2243 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2021 Rockchip Electronics Co., Ltd.
*
* Author: Shunqing Chen <csq@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/compat.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/rk-camera-module.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/v4l2-controls.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/version.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <media/v4l2-controls_rockchip.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <video/videomode.h>
#include "rk628.h"
#include "rk628_combrxphy.h"
#include "rk628_cru.h"
#include "rk628_hdmirx.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-3)");
#define DRIVER_VERSION KERNEL_VERSION(0, 0x1, 0x0)
#define RK628_BT1120_NAME "rk628-bt1120"
/* Test Code: 0x44 (HS RX Control of Lane 0) */
#define HSFREQRANGE(x) UPDATE(x, 6, 1)
struct rk628_bt1120 {
struct device *dev;
struct i2c_client *i2c_client;
struct rk628 *rk628;
struct media_pad pad;
struct v4l2_subdev sd;
struct v4l2_dv_timings src_timings;
struct v4l2_dv_timings timings;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *audio_sampling_rate_ctrl;
struct v4l2_ctrl *audio_present_ctrl;
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *pixel_rate;
struct gpio_desc *enable_gpio;
struct gpio_desc *reset_gpio;
struct gpio_desc *power_gpio;
struct gpio_desc *plugin_det_gpio;
struct clk *soc_24M;
struct clk *clk_hdmirx_aud;
struct clk *clk_vop;
struct clk *clk_rx_read;
struct delayed_work delayed_work_enable_hotplug;
struct delayed_work delayed_work_res_change;
struct timer_list timer;
struct work_struct work_i2c_poll;
struct mutex confctl_mutex;
const struct rk628_bt1120_mode *cur_mode;
const char *module_facing;
const char *module_name;
const char *len_name;
u32 module_index;
u8 edid_blocks_written;
u64 lane_mbps;
u8 bt1120_lanes_in_use;
u32 mbus_fmt_code;
u8 fps;
u32 stream_state;
int hdmirx_irq;
int plugin_irq;
int lock_fail_time;
bool nosignal;
bool rxphy_pwron;
bool enable_hdcp;
bool scaler_en;
bool hpd_output_inverted;
bool avi_rcv_rdy;
bool vid_ints_en;
bool dual_edge;
bool cec_enable;
bool dvi_mode;
struct rk628_hdmirx_cec *cec;
struct rk628_hdcp hdcp;
bool i2s_enable_default;
HAUDINFO audio_info;
};
struct rk628_bt1120_mode {
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
};
static const s64 link_freq_menu_items[] = {
RK628_CSI_LINK_FREQ_LOW,
RK628_CSI_LINK_FREQ_HIGH,
};
static const struct v4l2_dv_timings_cap rk628_bt1120_timings_cap = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(1, 10000, 1, 10000, 0, 400000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_INTERLACED |
V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
static u8 edid_init_data[] = {
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
0x49, 0x73, 0x8D, 0x62, 0x00, 0x88, 0x88, 0x88,
0x08, 0x1E, 0x01, 0x03, 0x80, 0x00, 0x00, 0x78,
0x0A, 0x0D, 0xC9, 0xA0, 0x57, 0x47, 0x98, 0x27,
0x12, 0x48, 0x4C, 0x00, 0x00, 0x00, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x3A,
0x80, 0x18, 0x71, 0x38, 0x2D, 0x40, 0x58, 0x2C,
0x45, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00, 0x1E,
0x01, 0x1D, 0x00, 0x72, 0x51, 0xD0, 0x1E, 0x20,
0x6E, 0x28, 0x55, 0x00, 0xC4, 0x8E, 0x21, 0x00,
0x00, 0x1E, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x54,
0x37, 0x34, 0x39, 0x2D, 0x66, 0x48, 0x44, 0x37,
0x32, 0x30, 0x0A, 0x20, 0x00, 0x00, 0x00, 0xFD,
0x00, 0x14, 0x78, 0x01, 0xFF, 0x1D, 0x00, 0x0A,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x01, 0x18,
0x02, 0x03, 0x19, 0x71, 0x46, 0x90, 0x22, 0x04,
0x11, 0x02, 0x01, 0x23, 0x09, 0x07, 0x01, 0x83,
0x01, 0x00, 0x00, 0x65, 0x03, 0x0C, 0x00, 0x10,
0x00, 0x8C, 0x0A, 0xD0, 0x8A, 0x20, 0xE0, 0x2D,
0x10, 0x10, 0x3E, 0x96, 0x00, 0x13, 0x8E, 0x21,
0x00, 0x00, 0x1E, 0xD8, 0x09, 0x80, 0xA0, 0x20,
0xE0, 0x2D, 0x10, 0x10, 0x60, 0xA2, 0x00, 0xC4,
0x8E, 0x21, 0x00, 0x00, 0x18, 0x02, 0x3A, 0x80,
0xD0, 0x72, 0x38, 0x2D, 0x40, 0x10, 0x2C, 0x45,
0x80, 0x20, 0xC2, 0x31, 0x00, 0x00, 0x1E, 0x01,
0x1D, 0x80, 0x18, 0x71, 0x38, 0x2D, 0x40, 0x58,
0x2C, 0x45, 0x00, 0xC0, 0x6C, 0x00, 0x00, 0x00,
0x18, 0x01, 0x1D, 0x80, 0x18, 0x71, 0x1C, 0x16,
0x20, 0x58, 0x2C, 0x25, 0x00, 0xC0, 0x6C, 0x00,
0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45,
};
static const struct rk628_bt1120_mode supported_modes[] = {
{
.width = 1920,
.height = 1080,
.max_fps = {
.numerator = 10000,
.denominator = 600000,
},
.hts_def = 2200,
.vts_def = 1125,
}, {
.width = 1280,
.height = 720,
.max_fps = {
.numerator = 10000,
.denominator = 600000,
},
.hts_def = 1650,
.vts_def = 750,
}, {
.width = 720,
.height = 576,
.max_fps = {
.numerator = 10000,
.denominator = 500000,
},
.hts_def = 864,
.vts_def = 625,
}, {
.width = 720,
.height = 480,
.max_fps = {
.numerator = 10000,
.denominator = 600000,
},
.hts_def = 858,
.vts_def = 525,
},
};
static struct v4l2_dv_timings dst_timing = {
.type = V4L2_DV_BT_656_1120,
.bt = {
.interlaced = V4L2_DV_PROGRESSIVE,
.width = 1920,
.height = 1080,
.hfrontporch = 88,
.hsync = 44,
.hbackporch = 148,
.vfrontporch = 4,
.vsync = 5,
.vbackporch = 36,
.pixelclock = 148500000,
},
};
static void rk628_post_process_setup(struct v4l2_subdev *sd);
static void rk628_bt1120_enable_interrupts(struct v4l2_subdev *sd, bool en);
static int rk628_bt1120_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd);
static int rk628_bt1120_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings);
static int rk628_bt1120_s_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid);
static int rk628_hdmirx_inno_phy_power_on(struct v4l2_subdev *sd);
static int rk628_hdmirx_inno_phy_power_off(struct v4l2_subdev *sd);
static int rk628_hdmirx_phy_setup(struct v4l2_subdev *sd);
static int rk628_bt1120_format_change(struct v4l2_subdev *sd);
static void enable_stream(struct v4l2_subdev *sd, bool enable);
static void rk628_hdmirx_vid_enable(struct v4l2_subdev *sd, bool en);
static void rk628_hdmirx_hpd_ctrl(struct v4l2_subdev *sd, bool en);
static void rk628_bt1120_initial_setup(struct v4l2_subdev *sd);
static inline struct rk628_bt1120 *to_bt1120(struct v4l2_subdev *sd)
{
return container_of(sd, struct rk628_bt1120, sd);
}
static bool tx_5v_power_present(struct v4l2_subdev *sd)
{
bool ret;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
ret = rk628_hdmirx_tx_5v_power_detect(bt1120->plugin_det_gpio);
v4l2_dbg(2, debug, sd, "%s: %d\n", __func__, ret);
if (bt1120->rk628->is_suspend)
ret = false;
return ret;
}
static inline bool no_signal(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
v4l2_dbg(1, debug, sd, "%s no signal:%d\n", __func__, bt1120->nosignal);
return bt1120->nosignal;
}
static inline bool audio_present(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
return rk628_hdmirx_audio_present(bt1120->audio_info);
}
static int get_audio_sampling_rate(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (no_signal(sd))
return 0;
return rk628_hdmirx_audio_fs(bt1120->audio_info);
}
static void rk628_hdmirx_ctrl_enable(struct v4l2_subdev *sd, int en)
{
u32 mask;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (en) {
/* don't enable audio until N CTS updated */
mask = HDMI_ENABLE_MASK;
