req_vectors){
DPRINTK("enable MSIx with only %d vector, while we need %d, rollback to MSI.\n", req_vectors, vectors);
//roll back to msi
pci_disable_msix(pdata->pdev);
kfree(pdata->expansion.msix_entries);
pdata->expansion.msix_entries = NULL;
req_vectors = 0;
}else {
DPRINTK("enable MSIx failure and clear msix entries.\n");
//roll back to msi
kfree(pdata->expansion.msix_entries);
pdata->expansion.msix_entries = NULL;
req_vectors = 0;
}
}
}
enable_msi_interrupt:
rc = pci_enable_msi(pdata->pdev);
if (rc < 0) {
pdata->expansion.int_flags = FXGMAC_SET_REG_BITS(pdata->expansion.int_flags,
FXGMAC_FLAG_INTERRUPT_POS,
FXGMAC_FLAG_INTERRUPT_LEN,
FXGMAC_FLAG_LEGACY_ENABLED);
DPRINTK("enable MSI failure, rollback to LEGACY.\n");
} else {
pdata->expansion.int_flags = FXGMAC_SET_REG_BITS(pdata->expansion.int_flags,
FXGMAC_FLAG_INTERRUPT_POS,
FXGMAC_FLAG_INTERRUPT_LEN,
FXGMAC_FLAG_MSI_ENABLED);
pdata->dev_irq = pdata->pdev->irq;
DPRINTK("enable MSI ok, irq=%d.\n", pdata->pdev->irq);
}
#else
pdata = pdata;
#endif
}
int fxgmac_drv_probe(struct device *dev, struct fxgmac_resources *res)
{
struct fxgmac_pdata *pdata;
struct net_device *netdev;
int ret;
netdev = alloc_etherdev_mq(sizeof(struct fxgmac_pdata),
FXGMAC_MAX_DMA_CHANNELS);
if (!netdev) {
dev_err(dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
SET_NETDEV_DEV(netdev, dev);
dev_set_drvdata(dev, netdev);
pdata = netdev_priv(netdev);
pdata->dev = dev;
pdata->pdev = to_pci_dev(dev);
pdata->netdev = netdev;
pdata->dev_irq = res->irq;
// default to legacy interrupt
pdata->expansion.int_flags = FXGMAC_SET_REG_BITS(pdata->expansion.int_flags,
FXGMAC_FLAG_INTERRUPT_POS,
FXGMAC_FLAG_INTERRUPT_LEN,
FXGMAC_FLAG_LEGACY_ENABLED);
pdata->expansion.phy_irq = pdata->dev_irq;
fxgmac_init_interrupt_scheme(pdata);
pdata->expansion.current_state = CURRENT_STATE_INIT;
pdata->msg_enable = NETIF_MSG_DRV;
DPRINTK("netif msg_enable init to %08x\n", pdata->msg_enable);
pdata->mac_regs = res->addr;
pdata->base_mem = res->addr;
pdata->mac_regs = pdata->mac_regs + FUXI_MAC_REGS_OFFSET;
ret = fxgmac_init(pdata, true);
if (ret) {
dev_err(dev, "fxgmac init failed\n");
goto err_free_netdev;
}
pdata->hw_ops.read_led_config(pdata);
netif_carrier_off(netdev);
ret = register_netdev(netdev);
if (ret) {
dev_err(dev, "net device registration failed\n");
goto err_free_netdev;
}
if(netif_msg_drv(pdata)) DPRINTK("fxgamc_drv_prob callout, netdev num_tx_q=%u\n", netdev->num_tx_queues);
#ifdef HAVE_FXGMAC_DEBUG_FS
fxgmac_dbg_init(pdata);
fxgmac_dbg_adapter_init(pdata);
#endif /* HAVE_FXGMAC_DEBUG_FS */
return 0;
err_free_netdev:
free_netdev(netdev);
DPRINTK("fxgamc_drv_prob callout with err \n");
return ret;
}
int fxgmac_drv_remove(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct fxgmac_pdata * pdata = netdev_priv(netdev);
struct fxgmac_hw_ops* hw_ops = &pdata->hw_ops;
#ifdef HAVE_FXGMAC_DEBUG_FS
fxgmac_dbg_adapter_exit(pdata);
#endif /*HAVE_FXGMAC_DEBUG_FS */
hw_ops->led_under_shutdown(pdata);
unregister_netdev(netdev);
free_netdev(netdev);
return 0;
}
void fxgmac_dump_tx_desc(struct fxgmac_pdata *pdata,
struct fxgmac_ring *ring,
unsigned int idx,
unsigned int count,
unsigned int flag)
{
struct fxgmac_desc_data *desc_data;
struct fxgmac_dma_desc *dma_desc;
