1482 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Maxim Remote dummy sensor driver
*
* Copyright (C) 2024 Rockchip Electronics Co., Ltd.
*
* Author: Cai Wenzhong <cwz@rock-chips.com>
*
*/
#include <linux/version.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/compat.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-fwnode.h>
#include "maxim_remote.h"
#define DRIVER_VERSION KERNEL_VERSION(1, 0x00, 0x03)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
#define SENSOR_NAME "dummy"
#define SENSOR_CHIP_ID 0x5809
#define SENSOR_REG_CHIP_ID 0x300A
#define SENSOR_REG_CTRL_MODE 0x0100
#define SENSOR_MODE_SW_STANDBY 0x0
#define SENSOR_MODE_STREAMING BIT(0)
#define SENSOR_VTS_MAX 0x7FFF
#define SENSOR_GAIN_MIN 0x0010
#define SENSOR_GAIN_MAX 0x0F7F
#define SENSOR_GAIN_STEP 0x01
#define SENSOR_GAIN_DEFAULT 0x10
#define SENSOR_EXPOSURE_HCG_MIN 4
#define SENSOR_EXPOSURE_HCG_STEP 1
#define SENSOR_XVCLK_FREQ 24000000
#define SENSOR_LINK_FREQ_500MHZ 500000000
/* I2C default address */
#define SENSOR_I2C_ADDR_DEF 0x30
/* register address: 16bit */
#define SENSOR_REG_ADDR_16BITS 2
/* register value: 8bit or 16bit or 24bit */
#define SENSOR_REG_VALUE_08BIT 1
#define SENSOR_REG_VALUE_16BIT 2
#define SENSOR_REG_VALUE_24BIT 3
/* I2C Array token */
#define REG_NULL 0xFFFF /* Array token: end */
#define REG_DELAY 0xFFEE /* Array token: delay */
struct i2c_regval {
u16 reg_addr;
u8 reg_val;
};
struct sensor_mode {
u32 bus_fmt;
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
u32 link_freq_idx;
u32 bpp;
u32 hdr_mode;
u32 vc[PAD_MAX];
const struct i2c_regval *reg_list;
};
struct sensor {
struct i2c_client *client;
struct regulator *poc_regulator; /* PoC */
struct mutex mutex;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *anal_gain;
struct v4l2_ctrl *digi_gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *test_pattern;
struct v4l2_ctrl *pixel_rate;
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *h_flip;
struct v4l2_ctrl *v_flip;
struct v4l2_fwnode_endpoint bus_cfg;
bool streaming;
bool power_on;
bool hot_plug;
u8 is_reset;
const struct sensor_mode *supported_modes;
const struct sensor_mode *cur_mode;
u32 cfg_modes_num;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
u8 cam_i2c_addr_def;
u8 cam_i2c_addr_map;
maxim_remote_ser_t *serializer;
};
static const struct i2c_regval sensor_1920x1080_30fps_init_regs[] = {
{ REG_NULL, 0x00 }
};
/*
* The width and height must be configured to be
* the same as the current output resolution of the sensor.
* The input width of the isp needs to be 16 aligned.
* The input height of the isp needs to be 8 aligned.
* If the width or height does not meet the alignment rules,
* you can configure the cropping parameters with the following function to
* crop out the appropriate resolution.