v4l2_dbg(1, debug, sd, "%s: %#x %d\n", __func__, mask, en);
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_DMI_DISABLE_IF,
mask, HDMI_ENABLE(1) | AUD_ENABLE(1));
} else {
mask = AUD_ENABLE_MASK | HDMI_ENABLE_MASK;
v4l2_dbg(1, debug, sd, "%s: %#x %d\n", __func__, mask, en);
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_DMI_DISABLE_IF,
mask, HDMI_ENABLE(0) | AUD_ENABLE(0));
}
}
static int rk628_bt1120_get_detected_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_bt_timings *bt = &timings->bt;
int ret;
ret = rk628_hdmirx_get_timings(bt1120->rk628, timings);
if (ret)
return ret;
v4l2_dbg(1, debug, sd, "hfp:%d, hs:%d, hbp:%d, vfp:%d, vs:%d, vbp:%d, interlace:%d\n",
bt->hfrontporch, bt->hsync, bt->hbackporch, bt->vfrontporch,
bt->vsync, bt->vbackporch, bt->interlaced);
bt1120->src_timings = *timings;
if (bt1120->scaler_en)
*timings = bt1120->timings;
return ret;
}
static void rk628_bt1120_hdmirx_reset(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
disable_irq(bt1120->plugin_irq);
disable_irq(bt1120->hdmirx_irq);
rk628_hdmirx_controller_reset(bt1120->rk628);
bt1120->hdcp.hdcp_start = false;
enable_irq(bt1120->plugin_irq);
enable_irq(bt1120->hdmirx_irq);
}
static void rk628_hdmirx_plugout(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
enable_stream(sd, false);
bt1120->nosignal = true;
bt1120->hdcp.hdcp_start = false;
rk628_bt1120_enable_interrupts(sd, false);
cancel_delayed_work(&bt1120->delayed_work_res_change);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
rk628_hdmirx_hpd_ctrl(sd, false);
rk628_hdmirx_inno_phy_power_off(sd);
rk628_hdmirx_verisyno_phy_power_off(bt1120->rk628);
}
static void rk628_hdmirx_config_all(struct v4l2_subdev *sd)
{
int ret, delay;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
ret = rk628_hdmirx_phy_setup(sd);
if (ret == LOCK_OK && !rk628_hdmirx_scdc_ced_err(bt1120->rk628)) {
ret = rk628_bt1120_format_change(sd);
if (ret == LOCK_OK) {
bt1120->lock_fail_time = 0;
bt1120->nosignal = false;
return;
}
}
if (ret == LOCK_RESET || rk628_hdmirx_scdc_ced_err(bt1120->rk628)) {
rk628_bt1120_hdmirx_reset(sd);
rk628_hdmirx_hpd_ctrl(sd, true);
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
msecs_to_jiffies(100));
} else if (ret == LOCK_FAIL) {
rk628_hdmirx_plugout(sd);
bt1120->lock_fail_time++;
v4l2_dbg(1, debug, sd, "%s: lock fail time: %d\n",
__func__, bt1120->lock_fail_time);
delay = 800 + 800 * ((bt1120->lock_fail_time + 1) % 2);
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
msecs_to_jiffies(delay));
}
}
static void rk628_hdmirx_reset_regfile(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
rk628_control_assert(bt1120->rk628, RGU_REGFILE);
udelay(10);
rk628_control_deassert(bt1120->rk628, RGU_REGFILE);
udelay(10);
rk628_cru_initialize(bt1120->rk628);
rk628_bt1120_initial_setup(sd);
if (tx_5v_power_present(sd))
rk628_hdmirx_hpd_ctrl(sd, true);
}
static void rk628_set_io_func_to_vop(struct rk628 *rk628)
{
/* pinctrl for vop pin */
rk628_i2c_write(rk628, GRF_GPIO2AB_SEL_CON, 0xffffffff);
rk628_i2c_write(rk628, GRF_GPIO2C_SEL_CON, 0xffff5555);
rk628_i2c_write(rk628, GRF_GPIO3AB_SEL_CON, 0x10b010b);
}
static void rk628_set_io_func_to_gpio(struct rk628 *rk628)
{
/* pinctrl for gpio */
rk628_i2c_write(rk628, GRF_GPIO2AB_SEL_CON, 0xffff0000);
rk628_i2c_write(rk628, GRF_GPIO2C_SEL_CON, 0xffff0000);
rk628_i2c_write(rk628, GRF_GPIO3AB_SEL_CON, 0x0fff0000);
}
static void rk628_bt1120_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct rk628_bt1120 *bt1120 = container_of(dwork, struct rk628_bt1120,
delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &bt1120->sd;
bool plugin;
mutex_lock(&bt1120->confctl_mutex);
rk628_set_bg_enable(bt1120->rk628, false);
bt1120->avi_rcv_rdy = false;
plugin = tx_5v_power_present(sd);
v4l2_ctrl_s_ctrl(bt1120->detect_tx_5v_ctrl, plugin);
v4l2_dbg(1, debug, sd, "%s: 5v_det:%d\n", __func__, plugin);
if (plugin) {
rk628_set_io_func_to_vop(bt1120->rk628);
rk628_bt1120_enable_interrupts(sd, false);
cancel_delayed_work_sync(&bt1120->delayed_work_res_change);
rk628_hdmirx_audio_setup(bt1120->audio_info);
rk628_hdmirx_set_hdcp(bt1120->rk628, &bt1120->hdcp, bt1120->hdcp.enable);
rk628_hdmirx_controller_setup(bt1120->rk628);
rk628_hdmirx_hpd_ctrl(sd, true);
rk628_hdmirx_config_all(sd);
if (bt1120->cec && bt1120->cec->adap)
rk628_hdmirx_cec_state_reconfiguration(bt1120->rk628, bt1120->cec);
rk628_bt1120_enable_interrupts(sd, true);
} else {
bt1120->nosignal = true;
rk628_hdmirx_plugout(sd);
rk628_set_io_func_to_gpio(bt1120->rk628);
}
mutex_unlock(&bt1120->confctl_mutex);
}
static int rk628_check_resulotion_change(struct v4l2_subdev *sd)
{
u32 val;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u32 htotal, vtotal;
u32 old_htotal, old_vtotal;
struct v4l2_bt_timings *bt = &bt1120->src_timings.bt;
if (bt1120->rk628->version >= RK628F_VERSION)
return 1;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_HT1, &val);
htotal = (val >> 16) & 0xffff;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_VTL, &val);
vtotal = val & 0xffff;
old_htotal = bt->hfrontporch + bt->hsync + bt->width + bt->hbackporch;
old_vtotal = bt->vfrontporch + bt->vsync + bt->height + bt->vbackporch;
v4l2_dbg(1, debug, sd, "new mode: %d x %d\n", htotal, vtotal);
v4l2_dbg(1, debug, sd, "old mode: %d x %d\n", old_htotal, old_vtotal);
if (htotal != old_htotal || vtotal != old_vtotal)
return 1;
return 0;
}
static void rk628_delayed_work_res_change(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct rk628_bt1120 *bt1120 = container_of(dwork, struct rk628_bt1120,
delayed_work_res_change);
struct v4l2_subdev *sd = &bt1120->sd;
bool plugin;
mutex_lock(&bt1120->confctl_mutex);
rk628_set_bg_enable(bt1120->rk628, false);
enable_stream(sd, false);
bt1120->nosignal = true;
bt1120->avi_rcv_rdy = false;
plugin = tx_5v_power_present(sd);
v4l2_dbg(1, debug, sd, "%s: 5v_det:%d\n", __func__, plugin);
if (plugin) {
if (rk628_check_resulotion_change(sd)) {
v4l2_dbg(1, debug, sd, "res change, recfg ctrler and phy!\n");
if (bt1120->rk628->version >= RK628F_VERSION) {
rk628_bt1120_enable_interrupts(sd, false);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
rk628_hdmirx_verisyno_phy_power_off(bt1120->rk628);
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
msecs_to_jiffies(100));
} else {
rk628_bt1120_enable_interrupts(sd, false);
enable_stream(sd, false);
cancel_delayed_work(&bt1120->delayed_work_res_change);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
rk628_hdmirx_set_hdcp(bt1120->rk628, &bt1120->hdcp, bt1120->hdcp.enable);
rk628_hdmirx_controller_setup(bt1120->rk628);
rk628_hdmirx_hpd_ctrl(sd, false);
rk628_hdmirx_inno_phy_power_off(sd);
rk628_hdmirx_controller_reset(bt1120->rk628);
bt1120->nosignal = true;
rk628_hdmirx_reset_regfile(sd);
}
} else {
rk628_bt1120_format_change(sd);
rk628_bt1120_enable_interrupts(sd, true);
}
}
mutex_unlock(&bt1120->confctl_mutex);
}
static void rk628_hdmirx_hpd_ctrl(struct v4l2_subdev *sd, bool en)
{
u8 en_level, set_level;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
v4l2_dbg(1, debug, sd, "%s: %sable, hpd invert:%d\n", __func__,
en ? "en" : "dis", bt1120->hpd_output_inverted);
en_level = bt1120->hpd_output_inverted ? 0 : 1;