while (count--) {
desc_data = FXGMAC_GET_DESC_DATA(ring, idx);
dma_desc = desc_data->dma_desc;
netdev_dbg(pdata->netdev, "TX: dma_desc=%p, dma_desc_addr=%pad\n",
desc_data->dma_desc, &desc_data->dma_desc_addr);
netdev_dbg(pdata->netdev,
"TX_NORMAL_DESC[%d %s] = %08x:%08x:%08x:%08x\n", idx,
(flag == 1) ? "QUEUED FOR TX" : "TX BY DEVICE",
le32_to_cpu(dma_desc->desc0),
le32_to_cpu(dma_desc->desc1),
le32_to_cpu(dma_desc->desc2),
le32_to_cpu(dma_desc->desc3));
idx++;
}
}
void fxgmac_dump_rx_desc(struct fxgmac_pdata *pdata,
struct fxgmac_ring *ring,
unsigned int idx)
{
struct fxgmac_desc_data *desc_data;
struct fxgmac_dma_desc *dma_desc;
desc_data = FXGMAC_GET_DESC_DATA(ring, idx);
dma_desc = desc_data->dma_desc;
netdev_dbg(pdata->netdev, "RX: dma_desc=%p, dma_desc_addr=%pad\n",
desc_data->dma_desc, &desc_data->dma_desc_addr);
netdev_dbg(pdata->netdev,
"RX_NORMAL_DESC[%d RX BY DEVICE] = %08x:%08x:%08x:%08x\n",
idx,
le32_to_cpu(dma_desc->desc0),
le32_to_cpu(dma_desc->desc1),
le32_to_cpu(dma_desc->desc2),
le32_to_cpu(dma_desc->desc3));
}
void fxgmac_dbg_pkt(struct net_device *netdev,
struct sk_buff *skb, bool tx_rx)
{
struct ethhdr *eth = (struct ethhdr *)skb->data;
unsigned char buffer[128];
unsigned int i;
netdev_dbg(netdev, "\n************** SKB dump ****************\n");
netdev_dbg(netdev, "%s packet of %d bytes\n",
(tx_rx ? "TX" : "RX"), skb->len);
netdev_dbg(netdev, "Dst MAC addr: %pM\n", eth->h_dest);
netdev_dbg(netdev, "Src MAC addr: %pM\n", eth->h_source);
netdev_dbg(netdev, "Protocol: %#06hx\n", ntohs(eth->h_proto));
for (i = 0; i < skb->len; i += 32) {
unsigned int len = min(skb->len - i, 32U);
hex_dump_to_buffer(&skb->data[i], len, 32, 1,
buffer, sizeof(buffer), false);
netdev_dbg(netdev, " %#06x: %s\n", i, buffer);
}
netdev_dbg(netdev, "\n************** SKB dump ****************\n");
}
void fxgmac_print_pkt(struct net_device *netdev,
struct sk_buff *skb, bool tx_rx)
{
#ifdef FXGMAC_DEBUG
struct ethhdr *eth = (struct ethhdr *)skb->data;
#endif
unsigned char buffer[128];
unsigned int i;
DPRINTK("\n************** SKB dump ****************\n");
DPRINTK("%s packet of %d bytes\n",
(tx_rx ? "TX" : "RX"), skb->len);
#ifdef FXGMAC_DEBUG
DPRINTK("Dst MAC addr: %pM\n", eth->h_dest);
DPRINTK("Src MAC addr: %pM\n", eth->h_source);
DPRINTK("Protocol: %#06hx\n", ntohs(eth->h_proto));
#endif
for (i = 0; i < skb->len; i += 32) {
unsigned int len = min(skb->len - i, 32U);
hex_dump_to_buffer(&skb->data[i], len, 32, 1,
buffer, sizeof(buffer), false);
DPRINTK(" %#06x: %s\n", i, buffer);
}
DPRINTK("\n************** SKB dump ****************\n");
}
void fxgmac_get_all_hw_features(struct fxgmac_pdata *pdata)
{
struct fxgmac_hw_features *hw_feat = &pdata->hw_feat;
unsigned int mac_hfr0, mac_hfr1, mac_hfr2, mac_hfr3;
mac_hfr0 = readl(pdata->mac_regs + MAC_HWF0R);
mac_hfr1 = readl(pdata->mac_regs + MAC_HWF1R);
mac_hfr2 = readl(pdata->mac_regs + MAC_HWF2R);
mac_hfr3 = readl(pdata->mac_regs + MAC_HWF3R);
memset(hw_feat, 0, sizeof(*hw_feat));
hw_feat->version = readl(pdata->mac_regs + MAC_VR);
if(netif_msg_drv(pdata)) DPRINTK ("get offset 0x110,ver=%#x\n", readl(pdata->mac_regs + 0x110));
/* Hardware feature register 0 */
hw_feat->phyifsel = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_ACTPHYIFSEL_POS,