* struct v4l2_subdev_pad_ops {
* .get_selection
* }
*/
static const struct sensor_mode supported_modes[] = {
{
.bus_fmt = MEDIA_BUS_FMT_UYVY8_2X8,
.width = 1920,
.height = 1080,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x0038,
.hts_def = 0x10fe,
.vts_def = 0x0337,
.bpp = 16,
.link_freq_idx = 0,
.hdr_mode = NO_HDR,
.reg_list = sensor_1920x1080_30fps_init_regs,
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
.vc[PAD0] = 0,
#else
.vc[PAD0] = V4L2_MBUS_CSI2_CHANNEL_0,
#endif /* LINUX_VERSION_CODE */
},
};
static const s64 link_freq_menu_items[] = {
SENSOR_LINK_FREQ_500MHZ,
};
static const char * const sensor_test_pattern_menu[] = {
"Disabled",
};
/* Write registers up to 4 at a time */
static int __maybe_unused sensor_i2c_write_reg(struct i2c_client *client,
u16 reg_addr, u32 val_len, u32 reg_val)
{
u32 buf_i, val_i;
u8 buf[6];
u8 *val_p;
__be32 val_be;
dev_info(&client->dev, "i2c addr(0x%02x) write: 0x%04x = 0x%08x (%d)\n",
client->addr, reg_addr, reg_val, val_len);
if (val_len > 4)
return -EINVAL;
buf[0] = reg_addr >> 8;
buf[1] = reg_addr & 0xff;
buf_i = 2;
val_be = cpu_to_be32(reg_val);
val_p = (u8 *)&val_be;
val_i = 4 - val_len;
while (val_i < 4)
buf[buf_i++] = val_p[val_i++];
if (i2c_master_send(client, buf, (val_len + 2)) != (val_len + 2)) {
dev_err(&client->dev,
"%s: writing register 0x%04x from 0x%02x failed\n",
__func__, reg_addr, client->addr);
return -EIO;
}
return 0;
}
/* Read registers up to 4 at a time */
static int __maybe_unused sensor_i2c_read_reg(struct i2c_client *client,
u16 reg_addr, u32 val_len, u32 *reg_val)
{
struct i2c_msg msgs[2];
u8 *data_be_p;
__be32 data_be = 0;
__be16 reg_addr_be = cpu_to_be16(reg_addr);
u8 *reg_be_p;
int ret;
if (val_len > 4 || !val_len)
return -EINVAL;
data_be_p = (u8 *)&data_be;
reg_be_p = (u8 *)&reg_addr_be;
/* Write register address */
msgs[0].addr = client->addr;
msgs[0].flags = 0;
msgs[0].len = 2;
msgs[0].buf = reg_be_p;
/* Read data from register */
msgs[1].addr = client->addr;
msgs[1].flags = I2C_M_RD;
msgs[1].len = val_len;
msgs[1].buf = &data_be_p[4 - val_len];
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret != ARRAY_SIZE(msgs)) {
dev_err(&client->dev,
"%s: reading register 0x%04x from 0x%02x failed\n",
__func__, reg_addr, client->addr);
return -EIO;
}
*reg_val = be32_to_cpu(data_be);
#if 0
dev_info(&client->dev, "i2c addr(0x%02x) read: 0x%04x = 0x%08x (%d)\n",
client->addr, reg_addr, *reg_val, val_len);
#endif
return 0;
}
static int __maybe_unused sensor_i2c_write_array(struct i2c_client *client,
const struct i2c_regval *regs)
{
u32 i = 0, delay_us = 0;
int ret = 0;
for (i = 0; (ret == 0) && (regs[i].reg_addr != REG_NULL); i++) {
if (regs[i].reg_addr == REG_DELAY) {
// delay us
dev_info(&client->dev, "delay (%d) ms\n", regs[i].reg_val);
delay_us = regs[i].reg_val * 1000;
if (delay_us != 0)
usleep_range(delay_us, delay_us + 100);
continue;
}
ret |= sensor_i2c_write_reg(client, regs[i].reg_addr,
SENSOR_REG_VALUE_08BIT, regs[i].reg_val);
}
return ret;
}
static int sensor_check_chip_id(struct sensor *sensor)
{
struct i2c_client *client = sensor->client;
struct device *dev = &client->dev;
u32 sensor_id = 0;
int ret = 0, loop = 0;
for (loop = 0; loop < 3; loop++) {
if (loop != 0) {
dev_info(dev, "check sensor id retry (%d)", loop);
msleep(10);
}
#if 0 /* TODO */
ret = sensor_i2c_read_reg(client, SENSOR_REG_CHIP_ID,
SENSOR_REG_VALUE_16BIT, &sensor_id);
#else
dev_info(dev, "%s: %d: TODO\n", __func__, __LINE__);
sensor_id = SENSOR_CHIP_ID;
#endif
if (ret == 0) {
if (sensor_id != SENSOR_CHIP_ID) {
dev_err(dev, "Unexpected sensor\n");
return -ENODEV;
} else {
dev_info(dev, "Detected sensor\n");
return 0;
}
}
}
dev_err(dev, "Check sensor id error, ret = %d\n", ret);
return -ENODEV;
}
static int __sensor_start_stream(struct sensor *sensor)
{
maxim_remote_ser_t *serializer = sensor->serializer;
struct i2c_client *client = sensor->client;
struct device *dev = &client->dev;
int ret = 0;
if (serializer == NULL) {