set_level = en ? en_level : !en_level;
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_HDMI_SETUP_CTRL,
HOT_PLUG_DETECT_MASK, HOT_PLUG_DETECT(set_level));
if (bt1120->cec_enable && bt1120->cec)
rk628_hdmirx_cec_hpd(bt1120->cec, tx_5v_power_present(sd));
}
static int rk628_bt1120_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
return v4l2_ctrl_s_ctrl(bt1120->detect_tx_5v_ctrl,
tx_5v_power_present(sd));
}
static int rk628_bt1120_s_ctrl_audio_sampling_rate(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
return v4l2_ctrl_s_ctrl(bt1120->audio_sampling_rate_ctrl,
get_audio_sampling_rate(sd));
}
static int rk628_bt1120_s_ctrl_audio_present(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
return v4l2_ctrl_s_ctrl(bt1120->audio_present_ctrl,
audio_present(sd));
}
static int rk628_bt1120_update_controls(struct v4l2_subdev *sd)
{
int ret = 0;
ret |= rk628_bt1120_s_ctrl_detect_tx_5v(sd);
ret |= rk628_bt1120_s_ctrl_audio_sampling_rate(sd);
ret |= rk628_bt1120_s_ctrl_audio_present(sd);
return ret;
}
static void enable_bt1120tx(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u8 video_fmt;
u32 val = 0;
int avi_rdy;
rk628_post_process_setup(sd);
rk628_i2c_update_bits(bt1120->rk628, GRF_POST_PROC_CON,
SW_DCLK_OUT_INV_EN, SW_DCLK_OUT_INV_EN);
if (bt1120->dual_edge) {
val |= ENC_DUALEDGE_EN(1);
rk628_i2c_write(bt1120->rk628, GRF_BT1120_DCLK_DELAY_CON0, 0x10000000);
rk628_i2c_write(bt1120->rk628, GRF_BT1120_DCLK_DELAY_CON1, 0);
}
val |= BT1120_UV_SWAP(0);
rk628_i2c_write(bt1120->rk628, GRF_RGB_ENC_CON, val);
v4l2_dbg(1, debug, sd, "%s bt1120 cofig done\n", __func__);
avi_rdy = rk628_is_avi_ready(bt1120->rk628, bt1120->avi_rcv_rdy);
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_AVI_PB, &val);
video_fmt = (val & VIDEO_FORMAT_MASK) >> 5;
v4l2_dbg(1, debug, &bt1120->sd, "%s PDEC_AVI_PB:%#x, video format:%d\n",
__func__, val, video_fmt);
if (video_fmt) {
/* yuv data: cfg SW_YUV2VYU_SWP */
rk628_i2c_write(bt1120->rk628, GRF_CSC_CTRL_CON,
SW_YUV2VYU_SWP(1) |
SW_R2Y_EN(0));
} else {
/* rgb data: cfg SW_R2Y_EN */
rk628_i2c_write(bt1120->rk628, GRF_CSC_CTRL_CON,
SW_YUV2VYU_SWP(0) |
SW_R2Y_EN(1) | SW_R2Y_CSC_MODE(2));
}
/* if avi packet is not stable, reset ctrl*/
if (!avi_rdy)
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug, HZ / 20);
}
static void enable_stream(struct v4l2_subdev *sd, bool en)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u32 val;
v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, en ? "en" : "dis");
if (en) {
if (bt1120->rk628->version >= RK628F_VERSION) {
rk628_i2c_read(bt1120->rk628, HDMI_RX_SCDC_REGS2, &val);
if (rk628_hdmirx_scdc_ced_err(bt1120->rk628) ||
!rk628_hdmirx_is_locked(bt1120->rk628)) {
rk628_hdmirx_plugout(sd);
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
msecs_to_jiffies(800));
return;
}
}
rk628_hdmirx_vid_enable(sd, true);
enable_bt1120tx(sd);
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_PDEC_CTRL,
GCPFORCE_CLRAVMUTE_MASK, GCPFORCE_CLRAVMUTE(1));
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_PDEC_CTRL,
GCPFORCE_CLRAVMUTE_MASK, GCPFORCE_CLRAVMUTE(0));
} else {
rk628_i2c_write(bt1120->rk628, GRF_SCALER_CON0, SCL_EN(0));
rk628_hdmirx_vid_enable(sd, false);
}
}
static void rk628_post_process_setup(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_bt_timings *bt = &bt1120->src_timings.bt;
struct v4l2_bt_timings *dst_bt = &bt1120->timings.bt;
struct videomode src, dst;
u64 dst_pclk;
src.hactive = bt->width;
src.hfront_porch = bt->hfrontporch;
src.hsync_len = bt->hsync;
src.hback_porch = bt->hbackporch;
src.vactive = bt->height;
src.vfront_porch = bt->vfrontporch;
src.vsync_len = bt->vsync;
src.vback_porch = bt->vbackporch;
src.pixelclock = bt->pixelclock;
src.flags = 0;
if (bt->interlaced == V4L2_DV_INTERLACED)
src.flags |= DISPLAY_FLAGS_INTERLACED;
if (!src.pixelclock) {
enable_stream(sd, false);
bt1120->nosignal = true;
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug, HZ / 20);
return;
}
dst.hactive = dst_bt->width;
dst.hfront_porch = dst_bt->hfrontporch;
dst.hsync_len = dst_bt->hsync;
dst.hback_porch = dst_bt->hbackporch;
dst.vactive = dst_bt->height;
dst.vfront_porch = dst_bt->vfrontporch;
dst.vsync_len = dst_bt->vsync;
dst.vback_porch = dst_bt->vbackporch;
dst.pixelclock = dst_bt->pixelclock;
rk628_post_process_en(bt1120->rk628, &src, &dst, &dst_pclk);
dst_bt->pixelclock = dst_pclk;
}
static int rk628_hdmirx_inno_phy_power_on(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
int ret, f;
/* Bit31 is used to distinguish HDMI cable mode and direct connection
* mode in the rk628_combrxphy driver.
* Bit31: 0 -direct connection mode;
* 1 -cable mode;
* The cable mode is to know the input clock frequency through cdr_mode
* in the rk628_combrxphy driver, and the cable mode supports up to
* 297M, so 297M is passed uniformly here.
*/
f = 297000 | BIT(31);
if (bt1120->rxphy_pwron) {
v4l2_dbg(1, debug, sd, "rxphy already power on, power off!\n");
ret = rk628_rxphy_power_off(bt1120->rk628);
if (ret)
v4l2_err(sd, "hdmi rxphy power off failed!\n");
else
bt1120->rxphy_pwron = false;
usleep_range(100, 110);
}
if (bt1120->rxphy_pwron == false) {
rk628_hdmirx_ctrl_enable(sd, 0);
ret = rk628_rxphy_power_on(bt1120->rk628, f);
if (ret) {
bt1120->rxphy_pwron = false;
v4l2_err(sd, "hdmi rxphy power on failed\n");
} else {
bt1120->rxphy_pwron = true;
}
rk628_hdmirx_ctrl_enable(sd, 1);
msleep(100);
}
return ret;
}
static int rk628_hdmirx_inno_phy_power_off(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (bt1120->rk628->version >= RK628F_VERSION)
return 0;
if (bt1120->rxphy_pwron) {
v4l2_dbg(1, debug, sd, "rxphy power off!\n");
rk628_rxphy_power_off(bt1120->rk628);
bt1120->rxphy_pwron = false;
}
usleep_range(100, 100);
return 0;
}
static void rk628_hdmirx_vid_enable(struct v4l2_subdev *sd, bool en)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, en ? "en" : "dis");
if (en) {
if (!bt1120->i2s_enable_default)
rk628_hdmirx_audio_i2s_ctrl(bt1120->audio_info, true);
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_DMI_DISABLE_IF,
VID_ENABLE_MASK, VID_ENABLE(1));
} else {
if (!bt1120->i2s_enable_default)
rk628_hdmirx_audio_i2s_ctrl(bt1120->audio_info, false);
rk628_i2c_update_bits(bt1120->rk628, HDMI_RX_DMI_DISABLE_IF,
VID_ENABLE_MASK, VID_ENABLE(0));
}
}
static bool rk628_rcv_supported_res(struct v4l2_subdev *sd, u32 width,
u32 height)
{
u32 i;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (bt1120->rk628->version >= RK628F_VERSION)
return true;
for (i = 0; i < ARRAY_SIZE(supported_modes); i++) {
if ((supported_modes[i].width == width) &&
(supported_modes[i].height == height)) {
break;
}
}
if (i == ARRAY_SIZE(supported_modes)) {
v4l2_err(sd, "%s do not support res wxh: %dx%d\n", __func__,
width, height);
return false;
} else {
return true;
}
}
static int rk628_hdmirx_dvi_mode_reset(struct v4l2_subdev *sd)
{
u32 val, avi_pb;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_STS, &val);
if (val & DVI_DET) {
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_AVI_PB, &avi_pb);
if (avi_pb && !bt1120->dvi_mode) {
bt1120->dvi_mode = true;
v4l2_info(sd, "%s HDMI to DVI hdmirx ctrl reset!\n", __func__);
return -1;
}