MAC_HWF0R_ACTPHYIFSEL_LEN);
hw_feat->vlhash = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_VLHASH_POS,
MAC_HWF0R_VLHASH_LEN);
hw_feat->sma = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_SMASEL_POS,
MAC_HWF0R_SMASEL_LEN);
hw_feat->rwk = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_RWKSEL_POS,
MAC_HWF0R_RWKSEL_LEN);
hw_feat->mgk = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_MGKSEL_POS,
MAC_HWF0R_MGKSEL_LEN);
hw_feat->mmc = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_MMCSEL_POS,
MAC_HWF0R_MMCSEL_LEN);
hw_feat->aoe = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_ARPOFFSEL_POS,
MAC_HWF0R_ARPOFFSEL_LEN);
hw_feat->ts = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_TSSEL_POS,
MAC_HWF0R_TSSEL_LEN);
hw_feat->eee = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_EEESEL_POS,
MAC_HWF0R_EEESEL_LEN);
hw_feat->tx_coe = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_TXCOESEL_POS,
MAC_HWF0R_TXCOESEL_LEN);
hw_feat->rx_coe = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_RXCOESEL_POS,
MAC_HWF0R_RXCOESEL_LEN);
hw_feat->addn_mac = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_ADDMACADRSEL_POS,
MAC_HWF0R_ADDMACADRSEL_LEN);
hw_feat->ts_src = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_TSSTSSEL_POS,
MAC_HWF0R_TSSTSSEL_LEN);
hw_feat->sa_vlan_ins = FXGMAC_GET_REG_BITS(mac_hfr0,
MAC_HWF0R_SAVLANINS_POS,
MAC_HWF0R_SAVLANINS_LEN);
/* Hardware feature register 1 */
hw_feat->rx_fifo_size = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_RXFIFOSIZE_POS,
MAC_HWF1R_RXFIFOSIZE_LEN);
hw_feat->tx_fifo_size = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_TXFIFOSIZE_POS,
MAC_HWF1R_TXFIFOSIZE_LEN);
hw_feat->adv_ts_hi = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_ADVTHWORD_POS,
MAC_HWF1R_ADVTHWORD_LEN);
hw_feat->dma_width = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_ADDR64_POS,
MAC_HWF1R_ADDR64_LEN);
hw_feat->dcb = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_DCBEN_POS,
MAC_HWF1R_DCBEN_LEN);
hw_feat->sph = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_SPHEN_POS,
MAC_HWF1R_SPHEN_LEN);
#if (0 /*LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0)*/)
hw_feat->tso = 0; //bypass tso
#else
hw_feat->tso = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_TSOEN_POS,
MAC_HWF1R_TSOEN_LEN);
#endif
hw_feat->dma_debug = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_DBGMEMA_POS,
MAC_HWF1R_DBGMEMA_LEN);
#if (FXGMAC_RSS_FEATURE_ENABLED)
hw_feat->rss = 1;
#else
hw_feat->rss = 0; /* = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_RSSEN_POS,
MAC_HWF1R_RSSEN_LEN);*/
#endif
hw_feat->tc_cnt = 3/*1, yzhang try,0412*/; /* FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_NUMTC_POS,
MAC_HWF1R_NUMTC_LEN); */
hw_feat->avsel = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_AVSEL_POS,
MAC_HWF1R_AVSEL_LEN);
hw_feat->ravsel = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_RAVSEL_POS,
MAC_HWF1R_RAVSEL_LEN);
hw_feat->hash_table_size = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_HASHTBLSZ_POS,
MAC_HWF1R_HASHTBLSZ_LEN);
hw_feat->l3l4_filter_num = FXGMAC_GET_REG_BITS(mac_hfr1,
MAC_HWF1R_L3L4FNUM_POS,
MAC_HWF1R_L3L4FNUM_LEN);
/* Hardware feature register 2 */