dev_err(dev, "%s: serializer error\n", __func__);
return -EINVAL;
}
if (serializer->ser_ops == NULL) {
dev_err(dev, "%s: serializer ser_ops error\n", __func__);
return -EINVAL;
}
ret = serializer->ser_ops->ser_module_init(serializer);
if (ret) {
dev_err(dev, "%s: serializer module_init error\n", __func__);
return ret;
}
ret = sensor_check_chip_id(sensor);
if (ret) {
dev_err(dev, "%s: sensor check chip id error\n", __func__);
return ret;
}
ret = sensor_i2c_write_array(client, sensor->cur_mode->reg_list);
if (ret) {
dev_err(dev, "%s: sensor i2c write array error\n", __func__);
return ret;
}
/* In case these controls are set before streaming */
ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler);
if (ret)
return ret;
/* streaming control register */
#if 0 /* TODO */
ret = sensor_i2c_write_reg(client,
SENSOR_REG_CTRL_MODE,
SENSOR_REG_VALUE_08BIT,
SENSOR_MODE_STREAMING);
if (ret) {
dev_err(dev, "%s: sensor start stream error\n", __func__);
return ret;
}
#else
dev_info(dev, "%s: %d: TODO\n", __func__, __LINE__);
#endif
/* serializer pclk detect */
ret = serializer->ser_ops->ser_pclk_detect(serializer);
if (ret) {
dev_err(dev, "%s: serializer pclk_detect error\n", __func__);
return ret;
}
return 0;
}
static int __sensor_stop_stream(struct sensor *sensor)
{
maxim_remote_ser_t *serializer = sensor->serializer;
struct i2c_client *client = sensor->client;
struct device *dev = &client->dev;
int ret = 0;
/* streaming control register */
#if 0 /* TODO */
ret = sensor_i2c_write_reg(client,
SENSOR_REG_CTRL_MODE,
SENSOR_REG_VALUE_08BIT,
SENSOR_MODE_SW_STANDBY);
if (ret) {
dev_err(dev, "%s: sensor stop stream error\n", __func__);
return ret;
}
#else
dev_info(dev, "%s: %d: TODO\n", __func__, __LINE__);
#endif
if (serializer == NULL) {
dev_err(dev, "%s: serializer error\n", __func__);
return -EINVAL;
}
if (serializer->ser_ops == NULL) {
dev_err(dev, "%s: serializer ser_ops error\n", __func__);
return -EINVAL;
}
ret = serializer->ser_ops->ser_module_deinit(serializer);
if (ret) {
dev_err(dev, "%s: serializer module_deinit error\n", __func__);
return ret;
}
return 0;
}
static int sensor_s_stream(struct v4l2_subdev *sd, int on)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
struct i2c_client *client = sensor->client;
int ret = 0;
dev_info(&client->dev, "%s: on = %d\n", __func__, on);
mutex_lock(&sensor->mutex);
on = !!on;
if (on == sensor->streaming)
goto unlock_and_return;
if (on) {
#if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(&client->dev);
#else
ret = pm_runtime_get_sync(&client->dev);
#endif
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = __sensor_start_stream(sensor);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__sensor_stop_stream(sensor);
pm_runtime_put(&client->dev);
}
sensor->streaming = on;
unlock_and_return:
mutex_unlock(&sensor->mutex);
return ret;
}
static int __sensor_power_on(struct sensor *sensor)
{
struct device *dev = &sensor->client->dev;
int ret = 0;
dev_info(dev, "sensor device power on\n");
ret = regulator_enable(sensor->poc_regulator);
if (ret < 0) {
dev_err(dev, "Unable to turn PoC regulator on\n");
return ret;
}
return 0;
}
static void __sensor_power_off(struct sensor *sensor)
{
struct device *dev = &sensor->client->dev;
int ret = 0;
dev_info(dev, "sensor device power off\n");
ret = regulator_disable(sensor->poc_regulator);
if (ret < 0)
dev_warn(dev, "Unable to turn PoC regulator off\n");
}
static int sensor_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = v4l2_get_subdevdata(sd);
int ret = 0;
ret = __sensor_power_on(sensor);
return ret;
}
static int sensor_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = v4l2_get_subdevdata(sd);
__sensor_power_off(sensor);
return 0;
}
static const struct dev_pm_ops sensor_pm_ops = {
SET_RUNTIME_PM_OPS(
sensor_runtime_suspend, sensor_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int sensor_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
#else
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->pad, 0);