bt1120->dvi_mode = true;
} else {
bt1120->dvi_mode = false;
}
return 0;
}
static int rk628_hdmirx_phy_setup(struct v4l2_subdev *sd)
{
u32 i, cnt, val;
u32 width, height, frame_width, frame_height, status;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
int ret = 0;
for (i = 0; i < RXPHY_CFG_MAX_TIMES; i++) {
if (bt1120->rk628->version < RK628F_VERSION)
ret = rk628_hdmirx_inno_phy_power_on(sd);
else
rk628_hdmirx_verisyno_phy_power_on(bt1120->rk628);
if (ret < 0) {
msleep(50);
continue;
}
cnt = 0;
do {
msleep(20);
cnt++;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_HACT_PX, &val);
width = val & 0xffff;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_VAL, &val);
height = val & 0xffff;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_HT1, &val);
frame_width = (val >> 16) & 0xffff;
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_VTL, &val);
frame_height = val & 0xffff;
rk628_i2c_read(bt1120->rk628, HDMI_RX_SCDC_REGS1, &val);
status = val;
v4l2_dbg(1, debug, sd, "%s read wxh:%dx%d, total:%dx%d, SCDC_REGS1:%#x, cnt:%d\n",
__func__, width, height, frame_width, frame_height, status, cnt);
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_STS, &val);
if (bt1120->rk628->version < RK628F_VERSION && (val & DVI_DET))
dev_info(bt1120->dev, "DVI mode detected\n");
if ((status & 0xfff) >= 0xf00) {
msleep(50);
if (rk628_hdmirx_dvi_mode_reset(sd))
return LOCK_RESET;
}
if (!tx_5v_power_present(sd)) {
v4l2_info(sd, "HDMI pull out, return!\n");
return LOCK_FAIL;
}
if (cnt >= 15)
break;
} while (((status & 0xfff) < 0xf00) ||
(!rk628_rcv_supported_res(sd, width, height)));
if (((status & 0xfff) < 0xf00) ||
(!rk628_rcv_supported_res(sd, width, height))) {
v4l2_err(sd, "%s hdmi rxphy lock failed, retry:%d\n",
__func__, i);
continue;
} else {
if (bt1120->rk628->version >= RK628F_VERSION)
rk628_hdmirx_phy_prepclk_cfg(bt1120->rk628);
break;
}
}
if (i == RXPHY_CFG_MAX_TIMES)
return LOCK_FAIL;
return LOCK_OK;
}
static void rk628_bt1120_initial(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_subdev_edid def_edid;
/* select int io function */
rk628_i2c_write(bt1120->rk628, GRF_GPIO3AB_SEL_CON, 0x30002000);
rk628_i2c_write(bt1120->rk628, GRF_GPIO1AB_SEL_CON, HIWORD_UPDATE(0x7, 11, 8));
/* I2S_SCKM0 */
rk628_i2c_write(bt1120->rk628, GRF_GPIO0AB_SEL_CON, HIWORD_UPDATE(0x1, 2, 2));
/* I2SLR_M0 */
rk628_i2c_write(bt1120->rk628, GRF_GPIO0AB_SEL_CON, HIWORD_UPDATE(0x1, 3, 3));
/* I2SM0D0 */
rk628_i2c_write(bt1120->rk628, GRF_GPIO0AB_SEL_CON, HIWORD_UPDATE(0x1, 5, 4));
/* hdmirx int en */
if (bt1120->rk628->version >= RK628F_VERSION)
rk628_i2c_write(bt1120->rk628, GRF_INTR0_EN, 0x02000200);
else
rk628_i2c_write(bt1120->rk628, GRF_INTR0_EN, 0x01000100);
udelay(10);
rk628_control_assert(bt1120->rk628, RGU_HDMIRX);
rk628_control_assert(bt1120->rk628, RGU_HDMIRX_PON);
rk628_control_assert(bt1120->rk628, RGU_BT1120DEC);
udelay(10);
rk628_control_deassert(bt1120->rk628, RGU_HDMIRX);
rk628_control_deassert(bt1120->rk628, RGU_HDMIRX_PON);
rk628_control_deassert(bt1120->rk628, RGU_BT1120DEC);
udelay(10);
rk628_i2c_update_bits(bt1120->rk628, GRF_SYSTEM_CON0,
SW_BT_DATA_OEN_MASK |
SW_INPUT_MODE_MASK |
SW_OUTPUT_MODE_MASK |
SW_EFUSE_HDCP_EN_MASK |
SW_HSYNC_POL_MASK |
SW_VSYNC_POL_MASK |
SW_I2S_DATA_OEN_MASK,
SW_INPUT_MODE(INPUT_MODE_HDMI) |
SW_OUTPUT_MODE(OUTPUT_MODE_BT1120) |
SW_EFUSE_HDCP_EN(0) |
SW_HSYNC_POL(1) |
SW_VSYNC_POL(1) |
SW_I2S_DATA_OEN(0));
rk628_hdmirx_controller_reset(bt1120->rk628);
def_edid.pad = 0;
def_edid.start_block = 0;
def_edid.blocks = 2;
def_edid.edid = edid_init_data;
rk628_bt1120_s_edid(sd, &def_edid);
}
static void rk628_bt1120_initial_setup(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
rk628_bt1120_initial(sd);
if (tx_5v_power_present(sd))
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug, 4000);
}
static int rk628_bt1120_format_change(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_dv_timings timings;
const struct v4l2_event rk628_bt1120_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
int ret;
ret = rk628_bt1120_get_detected_timings(sd, &timings);
if (ret) {
v4l2_dbg(1, debug, sd, "%s: get timing fail\n", __func__);
return LOCK_FAIL;
}
if (!v4l2_match_dv_timings(&bt1120->timings, &timings, 0, false)) {
/* automatically set timing rather than set by userspace */
rk628_bt1120_s_dv_timings(sd, &timings);
v4l2_print_dv_timings(sd->name,
"rk628_bt1120_format_change: New format: ",
&timings, false);
}
if (sd->devnode)
v4l2_subdev_notify_event(sd, &rk628_bt1120_ev_fmt);
return LOCK_OK;
}
static void rk628_bt1120_enable_interrupts(struct v4l2_subdev *sd, bool en)
{
u32 pdec_ien, md_ien;
u32 pdec_mask = 0, md_mask = 0;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
pdec_mask = AVI_RCV_ENSET | AVI_CKS_CHG_ICLR;
md_mask = VACT_LIN_ENSET | HACT_PIX_ENSET | HS_CLK_ENSET |
DE_ACTIVITY_ENSET | VS_ACT_ENSET | HS_ACT_ENSET | VS_CLK_ENSET;
v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, en ? "en" : "dis");
/* clr irq */
rk628_i2c_write(bt1120->rk628, HDMI_RX_MD_ICLR, md_mask);
rk628_i2c_write(bt1120->rk628, HDMI_RX_PDEC_ICLR, pdec_mask);
if (en) {
rk628_i2c_write(bt1120->rk628, HDMI_RX_MD_IEN_SET, md_mask);
rk628_i2c_write(bt1120->rk628, HDMI_RX_PDEC_IEN_SET, pdec_mask);
bt1120->vid_ints_en = true;
} else {
rk628_i2c_write(bt1120->rk628, HDMI_RX_MD_IEN_CLR, md_mask);
rk628_i2c_write(bt1120->rk628, HDMI_RX_PDEC_IEN_CLR, pdec_mask);
rk628_i2c_write(bt1120->rk628, HDMI_RX_AUD_FIFO_IEN_CLR, 0x1f);
bt1120->vid_ints_en = false;
}
usleep_range(5000, 5000);
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_IEN, &md_ien);
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_IEN, &pdec_ien);
v4l2_dbg(1, debug, sd, "%s MD_IEN:%#x, PDEC_IEN:%#x\n", __func__, md_ien, pdec_ien);
}
static void rk628_bt1120_clear_hdmirx_interrupts(struct v4l2_subdev *sd)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (bt1120->rk628->version >= RK628F_VERSION)
rk628_i2c_write(bt1120->rk628, GRF_INTR0_CLR_EN, 0x02000200);
else
rk628_i2c_write(bt1120->rk628, GRF_INTR0_CLR_EN, 0x01000100);
}
static int rk628_is_general_isr(struct rk628_bt1120 *bt1120, u32 md_ints, u32 pdec_ints)
{
if (rk628_hdmirx_is_signal_change_ists(bt1120->rk628, md_ints, pdec_ints))
return 1;
if ((pdec_ints & AVI_RCV_ISTS) && !bt1120->avi_rcv_rdy)
return 1;
return 0;
}
static int rk628_hdmirx_general_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u32 md_ints, pdec_ints, fifo_ints, hact, vact;
bool plugin;
void *audio_info = bt1120->audio_info;
u32 int0_status;
if (handled == NULL) {
v4l2_err(sd, "handled NULL, err return!\n");
return -EINVAL;
}
if (bt1120->rk628->version < RK628F_VERSION) {
if (rk628_audio_ctsnints_enabled(audio_info)) {
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_ISTS, &pdec_ints);
if (pdec_ints & (ACR_N_CHG_ICLR | ACR_CTS_CHG_ICLR)) {
rk628_csi_isr_ctsn(audio_info, pdec_ints);
pdec_ints &= ~(ACR_CTS_CHG_ICLR | ACR_CTS_CHG_ICLR);
*handled = true;
}
}
if (rk628_audio_fifoints_enabled(audio_info)) {
rk628_i2c_read(bt1120->rk628, HDMI_RX_AUD_FIFO_ISTS, &fifo_ints);
if (fifo_ints & 0x18) {
rk628_csi_isr_fifoints(audio_info, fifo_ints);
*handled = true;
}
}
}
if (!bt1120->vid_ints_en)
return 0;