#if 1 /* hw implement only 1 Q, but from software we see 4 logical Qs. hardcode to 4 Qs. */
hw_feat->rx_q_cnt = 3/*FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_RXQCNT_POS,
MAC_HWF2R_RXQCNT_LEN)*/;
#else
hw_feat->rx_q_cnt = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_RXQCNT_POS,
MAC_HWF2R_RXQCNT_LEN);
#endif
hw_feat->tx_q_cnt = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_TXQCNT_POS,
MAC_HWF2R_TXQCNT_LEN);
#if 0 /*yzhang for debug. only 1 rx channl and q*/
hw_feat->rx_ch_cnt = 0 /*FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_RXCHCNT_POS,
MAC_HWF2R_RXCHCNT_LEN)*/;
#else
hw_feat->rx_ch_cnt = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_RXCHCNT_POS,
MAC_HWF2R_RXCHCNT_LEN);
#endif
hw_feat->tx_ch_cnt = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_TXCHCNT_POS,
MAC_HWF2R_TXCHCNT_LEN);
hw_feat->pps_out_num = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_PPSOUTNUM_POS,
MAC_HWF2R_PPSOUTNUM_LEN);
hw_feat->aux_snap_num = FXGMAC_GET_REG_BITS(mac_hfr2,
MAC_HWF2R_AUXSNAPNUM_POS,
MAC_HWF2R_AUXSNAPNUM_LEN);
/* Translate the Hash Table size into actual number */
switch (hw_feat->hash_table_size) {
case 0:
break;
case 1:
hw_feat->hash_table_size = 64;
break;
case 2:
hw_feat->hash_table_size = 128;
break;
case 3:
hw_feat->hash_table_size = 256;
break;
}
/* Translate the address width setting into actual number */
switch (hw_feat->dma_width) {
case 0:
hw_feat->dma_width = 32;
break;
case 1:
hw_feat->dma_width = 40;
break;
case 2:
hw_feat->dma_width = 48;
break;
default:
hw_feat->dma_width = 32;
}
/* The Queue, Channel and TC counts are zero based so increment them
* to get the actual number
*/
hw_feat->rx_q_cnt++;
hw_feat->tx_q_cnt++;
hw_feat->rx_ch_cnt++;
hw_feat->tx_ch_cnt++;
hw_feat->tc_cnt++;
hw_feat->hwfr3 = mac_hfr3;
DPRINTK("HWFR3: %u\n", mac_hfr3);
}
void fxgmac_print_all_hw_features(struct fxgmac_pdata *pdata)
{
char *str = NULL;
DPRINTK("\n");
DPRINTK("=====================================================\n");
DPRINTK("\n");
DPRINTK("HW support following features,ver=%#x\n",pdata->hw_feat.version);
DPRINTK("\n");
/* HW Feature Register0 */
DPRINTK("VLAN Hash Filter Selected : %s\n",
pdata->hw_feat.vlhash ? "YES" : "NO");
DPRINTK("SMA (MDIO) Interface : %s\n",
pdata->hw_feat.sma ? "YES" : "NO");
DPRINTK("PMT Remote Wake-up Packet Enable : %s\n",
pdata->hw_feat.rwk ? "YES" : "NO");
DPRINTK("PMT Magic Packet Enable : %s\n",
pdata->hw_feat.mgk ? "YES" : "NO");
DPRINTK("RMON/MMC Module Enable : %s\n",
pdata->hw_feat.mmc ? "YES" : "NO");
DPRINTK("ARP Offload Enabled : %s\n",
pdata->hw_feat.aoe ? "YES" : "NO");
DPRINTK("IEEE 1588-2008 Timestamp Enabled : %s\n",
pdata->hw_feat.ts ? "YES" : "NO");
DPRINTK("Energy Efficient Ethernet Enabled : %s\n",
pdata->hw_feat.eee ? "YES" : "NO");
DPRINTK("Transmit Checksum Offload Enabled : %s\n",
pdata->hw_feat.tx_coe ? "YES" : "NO");
DPRINTK("Receive Checksum Offload Enabled : %s\n",
pdata->hw_feat.rx_coe ? "YES" : "NO");
DPRINTK("Additional MAC Addresses 1-31 Selected : %s\n",
pdata->hw_feat.addn_mac ? "YES" : "NO");
switch (pdata->hw_feat.ts_src) {
case 0:
str = "RESERVED";
break;
case 1:
str = "INTERNAL";
break;
case 2:
str = "EXTERNAL";
break;
case 3:
str = "BOTH";
break;
}