#endif
const struct sensor_mode *def_mode = &sensor->supported_modes[0];
mutex_lock(&sensor->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = def_mode->bus_fmt;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&sensor->mutex);
/* No crop or compose */
return 0;
}
#endif
static int sensor_s_power(struct v4l2_subdev *sd, int on)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
struct i2c_client *client = sensor->client;
int ret = 0;
mutex_lock(&sensor->mutex);
/* If the power state is not modified - no work to do. */
if (sensor->power_on == !!on)
goto unlock_and_return;
if (on) {
#if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(&client->dev);
#else
ret = pm_runtime_get_sync(&client->dev);
#endif
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
sensor->power_on = true;
} else {
pm_runtime_put(&client->dev);
sensor->power_on = false;
}
unlock_and_return:
mutex_unlock(&sensor->mutex);
return ret;
}
static void sensor_get_module_inf(struct sensor *sensor,
struct rkmodule_inf *inf)
{
memset(inf, 0, sizeof(*inf));
strscpy(inf->base.sensor, SENSOR_NAME, sizeof(inf->base.sensor));
strscpy(inf->base.module, sensor->module_name,
sizeof(inf->base.module));
strscpy(inf->base.lens, sensor->len_name, sizeof(inf->base.lens));
}
static void sensor_get_vicap_rst_inf(struct sensor *sensor,
struct rkmodule_vicap_reset_info *rst_info)
{
struct i2c_client *client = sensor->client;
rst_info->is_reset = sensor->hot_plug;
sensor->hot_plug = false;
rst_info->src = RKCIF_RESET_SRC_ERR_HOTPLUG;
dev_info(&client->dev, "%s: rst_info->is_reset:%d.\n",
__func__, rst_info->is_reset);
}
static void sensor_set_vicap_rst_inf(struct sensor *sensor,
struct rkmodule_vicap_reset_info rst_info)
{
sensor->is_reset = rst_info.is_reset;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
long ret = 0;
dev_dbg(&sensor->client->dev, "ioctl cmd = 0x%08x\n", cmd);
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
sensor_get_module_inf(sensor, (struct rkmodule_inf *)arg);
break;
case RKMODULE_GET_VICAP_RST_INFO:
sensor_get_vicap_rst_inf(sensor,
(struct rkmodule_vicap_reset_info *)arg);
break;
case RKMODULE_SET_VICAP_RST_INFO:
sensor_set_vicap_rst_inf(sensor,
*(struct rkmodule_vicap_reset_info *)arg);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long sensor_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,
unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf = NULL;
struct rkmodule_vicap_reset_info *vicap_rst_inf = NULL;
long ret = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, inf);
if (!ret) {
ret = copy_to_user(up, inf, sizeof(*inf));
if (ret)
ret = -EFAULT;
}
kfree(inf);
break;
case RKMODULE_GET_VICAP_RST_INFO:
vicap_rst_inf = kzalloc(sizeof(*vicap_rst_inf), GFP_KERNEL);
if (!vicap_rst_inf) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, vicap_rst_inf);
if (!ret) {
ret = copy_to_user(up, vicap_rst_inf, sizeof(*vicap_rst_inf));
if (ret)
ret = -EFAULT;
}
kfree(vicap_rst_inf);
break;
case RKMODULE_SET_VICAP_RST_INFO:
vicap_rst_inf = kzalloc(sizeof(*vicap_rst_inf), GFP_KERNEL);
if (!vicap_rst_inf) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(vicap_rst_inf, up, sizeof(*vicap_rst_inf));
if (!ret)
ret = sensor_ioctl(sd, cmd, vicap_rst_inf);
else
ret = -EFAULT;
kfree(vicap_rst_inf);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#endif /* CONFIG_COMPAT */
static int sensor_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
const struct sensor_mode *mode = sensor->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
#else
static int sensor_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
if (code->index != 0)
return -EINVAL;
code->code = sensor->cur_mode->bus_fmt;
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
#else
static int sensor_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
if (fse->index >= sensor->cfg_modes_num)
return -EINVAL;
if (fse->code != sensor->supported_modes[fse->index].bus_fmt)
return -EINVAL;
fse->min_width = sensor->supported_modes[fse->index].width;