rk628_i2c_read(bt1120->rk628, GRF_INTR0_STATUS, &int0_status);
if (!(int0_status & (BIT(8) | BIT(9))))
return 0;
v4l2_dbg(1, debug, sd, "%s: int0 status: 0x%x\n", __func__, int0_status);
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_ISTS, &md_ints);
rk628_i2c_read(bt1120->rk628, HDMI_RX_PDEC_ISTS, &pdec_ints);
/* clear interrupts */
rk628_i2c_write(bt1120->rk628, HDMI_RX_MD_ICLR, 0xffffffff);
rk628_i2c_write(bt1120->rk628, HDMI_RX_PDEC_ICLR, 0xff3fffff);
if (!rk628_is_general_isr(bt1120, md_ints, pdec_ints))
return 0;
if (bt1120->rk628->version >= RK628F_VERSION &&
rk628_hdmirx_is_signal_change_ists(bt1120->rk628, md_ints, pdec_ints))
rk628_set_bg_enable(bt1120->rk628, true);
plugin = tx_5v_power_present(sd);
if (!plugin) {
rk628_bt1120_enable_interrupts(sd, false);
return 0;
}
v4l2_dbg(1, debug, sd, "%s: md_ints: %#x, pdec_ints:%#x, plugin: %d\n",
__func__, md_ints, pdec_ints, plugin);
if (rk628_hdmirx_is_signal_change_ists(bt1120->rk628, md_ints, pdec_ints)) {
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_HACT_PX, &hact);
rk628_i2c_read(bt1120->rk628, HDMI_RX_MD_VAL, &vact);
v4l2_dbg(1, debug, sd, "%s: HACT:%#x, VACT:%#x\n",
__func__, hact, vact);
rk628_bt1120_enable_interrupts(sd, false);
if (bt1120->rk628->version < RK628F_VERSION) {
enable_stream(sd, false);
bt1120->nosignal = true;
}
schedule_delayed_work(&bt1120->delayed_work_res_change, HZ / 2);
v4l2_dbg(1, debug, sd, "%s: hact/vact change, md_ints: %#x\n",
__func__, (u32)(md_ints & (VACT_LIN_ISTS | HACT_PIX_ISTS)));
*handled = true;
}
if ((pdec_ints & AVI_RCV_ISTS) && plugin && !bt1120->avi_rcv_rdy) {
v4l2_dbg(1, debug, sd, "%s: AVI RCV INT!\n", __func__);
bt1120->avi_rcv_rdy = true;
/* After get the AVI_RCV interrupt state, disable interrupt. */
rk628_i2c_write(bt1120->rk628, HDMI_RX_PDEC_IEN_CLR, AVI_RCV_ISTS);
*handled = true;
}
if (*handled != true)
v4l2_dbg(1, debug, sd, "%s: unhandled interrupt!\n", __func__);
return 0;
}
static int rk628_hdmirx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
mutex_lock(&bt1120->rk628->rst_lock);
rk628_hdmirx_general_isr(sd, status, handled);
if (bt1120->cec_enable && bt1120->cec)
rk628_hdmirx_cec_irq(bt1120->rk628, bt1120->cec);
mutex_unlock(&bt1120->rk628->rst_lock);
rk628_bt1120_clear_hdmirx_interrupts(sd);
return 0;
}
static irqreturn_t rk628_bt1120_irq_handler(int irq, void *dev_id)
{
struct rk628_bt1120 *bt1120 = dev_id;
bool handled = true;
rk628_hdmirx_isr(&bt1120->sd, 0, &handled);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
static void rk628_bt1120_irq_poll_timer(struct timer_list *t)
{
struct rk628_bt1120 *bt1120 = from_timer(bt1120, t, timer);
schedule_work(&bt1120->work_i2c_poll);
mod_timer(&bt1120->timer, jiffies + msecs_to_jiffies(POLL_INTERVAL_MS));
}
static void rk628_bt1120_work_i2c_poll(struct work_struct *work)
{
struct rk628_bt1120 *bt1120 = container_of(work, struct rk628_bt1120,
work_i2c_poll);
struct v4l2_subdev *sd = &bt1120->sd;
rk628_bt1120_format_change(sd);
}
static int rk628_bt1120_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
static int rk628_bt1120_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
static u8 cnt;
*status = 0;
*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
if (no_signal(sd) && tx_5v_power_present(sd)) {
if (cnt++ >= 6) {
cnt = 0;
v4l2_info(sd, "no signal but 5v_det, recfg hdmirx!\n");
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
HZ / 20);
}
} else {
cnt = 0;
}
v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
return 0;
}
static int rk628_bt1120_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
if (!timings)
return -EINVAL;
if (debug)
v4l2_print_dv_timings(sd->name, "rk628_bt1120_s_dv_timings: ",
timings, false);
if (v4l2_match_dv_timings(&bt1120->timings, timings, 0, false)) {
v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
return 0;
}
if (!v4l2_valid_dv_timings(timings, &rk628_bt1120_timings_cap, NULL,
NULL)) {
v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__);
return -ERANGE;
}
bt1120->timings = *timings;
enable_stream(sd, false);
return 0;
}
static int rk628_bt1120_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
*timings = bt1120->timings;
return 0;
}
static int rk628_bt1120_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
if (timings->pad != 0)
return -EINVAL;
return v4l2_enum_dv_timings_cap(timings, &rk628_bt1120_timings_cap, NULL,
NULL);
}
static int rk628_bt1120_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
int ret;
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_dv_timings default_timing =
V4L2_DV_BT_CEA_640X480P59_94;
if (!tx_5v_power_present(sd) || bt1120->nosignal) {
*timings = default_timing;
v4l2_info(sd, "%s: not detect 5v, set default timing\n", __func__);
return 0;
}
ret = rk628_bt1120_get_detected_timings(sd, timings);
if (ret)
return ret;
if (debug)
v4l2_print_dv_timings(sd->name, "rk628_bt1120_query_dv_timings: ",
timings, false);
if (!v4l2_valid_dv_timings(timings, &rk628_bt1120_timings_cap, NULL,
NULL)) {
v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__);
return -ERANGE;
}
return 0;
}
static int rk628_bt1120_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
if (cap->pad != 0)
return -EINVAL;
*cap = rk628_bt1120_timings_cap;
return 0;
}
static int rk628_bt1120_g_mbus_config(struct v4l2_subdev *sd,
unsigned int pad,
struct v4l2_mbus_config *cfg)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
cfg->type = V4L2_MBUS_BT656;
#if KERNEL_VERSION(5, 18, 0) <= LINUX_VERSION_CODE
cfg->bus.parallel.flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
V4L2_MBUS_VSYNC_ACTIVE_HIGH |
V4L2_MBUS_PCLK_SAMPLE_RISING;
if (bt1120->dual_edge)
cfg->bus.parallel.flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
#else
cfg->flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
V4L2_MBUS_VSYNC_ACTIVE_HIGH |
V4L2_MBUS_PCLK_SAMPLE_RISING;
if (bt1120->dual_edge)
cfg->flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
#endif
return 0;
}
static int rk628_bt1120_s_stream(struct v4l2_subdev *sd, int enable)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
mutex_lock(&bt1120->confctl_mutex);
enable_stream(sd, enable);
mutex_unlock(&bt1120->confctl_mutex);
return 0;
}
static int rk628_bt1120_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
switch (code->index) {
case 0:
code->code = MEDIA_BUS_FMT_UYVY8_2X8;
break;
default:
return -EINVAL;
}
return 0;
}
static int rk628_bt1120_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_UYVY8_2X8)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int rk628_bt1120_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
if (fie->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
fie->code = MEDIA_BUS_FMT_UYVY8_2X8;
fie->width = supported_modes[fie->index].width;
fie->height = supported_modes[fie->index].height;
fie->interval = supported_modes[fie->index].max_fps;
return 0;
}
static int rk628_bt1120_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
mutex_lock(&bt1120->confctl_mutex);
format->format.code = bt1120->mbus_fmt_code;
format->format.width = bt1120->timings.bt.width;
format->format.height = bt1120->timings.bt.height;
format->format.field = bt1120->timings.bt.interlaced ?