DPRINTK("Timestamp System Time Source : %s\n", str);
DPRINTK("Source Address or VLAN Insertion Enable : %s\n",
pdata->hw_feat.sa_vlan_ins ? "YES" : "NO");
/* HW Feature Register1 */
switch (pdata->hw_feat.rx_fifo_size) {
case 0:
str = "128 bytes";
break;
case 1:
str = "256 bytes";
break;
case 2:
str = "512 bytes";
break;
case 3:
str = "1 KBytes";
break;
case 4:
str = "2 KBytes";
break;
case 5:
str = "4 KBytes";
break;
case 6:
str = "8 KBytes";
break;
case 7:
str = "16 KBytes";
break;
case 8:
str = "32 kBytes";
break;
case 9:
str = "64 KBytes";
break;
case 10:
str = "128 KBytes";
break;
case 11:
str = "256 KBytes";
break;
default:
str = "RESERVED";
}
DPRINTK("MTL Receive FIFO Size : %s\n", str);
switch (pdata->hw_feat.tx_fifo_size) {
case 0:
str = "128 bytes";
break;
case 1:
str = "256 bytes";
break;
case 2:
str = "512 bytes";
break;
case 3:
str = "1 KBytes";
break;
case 4:
str = "2 KBytes";
break;
case 5:
str = "4 KBytes";
break;
case 6:
str = "8 KBytes";
break;
case 7:
str = "16 KBytes";
break;
case 8:
str = "32 kBytes";
break;
case 9:
str = "64 KBytes";
break;
case 10:
str = "128 KBytes";
break;
case 11:
str = "256 KBytes";
break;
default:
str = "RESERVED";
}
DPRINTK("MTL Transmit FIFO Size : %s\n", str);
DPRINTK("IEEE 1588 High Word Register Enable : %s\n",
pdata->hw_feat.adv_ts_hi ? "YES" : "NO");
DPRINTK("Address width : %u\n",
pdata->hw_feat.dma_width);
DPRINTK("DCB Feature Enable : %s\n",
pdata->hw_feat.dcb ? "YES" : "NO");
DPRINTK("Split Header Feature Enable : %s\n",
pdata->hw_feat.sph ? "YES" : "NO");
DPRINTK("TCP Segmentation Offload Enable : %s\n",
pdata->hw_feat.tso ? "YES" : "NO");
DPRINTK("DMA Debug Registers Enabled : %s\n",
pdata->hw_feat.dma_debug ? "YES" : "NO");
DPRINTK("RSS Feature Enabled : %s\n",
pdata->hw_feat.rss ? "YES" : "NO");
DPRINTK("*TODO*Number of Traffic classes : %u\n",
(pdata->hw_feat.tc_cnt));
DPRINTK("AV Feature Enabled : %s\n",
pdata->hw_feat.avsel ? "YES" : "NO");
DPRINTK("Rx Side Only AV Feature Enabled : %s\n",
(pdata->hw_feat.ravsel ? "YES": "NO"));
DPRINTK("Hash Table Size : %u\n",
pdata->hw_feat.hash_table_size);
DPRINTK("Total number of L3 or L4 Filters : %u\n",
pdata->hw_feat.l3l4_filter_num);
/* HW Feature Register2 */
DPRINTK("Number of MTL Receive Queues : %u\n",
pdata->hw_feat.rx_q_cnt);
DPRINTK("Number of MTL Transmit Queues : %u\n",
pdata->hw_feat.tx_q_cnt);
DPRINTK("Number of DMA Receive Channels : %u\n",
pdata->hw_feat.rx_ch_cnt);
DPRINTK("Number of DMA Transmit Channels : %u\n",
pdata->hw_feat.tx_ch_cnt);
switch (pdata->hw_feat.pps_out_num) {
case 0:
str = "No PPS output";
break;
case 1:
str = "1 PPS output";
break;
case 2:
str = "2 PPS output";
break;
case 3:
str = "3 PPS output";
break;
case 4:
str = "4 PPS output";
break;
default:
str = "RESERVED";
}
DPRINTK("Number of PPS Outputs : %s\n", str);
switch (pdata->hw_feat.aux_snap_num) {
case 0:
str = "No auxiliary input";
break;
case 1:
str = "1 auxiliary input";
break;
case 2:
str = "2 auxiliary input";
break;
case 3:
str = "3 auxiliary input";
break;
case 4:
str = "4 auxiliary input";
break;
default:
str = "RESERVED";
}
DPRINTK("Number of Auxiliary Snapshot Inputs : %s", str);
DPRINTK("\n");
DPRINTK("=====================================================\n");
DPRINTK("\n");
}