fse->max_width = sensor->supported_modes[fse->index].width;
fse->max_height = sensor->supported_modes[fse->index].height;
fse->min_height = sensor->supported_modes[fse->index].height;
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
#else
static int sensor_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
if (fie->index >= sensor->cfg_modes_num)
return -EINVAL;
fie->code = sensor->supported_modes[fie->index].bus_fmt;
fie->width = sensor->supported_modes[fie->index].width;
fie->height = sensor->supported_modes[fie->index].height;
fie->interval = sensor->supported_modes[fie->index].max_fps;
return 0;
}
static int sensor_get_reso_dist(const struct sensor_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct sensor_mode *
sensor_find_best_fit(struct sensor *sensor, struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
unsigned int i;
for (i = 0; i < sensor->cfg_modes_num; i++) {
dist = sensor_get_reso_dist(&sensor->supported_modes[i], framefmt);
if ((cur_best_fit_dist == -1 || dist < cur_best_fit_dist) &&
(sensor->supported_modes[i].bus_fmt == framefmt->code)) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &sensor->supported_modes[cur_best_fit];
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
#else
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
struct device *dev = &sensor->client->dev;
const struct sensor_mode *mode;
u64 link_freq = 0, pixel_rate = 0;
s64 h_blank, vblank_def;
u8 data_lanes = sensor->bus_cfg.bus.mipi_csi2.num_data_lanes;
mutex_lock(&sensor->mutex);
mode = sensor_find_best_fit(sensor, fmt);
fmt->format.code = mode->bus_fmt;
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format;
#else
*v4l2_subdev_get_try_format(sd, cfg, fmt->pad) = fmt->format;
#endif
#else
mutex_unlock(&sensor->mutex);
return -ENOTTY;
#endif
} else {
sensor->cur_mode = mode;
h_blank = mode->hts_def - mode->width;
__v4l2_ctrl_modify_range(sensor->hblank,
h_blank, h_blank, 1, h_blank);
vblank_def = mode->vts_def - mode->height / 2;
__v4l2_ctrl_modify_range(sensor->vblank,
46, mode->height, 1, vblank_def);
__v4l2_ctrl_s_ctrl(sensor->link_freq, mode->link_freq_idx);
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
link_freq = link_freq_menu_items[mode->link_freq_idx];
pixel_rate = (u32)link_freq / mode->bpp * 2 * data_lanes;
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate, pixel_rate);
dev_info(dev, "mipi_freq_idx = %d, mipi_link_freq = %lld\n",
mode->link_freq_idx, link_freq);
dev_info(dev, "pixel_rate = %lld, bpp = %d\n",
pixel_rate, mode->bpp);
}
dev_info(dev, "Set format done!(cur_mode: %d)\n", mode->hdr_mode);
mutex_unlock(&sensor->mutex);
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
#else
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
const struct sensor_mode *mode = sensor->cur_mode;
mutex_lock(&sensor->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
#else
fmt->format = *v4l2_subdev_get_try_format(sd, cfg, fmt->pad);
#endif
#else
mutex_unlock(&sensor->mutex);
return -ENOTTY;
#endif
} else {
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = mode->bus_fmt;
fmt->format.field = V4L2_FIELD_NONE;
/* format info: width/height/data type/virctual channel */
if (fmt->pad < PAD_MAX && mode->hdr_mode != NO_HDR)
fmt->reserved[0] = mode->vc[fmt->pad];
else
fmt->reserved[0] = mode->vc[PAD0];
}
mutex_unlock(&sensor->mutex);
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
#else
static int sensor_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
#endif
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
sel->r.left = 0;
sel->r.width = sensor->cur_mode->width;
sel->r.top = 0;
sel->r.height = sensor->cur_mode->height;
return 0;
}
return -EINVAL;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int sensor_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_config *config)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
config->type = V4L2_MBUS_CSI2_DPHY;
config->bus.mipi_csi2 = sensor->bus_cfg.bus.mipi_csi2;