V4L2_FIELD_INTERLACED : V4L2_FIELD_NONE;
mutex_unlock(&bt1120->confctl_mutex);
v4l2_dbg(1, debug, sd, "%s: fmt code:%d, w:%d, h:%d, field code:%d\n",
__func__, format->format.code, format->format.width,
format->format.height, format->format.field);
return 0;
}
static int rk628_bt1120_get_reso_dist(const struct rk628_bt1120_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct rk628_bt1120_mode *
rk628_bt1120_find_best_fit(struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(supported_modes); i++) {
dist = rk628_bt1120_get_reso_dist(&supported_modes[i], framefmt);
if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &supported_modes[cur_best_fit];
}
static int rk628_bt1120_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
const struct rk628_bt1120_mode *mode;
u32 code = format->format.code; /* is overwritten by get_fmt */
int ret = rk628_bt1120_get_fmt(sd, sd_state, format);
format->format.code = code;
if (ret)
return ret;
switch (code) {
case MEDIA_BUS_FMT_UYVY8_2X8:
break;
default:
return -EINVAL;
}
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
return 0;
bt1120->mbus_fmt_code = format->format.code;
mode = rk628_bt1120_find_best_fit(format);
bt1120->cur_mode = mode;
v4l2_dbg(1, debug, sd,
"%s res wxh:%dx%d, link freq:%llu, pixrate:%u\n",
__func__, mode->width, mode->height,
link_freq_menu_items[0], RK628_CSI_PIXEL_RATE_LOW);
__v4l2_ctrl_s_ctrl(bt1120->link_freq, 0);
__v4l2_ctrl_s_ctrl_int64(bt1120->pixel_rate,
RK628_CSI_PIXEL_RATE_LOW);
mutex_lock(&bt1120->confctl_mutex);
enable_stream(sd, false);
mutex_unlock(&bt1120->confctl_mutex);
return 0;
}
static int rk628_bt1120_g_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u32 i, val;
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->pad != 0)
return -EINVAL;
if (edid->start_block == 0 && edid->blocks == 0) {
edid->blocks = bt1120->edid_blocks_written;
return 0;
}
if (bt1120->edid_blocks_written == 0)
return -ENODATA;
if (edid->start_block >= bt1120->edid_blocks_written ||
edid->blocks == 0)
return -EINVAL;
if (edid->start_block + edid->blocks > bt1120->edid_blocks_written)
edid->blocks = bt1120->edid_blocks_written - edid->start_block;
/* edid access by apb when read, i2c slave addr: 0x0 */
rk628_i2c_update_bits(bt1120->rk628, GRF_SYSTEM_CON0,
SW_ADAPTER_I2CSLADR_MASK |
SW_EDID_MODE_MASK,
SW_ADAPTER_I2CSLADR(0) |
SW_EDID_MODE(1));
for (i = 0; i < (edid->blocks * EDID_BLOCK_SIZE); i++) {
rk628_i2c_read(bt1120->rk628, EDID_BASE + ((edid->start_block *
EDID_BLOCK_SIZE) + i) * 4, &val);
edid->edid[i] = val;
}
rk628_i2c_update_bits(bt1120->rk628, GRF_SYSTEM_CON0,
SW_EDID_MODE_MASK,
SW_EDID_MODE(0));
return 0;
}
static int rk628_bt1120_s_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
u16 edid_len = edid->blocks * EDID_BLOCK_SIZE;
u32 i, val;
v4l2_dbg(1, debug, sd, "%s, pad %d, start block %d, blocks %d\n",
__func__, edid->pad, edid->start_block, edid->blocks);
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->pad != 0)
return -EINVAL;
if (edid->start_block != 0)
return -EINVAL;
if (edid->blocks > EDID_NUM_BLOCKS_MAX) {
edid->blocks = EDID_NUM_BLOCKS_MAX;
return -E2BIG;
}
rk628_hdmirx_hpd_ctrl(sd, false);
if (edid->blocks == 0) {
bt1120->edid_blocks_written = 0;
return 0;
}
/* edid access by apb when write, i2c slave addr: 0x0 */
rk628_i2c_update_bits(bt1120->rk628, GRF_SYSTEM_CON0,
SW_ADAPTER_I2CSLADR_MASK |
SW_EDID_MODE_MASK,
SW_ADAPTER_I2CSLADR(0) |
SW_EDID_MODE(1));
for (i = 0; i < edid_len; i++)
rk628_i2c_write(bt1120->rk628, EDID_BASE + i * 4, edid->edid[i]);
/* read out for debug */
if (debug >= 3) {
pr_info("%s: Read EDID: ======\n", __func__);
for (i = 0; i < edid_len; i++) {
rk628_i2c_read(bt1120->rk628, EDID_BASE + i * 4, &val);
pr_info("0x%02x ", val);
if ((i + 1) % 8 == 0)
pr_info("\n");
}
pr_info("%s: ======\n", __func__);
}
/* edid access by RX's i2c, i2c slave addr: 0x0 */
rk628_i2c_update_bits(bt1120->rk628, GRF_SYSTEM_CON0,
SW_ADAPTER_I2CSLADR_MASK |
SW_EDID_MODE_MASK,
SW_ADAPTER_I2CSLADR(0) |
SW_EDID_MODE(0));
bt1120->edid_blocks_written = edid->blocks;
udelay(100);
if (tx_5v_power_present(sd) && bt1120->rk628->version < RK628F_VERSION)
rk628_hdmirx_hpd_ctrl(sd, true);
return 0;
}
static int rk628_bt1120_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
const struct rk628_bt1120_mode *mode = bt1120->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
static int rk628_bt1120_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
*std = V4L2_STD_ATSC;
return 0;
}
static void rk628_bt1120_get_module_inf(struct rk628_bt1120 *rk628_bt1120,
struct rkmodule_inf *inf)
{
memset(inf, 0, sizeof(*inf));
strscpy(inf->base.sensor, RK628_BT1120_NAME, sizeof(inf->base.sensor));
strscpy(inf->base.module, rk628_bt1120->module_name,
sizeof(inf->base.module));
strscpy(inf->base.lens, rk628_bt1120->len_name, sizeof(inf->base.lens));
}
static long rk628_bt1120_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
long ret = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
rk628_bt1120_get_module_inf(bt1120, (struct rkmodule_inf *)arg);
break;
case RKMODULE_GET_HDMI_MODE:
*(int *)arg = RKMODULE_HDMIIN_MODE;
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long rk628_bt1120_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
long ret;
int *seq;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = rk628_bt1120_ioctl(sd, cmd, inf);
if (!ret) {
ret = copy_to_user(up, inf, sizeof(*inf));
if (ret)
ret = -EFAULT;
}
kfree(inf);
break;
case RKMODULE_GET_HDMI_MODE:
seq = kzalloc(sizeof(*seq), GFP_KERNEL);
if (!seq) {
ret = -ENOMEM;
return ret;
}
ret = rk628_bt1120_ioctl(sd, cmd, seq);
if (!ret) {
ret = copy_to_user(up, seq, sizeof(*seq));
if (ret)
ret = -EFAULT;
}
kfree(seq);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#endif
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int bt1120_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
struct v4l2_bt_timings *bt = &(bt1120->timings.bt);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
const struct rk628_bt1120_mode *def_mode = &supported_modes[0];
mutex_lock(&bt1120->confctl_mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
if (bt->interlaced == V4L2_DV_INTERLACED)
try_fmt->field = V4L2_FIELD_INTERLACED;
else
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&bt1120->confctl_mutex);
return 0;
}
static const struct v4l2_subdev_internal_ops bt1120_subdev_internal_ops = {
.open = bt1120_open,
};
#endif
static const struct v4l2_subdev_core_ops rk628_bt1120_core_ops = {
.interrupt_service_routine = rk628_hdmirx_isr,
.subscribe_event = rk628_bt1120_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
.ioctl = rk628_bt1120_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = rk628_bt1120_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops rk628_bt1120_video_ops = {
.g_input_status = rk628_bt1120_g_input_status,
.s_dv_timings = rk628_bt1120_s_dv_timings,
.g_dv_timings = rk628_bt1120_g_dv_timings,
.query_dv_timings = rk628_bt1120_query_dv_timings,