return 0;
}
#elif KERNEL_VERSION(5, 10, 0) <= LINUX_VERSION_CODE
static int sensor_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_config *config)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
u32 val = 0;
const struct sensor_mode *mode = sensor->cur_mode;
u8 data_lanes = sensor->bus_cfg.bus.mipi_csi2.num_data_lanes;
int i = 0;
val |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
val |= (1 << (data_lanes - 1));
for (i = 0; i < PAD_MAX; i++)
val |= (mode->vc[i] & V4L2_MBUS_CSI2_CHANNELS);
config->type = V4L2_MBUS_CSI2_DPHY;
config->flags = val;
return 0;
}
#else
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *config)
{
struct sensor *sensor = v4l2_get_subdevdata(sd);
u32 val = 0;
const struct sensor_mode *mode = sensor->cur_mode;
u8 data_lanes = sensor->bus_cfg.bus.mipi_csi2.num_data_lanes;
int i = 0;
val |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
val |= (1 << (data_lanes - 1));
for (i = 0; i < PAD_MAX; i++)
val |= (mode->vc[i] & V4L2_MBUS_CSI2_CHANNELS);
config->type = V4L2_MBUS_CSI2;
config->flags = val;
return 0;
}
#endif /* LINUX_VERSION_CODE */
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops sensor_internal_ops = {
.open = sensor_open,
};
#endif
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.s_power = sensor_s_power,
.ioctl = sensor_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = sensor_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.s_stream = sensor_s_stream,
.g_frame_interval = sensor_g_frame_interval,
#if KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE
.g_mbus_config = sensor_g_mbus_config,
#endif
};
static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
.enum_mbus_code = sensor_enum_mbus_code,
.enum_frame_size = sensor_enum_frame_sizes,
.enum_frame_interval = sensor_enum_frame_interval,
.get_fmt = sensor_get_fmt,
.set_fmt = sensor_set_fmt,
.get_selection = sensor_get_selection,
#if KERNEL_VERSION(5, 10, 0) <= LINUX_VERSION_CODE
.get_mbus_config = sensor_g_mbus_config,
#endif
};
static const struct v4l2_subdev_ops sensor_subdev_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
.pad = &sensor_pad_ops,
};
static int sensor_enable_test_pattern(struct sensor *sensor, u32 pattern)
{
// TODO
return 0;
}
static int sensor_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor *sensor = container_of(ctrl->handler,
struct sensor, ctrl_handler);
struct i2c_client *client = sensor->client;
int ret = 0;
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
// i2c can't be accessed before serdes link ok
if (maxim_remote_ser_is_inited(sensor->serializer) == false) {
dev_warn(&client->dev, "%s ctrl id = 0x%x before serializer init\n",
__func__, ctrl->id);
return 0;
}
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
// TODO
dev_info(&client->dev, "%s set exposure: val = 0x%x",
__func__, ctrl->val);
break;
case V4L2_CID_ANALOGUE_GAIN:
// TODO
dev_info(&client->dev, "%s set analog gain: val = 0x%x\n",
__func__, ctrl->val);
break;
case V4L2_CID_VBLANK:
// TODO
break;
case V4L2_CID_TEST_PATTERN:
ret = sensor_enable_test_pattern(sensor, ctrl->val);
break;
case V4L2_CID_HFLIP:
// TODO
break;
case V4L2_CID_VFLIP:
// TODO
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
.s_ctrl = sensor_set_ctrl,
};
static int sensor_initialize_controls(struct sensor *sensor)
{
struct device *dev = &sensor->client->dev;
const struct sensor_mode *mode;
struct v4l2_ctrl_handler *handler;
u64 link_freq = 0, pixel_rate = 0;
s64 exposure_max, vblank_def;
u32 h_blank;
u8 data_lanes;
int ret = 0;
handler = &sensor->ctrl_handler;
mode = sensor->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 9);
if (ret)
return ret;
handler->lock = &sensor->mutex;
/* ctrl handler: link freq */
sensor->link_freq = v4l2_ctrl_new_int_menu(handler, NULL,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE(link_freq_menu_items) - 1, 0,
link_freq_menu_items);
__v4l2_ctrl_s_ctrl(sensor->link_freq, mode->link_freq_idx);
link_freq = link_freq_menu_items[mode->link_freq_idx];
dev_info(dev, "mipi_freq_idx = %d, mipi_link_freq = %lld\n",
mode->link_freq_idx, link_freq);
/* ctrl handler: pixel rate */
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
data_lanes = sensor->bus_cfg.bus.mipi_csi2.num_data_lanes;
pixel_rate = (u32)link_freq / mode->bpp * 2 * data_lanes;
sensor->pixel_rate = v4l2_ctrl_new_std(handler, NULL,
V4L2_CID_PIXEL_RATE,
0, pixel_rate, 1, pixel_rate);
dev_info(dev, "pixel_rate = %lld, bpp = %d\n", pixel_rate, mode->bpp);
/* ctrl handler: hblank */
h_blank = mode->hts_def - mode->width;
sensor->hblank = v4l2_ctrl_new_std(handler, NULL,
V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
/* ctrl handler: vblank */
vblank_def = mode->vts_def - mode->height / 2;
sensor->vblank = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_VBLANK,
46, mode->height, 1, vblank_def);
/* ctrl handler: exposure */
exposure_max = mode->vts_def - 12;
sensor->exposure = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_EXPOSURE,
SENSOR_EXPOSURE_HCG_MIN, exposure_max,
SENSOR_EXPOSURE_HCG_STEP, mode->exp_def);
/* ctrl handler: test pattern */
sensor->test_pattern = v4l2_ctrl_new_std_menu_items(handler, &sensor_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(sensor_test_pattern_menu) - 1,
0, 0, sensor_test_pattern_menu);
/* ctrl handler: analogue gain */
sensor->anal_gain = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN,
SENSOR_GAIN_MIN, SENSOR_GAIN_MAX,
SENSOR_GAIN_STEP, SENSOR_GAIN_DEFAULT);
/* ctrl handler: hflip */
sensor->h_flip = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
/* ctrl handler: vflip */
sensor->v_flip = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (handler->error) {
ret = handler->error;
dev_err(&sensor->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
sensor->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int sensor_parse_dt(struct sensor *sensor)
{
struct device *dev = &sensor->client->dev;
struct device_node *of_node = dev->of_node;
u32 value = 0;
int ret = 0;
dev_info(dev, "=== sensor parse dt ===\n");
ret = of_property_read_u32(of_node, "cam-i2c-addr-def", &value);
if (ret == 0) {
dev_info(dev, "cam-i2c-addr-def property: 0x%x", value);
sensor->cam_i2c_addr_def = value;
} else {
sensor->cam_i2c_addr_def = SENSOR_I2C_ADDR_DEF;
}
return 0;
}
static int sensor_bus_type_parse(struct sensor *sensor)
{
struct device *dev = &sensor->client->dev;
struct device_node *endpoint = NULL;
u32 mipi_data_lanes;
int ret = 0;
endpoint = of_graph_get_next_endpoint(dev->of_node, NULL);
if (!endpoint) {
dev_err(dev, "Failed to get endpoint\n");
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint),
&sensor->bus_cfg);
if (ret) {
dev_err(dev, "Failed to get bus config\n");
return -EINVAL;
}
dev_info(dev, "bus type = 0x%x\n", sensor->bus_cfg.bus_type);
if (sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY
|| sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_CPHY) {
mipi_data_lanes = sensor->bus_cfg.bus.mipi_csi2.num_data_lanes;
dev_info(dev, "mipi csi2 phy data lanes = %d\n", mipi_data_lanes);
}
return 0;
}
static maxim_remote_ser_t *sensor_get_serializer_by_phandle(struct device *cam_dev)
{
struct i2c_client *ser_client = NULL;
struct device_node *ser_node = NULL;
maxim_remote_ser_t *serializer = NULL;
/* camera get remote serializer node */
ser_node = of_parse_phandle(cam_dev->of_node, "cam-remote-ser", 0);
if (!IS_ERR_OR_NULL(ser_node)) {
dev_info(cam_dev, "remote serializer node: %pOF\n", ser_node);
ser_client = of_find_i2c_device_by_node(ser_node);
of_node_put(ser_node);
if (!IS_ERR_OR_NULL(ser_client)) {
serializer = i2c_get_clientdata(ser_client);
if (!IS_ERR_OR_NULL(serializer))
return serializer;
else
return NULL;
} else {
dev_err(cam_dev, "camera find remote serializer client error\n");
return NULL;
}
} else {
dev_warn(cam_dev, "cam-remote-ser node isn't exist\n");
return NULL;
}
}
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct sensor *sensor = NULL;
struct v4l2_subdev *sd = NULL;