.s_stream = rk628_bt1120_s_stream,
.g_frame_interval = rk628_bt1120_g_frame_interval,
.querystd = rk628_bt1120_querystd,
};
static const struct v4l2_subdev_pad_ops rk628_bt1120_pad_ops = {
.enum_mbus_code = rk628_bt1120_enum_mbus_code,
.enum_frame_size = rk628_bt1120_enum_frame_sizes,
.enum_frame_interval = rk628_bt1120_enum_frame_interval,
.set_fmt = rk628_bt1120_set_fmt,
.get_fmt = rk628_bt1120_get_fmt,
.get_edid = rk628_bt1120_g_edid,
.set_edid = rk628_bt1120_s_edid,
.enum_dv_timings = rk628_bt1120_enum_dv_timings,
.dv_timings_cap = rk628_bt1120_dv_timings_cap,
.get_mbus_config = rk628_bt1120_g_mbus_config,
};
static const struct v4l2_subdev_ops rk628_bt1120_ops = {
.core = &rk628_bt1120_core_ops,
.video = &rk628_bt1120_video_ops,
.pad = &rk628_bt1120_pad_ops,
};
static const struct v4l2_ctrl_config rk628_bt1120_ctrl_audio_sampling_rate = {
.id = RK_V4L2_CID_AUDIO_SAMPLING_RATE,
.name = "Audio sampling rate",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 768000,
.step = 1,
.def = 0,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
};
static const struct v4l2_ctrl_config rk628_bt1120_ctrl_audio_present = {
.id = RK_V4L2_CID_AUDIO_PRESENT,
.name = "Audio present",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
};
static irqreturn_t plugin_detect_irq(int irq, void *dev_id)
{
struct rk628_bt1120 *bt1120 = dev_id;
struct v4l2_subdev *sd = &bt1120->sd;
/* control hpd after 50ms */
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug, HZ / 20);
tx_5v_power_present(sd);
return IRQ_HANDLED;
}
static int rk628_bt1120_power_on(struct rk628_bt1120 *bt1120)
{
clk_prepare_enable(bt1120->soc_24M);
if (bt1120->enable_gpio) {
gpiod_set_value(bt1120->enable_gpio, 1);
usleep_range(10000, 11000);
}
gpiod_set_value(bt1120->reset_gpio, 0);
usleep_range(10000, 11000);
gpiod_set_value(bt1120->reset_gpio, 1);
usleep_range(10000, 11000);
gpiod_set_value(bt1120->reset_gpio, 0);
usleep_range(10000, 11000);
if (bt1120->power_gpio) {
gpiod_set_value(bt1120->power_gpio, 1);
usleep_range(10000, 11000);
}
return 0;
}
static int rk628_bt1120_power_off(struct rk628_bt1120 *bt1120)
{
if (bt1120->enable_gpio) {
gpiod_set_value(bt1120->enable_gpio, 0);
usleep_range(10000, 11000);
}
gpiod_set_value(bt1120->reset_gpio, 1);
usleep_range(10000, 11000);
gpiod_set_value(bt1120->reset_gpio, 0);
usleep_range(10000, 11000);
gpiod_set_value(bt1120->reset_gpio, 1);
usleep_range(10000, 11000);
if (bt1120->power_gpio) {
gpiod_set_value(bt1120->power_gpio, 0);
usleep_range(10000, 11000);
}
clk_disable_unprepare(bt1120->soc_24M);
return 0;
}
static int rk628_bt1120_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
v4l2_info(sd, "%s: resume!\n", __func__);
rk628_bt1120_power_on(bt1120);
rk628_cru_initialize(bt1120->rk628);
rk628_bt1120_initial(sd);
rk628_hdmirx_plugout(sd);
enable_irq(bt1120->plugin_irq);
enable_irq(bt1120->hdmirx_irq);
schedule_delayed_work(&bt1120->delayed_work_enable_hotplug,
msecs_to_jiffies(500));
bt1120->rk628->is_suspend = false;
return 0;
}
static int rk628_bt1120_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct rk628_bt1120 *bt1120 = to_bt1120(sd);
v4l2_info(sd, "%s: suspend!\n", __func__);
bt1120->rk628->is_suspend = true;
rk628_hdmirx_plugout(sd);
disable_irq(bt1120->plugin_irq);
disable_irq(bt1120->hdmirx_irq);
cancel_delayed_work_sync(&bt1120->delayed_work_res_change);
cancel_delayed_work_sync(&bt1120->delayed_work_enable_hotplug);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
rk628_bt1120_power_off(bt1120);
return 0;
}
static const struct dev_pm_ops rk628_bt1120_pm_ops = {
.suspend = rk628_bt1120_suspend,
.resume = rk628_bt1120_resume,
};
static int rk628_bt1120_probe_of(struct rk628_bt1120 *bt1120)
{
struct device *dev = bt1120->dev;
struct v4l2_fwnode_endpoint endpoint = { .bus_type = 0 };
struct device_node *ep;
int ret = -EINVAL;
bool hdcp1x_enable = false, i2s_enable_default = false;
bool scaler_en = false;
bt1120->soc_24M = devm_clk_get(dev, "soc_24M");
if (bt1120->soc_24M == ERR_PTR(-ENOENT))
bt1120->soc_24M = NULL;
if (IS_ERR(bt1120->soc_24M)) {
ret = PTR_ERR(bt1120->soc_24M);
dev_err(dev, "Unable to get soc_24M: %d\n", ret);
}
bt1120->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(bt1120->enable_gpio)) {
ret = PTR_ERR(bt1120->enable_gpio);
dev_err(dev, "failed to request enable GPIO: %d\n", ret);
return ret;
}
bt1120->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(bt1120->reset_gpio)) {
ret = PTR_ERR(bt1120->reset_gpio);
dev_err(dev, "failed to request reset GPIO: %d\n", ret);
return ret;
}
bt1120->power_gpio = devm_gpiod_get_optional(dev, "power", GPIOD_OUT_HIGH);
if (IS_ERR(bt1120->power_gpio)) {
dev_err(dev, "failed to get power gpio\n");
ret = PTR_ERR(bt1120->power_gpio);
return ret;
}
bt1120->plugin_det_gpio = devm_gpiod_get_optional(dev, "plugin-det",
GPIOD_IN);
if (IS_ERR(bt1120->plugin_det_gpio)) {
dev_err(dev, "failed to get hdmirx det gpio\n");
ret = PTR_ERR(bt1120->plugin_det_gpio);
return ret;
}
bt1120->rk628->hdmirx_det_gpio = bt1120->plugin_det_gpio;
if (of_property_read_bool(dev->of_node, "hdcp-enable"))
hdcp1x_enable = true;
if (of_property_read_bool(dev->of_node, "cec-enable"))
bt1120->cec_enable = true;
if (of_property_read_bool(dev->of_node, "i2s-enable-default"))
i2s_enable_default = true;
if (of_property_read_bool(dev->of_node, "scaler-en"))
scaler_en = true;
if (of_property_read_bool(dev->of_node, "dual-edge"))
bt1120->dual_edge = true;
ep = of_graph_get_next_endpoint(dev->of_node, NULL);
if (!ep) {
dev_err(dev, "missing endpoint node\n");
ret = -EINVAL;
return ret;
}
ret = v4l2_fwnode_endpoint_alloc_parse(of_fwnode_handle(ep), &endpoint);
of_node_put(ep);
if (ret) {
dev_err(dev, "failed to parse endpoint\n");
return ret;
}
bt1120->enable_hdcp = hdcp1x_enable;
bt1120->hdcp.enable = hdcp1x_enable;
bt1120->i2s_enable_default = i2s_enable_default;
bt1120->scaler_en = scaler_en;
if (bt1120->scaler_en)
bt1120->timings = dst_timing;
bt1120->rxphy_pwron = false;
bt1120->nosignal = true;
bt1120->stream_state = 0;
bt1120->avi_rcv_rdy = false;
rk628_debugfs_create(bt1120->rk628);
rk628_hdmirx_debugfs_create(bt1120->rk628, &bt1120->hdcp);
ret = 0;
v4l2_fwnode_endpoint_free(&endpoint);
return ret;
}
static int rk628_bt1120_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct rk628_bt1120 *bt1120;
struct v4l2_subdev *sd;
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
char facing[2];
int err;
struct rk628 *rk628;
unsigned long irq_flags;
dev_info(dev, "RK628 I2C driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
if (!of_device_is_available(dev->of_node))
return -ENODEV;
bt1120 = devm_kzalloc(dev, sizeof(*bt1120), GFP_KERNEL);
if (!bt1120)
return -ENOMEM;
bt1120->dev = dev;
bt1120->i2c_client = client;
rk628 = rk628_i2c_register(client);
if (!rk628)
return -ENOMEM;
bt1120->rk628 = rk628;
bt1120->cur_mode = &supported_modes[0];
bt1120->hdmirx_irq = client->irq;
sd = &bt1120->sd;
sd->dev = dev;