maxim_remote_ser_t *serializer = NULL;
char facing[2];
int ret = 0;
dev_info(dev, "driver version: %02x.%02x.%02x", DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8, DRIVER_VERSION & 0x00ff);
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor) {
dev_err(dev, "sensor probe no memory error\n");
return -ENOMEM;
}
sensor->client = client;
sensor->cam_i2c_addr_map = client->addr;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&sensor->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&sensor->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&sensor->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&sensor->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
// poc regulator
sensor->poc_regulator = devm_regulator_get(dev, "poc");
if (IS_ERR(sensor->poc_regulator)) {
if (PTR_ERR(sensor->poc_regulator) != -EPROBE_DEFER)
dev_err(dev, "Unable to get PoC regulator (%ld)\n",
PTR_ERR(sensor->poc_regulator));
else
dev_err(dev, "Get PoC regulator deferred\n");
ret = PTR_ERR(sensor->poc_regulator);
return ret;
}
sensor_bus_type_parse(sensor);
sensor->supported_modes = supported_modes;
sensor->cfg_modes_num = ARRAY_SIZE(supported_modes);
sensor->cur_mode = &supported_modes[0];
mutex_init(&sensor->mutex);
ret = __sensor_power_on(sensor);
if (ret)
goto err_destroy_mutex;
pm_runtime_set_active(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
sd = &sensor->subdev;
v4l2_i2c_subdev_init(sd, client, &sensor_subdev_ops);
ret = sensor_initialize_controls(sensor);
if (ret)
goto err_power_off;
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &sensor_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &sensor->pad);
if (ret < 0)
goto err_free_handler;
#endif
v4l2_set_subdevdata(sd, sensor);
memset(facing, 0, sizeof(facing));
if (strcmp(sensor->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
sensor->module_index, facing, SENSOR_NAME,
dev_name(sd->dev));
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
ret = v4l2_async_register_subdev_sensor(sd);
#else
ret = v4l2_async_register_subdev_sensor_common(sd);
#endif
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
sensor_parse_dt(sensor);
/* remote serializer bind */
serializer = sensor_get_serializer_by_phandle(dev);
if (serializer != NULL) {
dev_info(dev, "serializer bind success\n");
serializer->cam_i2c_addr_def = sensor->cam_i2c_addr_def;
serializer->cam_i2c_addr_map = sensor->cam_i2c_addr_map;
sensor->serializer = serializer;
} else {
dev_err(dev, "serializer bind fail\n");
sensor->serializer = NULL;
}
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_use_autosuspend(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_free_handler:
v4l2_ctrl_handler_free(&sensor->ctrl_handler);
err_power_off:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
__sensor_power_off(sensor);
err_destroy_mutex:
mutex_destroy(&sensor->mutex);
return ret;
}
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
static int sensor_remove(struct i2c_client *client)
#else
static void sensor_remove(struct i2c_client *client)
#endif
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = v4l2_get_subdevdata(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&sensor->ctrl_handler);
mutex_destroy(&sensor->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__sensor_power_off(sensor);
pm_runtime_set_suspended(&client->dev);
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
return 0;
#endif
}
static const struct of_device_id sensor_of_match[] = {
{ .compatible = "maxim,dummy,sensor" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, sensor_of_match);
static struct i2c_driver sensor_i2c_driver = {
.driver = {
.name = "maxim-dummy",
.pm = &sensor_pm_ops,
.of_match_table = of_match_ptr(sensor_of_match),
},
.probe = &sensor_probe,
.remove = &sensor_remove,
};
module_i2c_driver(sensor_i2c_driver);
MODULE_AUTHOR("Cai Wenzhong <cwz@rock-chips.com>");
MODULE_DESCRIPTION("Maxim Remote Dummy Sensor Driver");
MODULE_LICENSE("GPL");