bt1120->hpd_output_inverted = of_property_read_bool(node,
"hpd-output-inverted");
err = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&bt1120->module_index);
err |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&bt1120->module_facing);
err |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&bt1120->module_name);
err |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&bt1120->len_name);
if (err) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
err = rk628_bt1120_probe_of(bt1120);
if (err) {
v4l2_err(sd, "rk628_bt1120_probe_of failed! err:%d\n", err);
return err;
}
rk628_bt1120_power_on(bt1120);
rk628_cru_initialize(rk628);
rk628_version_parse(rk628);
if (rk628->version == RK628_UNKNOWN) {
v4l2_err(sd, "can't get rk628 version\n");
err = -ENODEV;
goto power_off;
}
rk628_clk_set_rate(rk628, CGU_CLK_CPLL, CPLL_REF_CLK);
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
v4l2_i2c_subdev_init(sd, client, &rk628_bt1120_ops);
sd->internal_ops = &bt1120_subdev_internal_ops;
#endif
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
mutex_init(&bt1120->confctl_mutex);
/* control handlers */
v4l2_ctrl_handler_init(&bt1120->hdl, 2);
bt1120->link_freq = v4l2_ctrl_new_int_menu(&bt1120->hdl, NULL,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE(link_freq_menu_items) - 1,
0, link_freq_menu_items);
bt1120->pixel_rate = v4l2_ctrl_new_std(&bt1120->hdl, NULL,
V4L2_CID_PIXEL_RATE, 0, RK628_CSI_PIXEL_RATE_HIGH, 1,
RK628_CSI_PIXEL_RATE_HIGH);
bt1120->detect_tx_5v_ctrl = v4l2_ctrl_new_std(&bt1120->hdl,
NULL, V4L2_CID_DV_RX_POWER_PRESENT,
0, 1, 0, 0);
/* custom controls */
bt1120->audio_sampling_rate_ctrl = v4l2_ctrl_new_custom(&bt1120->hdl,
&rk628_bt1120_ctrl_audio_sampling_rate, NULL);
bt1120->audio_present_ctrl = v4l2_ctrl_new_custom(&bt1120->hdl,
&rk628_bt1120_ctrl_audio_present, NULL);
sd->ctrl_handler = &bt1120->hdl;
if (bt1120->hdl.error) {
err = bt1120->hdl.error;
v4l2_err(sd, "cfg v4l2 ctrls failed! err:%d\n", err);
goto err_hdl;
}
if (rk628_bt1120_update_controls(sd)) {
err = -ENODEV;
v4l2_err(sd, "update v4l2 ctrls failed! err:%d\n", err);
goto err_hdl;
}
bt1120->pad.flags = MEDIA_PAD_FL_SOURCE;
#if defined(CONFIG_MEDIA_CONTROLLER)
bt1120->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
err = media_entity_pads_init(&sd->entity, 1, &bt1120->pad);
#endif
if (err < 0) {
v4l2_err(sd, "media entity init failed! err:%d\n", err);
goto err_hdl;
}
bt1120->mbus_fmt_code = MEDIA_BUS_FMT_UYVY8_2X8;
memset(facing, 0, sizeof(facing));
if (strcmp(bt1120->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
bt1120->module_index, facing,
RK628_BT1120_NAME, dev_name(sd->dev));
err = v4l2_async_register_subdev(sd);
if (err < 0) {
v4l2_err(sd, "v4l2 register subdev failed! err:%d\n", err);
goto err_hdl;
}
INIT_DELAYED_WORK(&bt1120->delayed_work_enable_hotplug,
rk628_bt1120_delayed_work_enable_hotplug);
INIT_DELAYED_WORK(&bt1120->delayed_work_res_change,
rk628_delayed_work_res_change);
bt1120->audio_info = rk628_hdmirx_audioinfo_alloc(dev,
&bt1120->confctl_mutex,
rk628,
bt1120->i2s_enable_default,
NULL);
if (!bt1120->audio_info) {
v4l2_err(sd, "request audio info fail\n");
goto err_work_queues;
}
rk628_bt1120_initial_setup(sd);
if (bt1120->hdmirx_irq) {
irq_flags = irqd_get_trigger_type(irq_get_irq_data(bt1120->hdmirx_irq));
v4l2_dbg(1, debug, sd, "cfg hdmirx irq, flags: %lu!\n", irq_flags);
err = devm_request_threaded_irq(dev, bt1120->hdmirx_irq, NULL,
rk628_bt1120_irq_handler, irq_flags |
IRQF_ONESHOT, "rk628_bt1120", bt1120);
if (err) {
v4l2_err(sd, "request rk628-bt1120 irq failed! err:%d\n",
err);
goto err_work_queues;
}
} else {
v4l2_dbg(1, debug, sd, "no irq, cfg poll!\n");
INIT_WORK(&bt1120->work_i2c_poll,
rk628_bt1120_work_i2c_poll);
timer_setup(&bt1120->timer, rk628_bt1120_irq_poll_timer, 0);
bt1120->timer.expires = jiffies +
msecs_to_jiffies(POLL_INTERVAL_MS);
add_timer(&bt1120->timer);
}
if (bt1120->plugin_det_gpio) {
bt1120->plugin_irq = gpiod_to_irq(bt1120->plugin_det_gpio);
if (bt1120->plugin_irq < 0) {
dev_err(bt1120->dev, "failed to get plugin det irq\n");
err = bt1120->plugin_irq;
goto err_work_queues;
}
err = devm_request_threaded_irq(dev, bt1120->plugin_irq, NULL,
plugin_detect_irq, IRQF_TRIGGER_FALLING |
IRQF_TRIGGER_RISING | IRQF_ONESHOT, "rk628_bt1120", bt1120);
if (err) {
dev_err(bt1120->dev, "failed to register plugin det irq (%d)\n", err);
goto err_work_queues;
}
}
err = v4l2_ctrl_handler_setup(sd->ctrl_handler);
if (err) {
v4l2_err(sd, "v4l2 ctrl handler setup failed! err:%d\n", err);
goto err_work_queues;
}
if (bt1120->cec_enable)
bt1120->cec = rk628_hdmirx_cec_register(rk628);
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
client->addr << 1, client->adapter->name);
return 0;
err_work_queues:
if (!bt1120->hdmirx_irq)
flush_work(&bt1120->work_i2c_poll);
cancel_delayed_work(&bt1120->delayed_work_enable_hotplug);
cancel_delayed_work(&bt1120->delayed_work_res_change);
rk628_hdmirx_audio_destroy(bt1120->audio_info);
err_hdl:
mutex_destroy(&bt1120->confctl_mutex);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(&bt1120->hdl);
power_off:
rk628_bt1120_power_off(bt1120);
return err;
}
static void rk628_bt1120_remove(struct i2c_client *client)
{
struct rk628_bt1120 *bt1120 = i2c_get_clientdata(client);
rk628_debugfs_remove(bt1120->rk628);
if (!bt1120->hdmirx_irq) {
del_timer_sync(&bt1120->timer);
flush_work(&bt1120->work_i2c_poll);
}
if (bt1120->cec_enable && bt1120->cec)
rk628_hdmirx_cec_unregister(bt1120->cec);
cancel_delayed_work_sync(&bt1120->delayed_work_enable_hotplug);
cancel_delayed_work_sync(&bt1120->delayed_work_res_change);
rk628_hdmirx_audio_cancel_work_audio(bt1120->audio_info, true);
rk628_hdmirx_audio_cancel_work_rate_change(bt1120->audio_info, true);
if (bt1120->rxphy_pwron)
rk628_rxphy_power_off(bt1120->rk628);
mutex_destroy(&bt1120->confctl_mutex);
rk628_control_assert(bt1120->rk628, RGU_HDMIRX);
rk628_control_assert(bt1120->rk628, RGU_HDMIRX_PON);
rk628_control_assert(bt1120->rk628, RGU_DECODER);
rk628_control_assert(bt1120->rk628, RGU_CLK_RX);
rk628_control_assert(bt1120->rk628, RGU_VOP);
rk628_control_assert(bt1120->rk628, RGU_BT1120DEC);
rk628_bt1120_power_off(bt1120);
}
static const struct i2c_device_id rk628_bt1120_i2c_id[] = {
{ "rk628-bt1120-v4l2", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, rk628_bt1120_i2c_id);
static const struct of_device_id rk628_bt1120_of_match[] = {
{ .compatible = "rockchip,rk628-bt1120-v4l2" },
{}
};
MODULE_DEVICE_TABLE(of, rk628_bt1120_of_match);
static struct i2c_driver rk628_bt1120_i2c_driver = {
.driver = {
.name = "rk628-bt1120-v4l2",
.pm = &rk628_bt1120_pm_ops,
.of_match_table = of_match_ptr(rk628_bt1120_of_match),
},
.id_table = rk628_bt1120_i2c_id,
.probe = rk628_bt1120_probe,
.remove = rk628_bt1120_remove,
};
module_i2c_driver(rk628_bt1120_i2c_driver);
MODULE_DESCRIPTION("Rockchip RK628 HDMI to BT120 bridge I2C driver");
MODULE_AUTHOR("Shunqing Chen <csq@rock-chips.com>");
MODULE_LICENSE("GPL");