2000 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* gc5025 driver
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
*
* V0.0X01.0X01 add poweron function.
* V0.0X01.0X02 fix mclk issue when probe multiple camera.
* V0.0X01.0X03 add enum_frame_interval function.
* V0.0X01.0X04 add quick stream on/off
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/version.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <linux/pinctrl/consumer.h>
#include <linux/slab.h>
#define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x04)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
#define GC5025_LANES 2
#define GC5025_BITS_PER_SAMPLE 10
#define GC5025_LINK_FREQ_MHZ 432000000
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
#define GC5025_PIXEL_RATE (GC5025_LINK_FREQ_MHZ * 2 * 2 / 10)
#define GC5025_XVCLK_FREQ 24000000
#define CHIP_ID 0x5025
#define GC5025_REG_CHIP_ID_H 0xf0
#define GC5025_REG_CHIP_ID_L 0xf1
#define GC5025_REG_SET_PAGE 0xfe
#define GC5025_SET_PAGE_ONE 0x00
#define GC5025_REG_CTRL_MODE 0x3f
#define GC5025_MODE_SW_STANDBY 0x01
#define GC5025_MODE_STREAMING 0x91
#define GC5025_REG_EXPOSURE_H 0x03
#define GC5025_REG_EXPOSURE_L 0x04
#define GC5025_EXPOSURE_MIN 4
#define GC5025_EXPOSURE_STEP 1
#define GC5025_VTS_MAX 0x1fff
#define GC5025_REG_AGAIN 0xb6
#define GC5025_REG_DGAIN_INT 0xb1
#define GC5025_REG_DGAIN_FRAC 0xb2
#define GC5025_GAIN_MIN 64
#define GC5025_GAIN_MAX 1024
#define GC5025_GAIN_STEP 1
#define GC5025_GAIN_DEFAULT 64
#define GC5025_REG_VTS_H 0x07
#define GC5025_REG_VTS_L 0x08
#define REG_NULL 0xFF
#define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default"
#define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep"
#define GC5025_NAME "gc5025"
static const char * const gc5025_supply_names[] = {
"avdd", /* Analog power */
"dovdd", /* Digital I/O power */
"dvdd", /* Digital core power */
};
#define GC5025_NUM_SUPPLIES ARRAY_SIZE(gc5025_supply_names)
#define IMAGE_NORMAL_MIRROR
#define DD_PARAM_QTY_5025 200
#define INFO_ROM_START_5025 0x08
#define INFO_WIDTH_5025 0x08
#define WB_ROM_START_5025 0x88
#define WB_WIDTH_5025 0x05
#define GOLDEN_ROM_START_5025 0xe0
#define GOLDEN_WIDTH_5025 0x05
#define WINDOW_WIDTH 0x0a30
#define WINDOW_HEIGHT 0x079c
struct gc5025_otp_info {
u32 flag; //bit[7]: info bit[6]:wb bit[3]:dd
u32 module_id;
u32 lens_id;
u16 vcm_id;
u16 vcm_driver_id;
u32 year;
u32 month;
u32 day;
u32 rg_ratio;
u32 bg_ratio;
u32 golden_rg;
u32 golden_bg;
u16 dd_param_x[DD_PARAM_QTY_5025];
u16 dd_param_y[DD_PARAM_QTY_5025];
u16 dd_param_type[DD_PARAM_QTY_5025];
u16 dd_cnt;
};
struct gc5025_id_name {
u32 id;
char name[RKMODULE_NAME_LEN];
};
static const struct gc5025_id_name gc5025_module_info[] = {
{0x0d, "CameraKing"},
{0x00, "Unknown"}
};
static const struct gc5025_id_name gc5025_lens_info[] = {
{0xa9, "CK5502"},
{0x00, "Unknown"}
};
struct regval {
u8 addr;
u8 val;
};
struct gc5025_mode {
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
const struct regval *reg_list;
};
struct gc5025 {
struct i2c_client *client;
struct clk *xvclk;
struct gpio_desc *reset_gpio;
struct gpio_desc *pwdn_gpio;
struct gpio_desc *power_gpio;
struct regulator_bulk_data supplies[GC5025_NUM_SUPPLIES];
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *anal_gain;
struct v4l2_ctrl *digi_gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct mutex mutex;
bool streaming;
bool power_on;
const struct gc5025_mode *cur_mode;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
u32 Dgain_ratio;
bool DR_State;
struct gc5025_otp_info *otp;
struct rkmodule_inf module_inf;
struct rkmodule_awb_cfg awb_cfg;
};
#define to_gc5025(sd) container_of(sd, struct gc5025, subdev)
/*
* Xclk 24Mhz
*/
static const struct regval gc5025_2592x1944_regs[] = {
{REG_NULL, 0x00},
};
/*
* Xclk 24Mhz
* max_framerate 30fps
* mipi_datarate per lane 656Mbps
*/
static const struct regval gc5025_global_regs[] = {
{0xfe, 0x00},
{0xfe, 0x00},
{0xfe, 0x00},
{0xf7, 0x01},
{0xf8, 0x11},
{0xf9, 0x00},
{0xfa, 0xa0},
{0xfc, 0x2a},
{0xfe, 0x03},
{0x01, 0x07},
{0xfc, 0x2e},
{0xfe, 0x00},
{0x88, 0x03},
{0x03, 0x07},
{0x04, 0xC0},
{0x05, 0x02},
{0x06, 0x58},
{0x08, 0x20},
{0x0a, 0x1c},
{0x0c, 0x04},
{0x0d, 0x07},
{0x0e, 0x9c},
{0x0f, 0x0a},
{0x10, 0x30},
{0x17, 0xc0},
{0x18, 0x02},
{0x19, 0x17},
{0x1a, 0x1a},
{0x1e, 0x90},
{0x1f, 0xb0},
{0x20, 0x2b},
{0x21, 0x2b},
{0x26, 0x2b},
{0x25, 0xc1},
{0x27, 0x64},
{0x28, 0x00},
{0x29, 0x3f},
{0x2b, 0x80},
{0x30, 0x11},
{0x31, 0x20},
{0x32, 0xa0},
{0x33, 0x00},
{0x34, 0x55},
{0x3a, 0x00},
{0x3b, 0x00},
{0x81, 0x60},
{0xcb, 0x02},
{0xcd, 0x2d},
{0xcf, 0x50},
{0xd0, 0xb3},
{0xd1, 0x18},
{0xd9, 0xaa},
{0xdc, 0x03},
{0xdd, 0xaa},
{0xe0, 0x00},
{0xe1, 0x0a},
{0xe3, 0x2a},
{0xe4, 0xa0},
{0xe5, 0x06},
{0xe6, 0x10},
{0xe7, 0xc2},
{0xfe, 0x10},
{0xfe, 0x00},
{0xfe, 0x10},
{0xfe, 0x00},
{0x80, 0x10},
{0x89, 0x03},
{0xfe, 0x01},
{0x88, 0xf7},
{0x8a, 0x03},
{0x8e, 0xc7},
{0xfe, 0x00},
{0x40, 0x22},
{0x41, 0x28},
{0x42, 0x04},
{0x4e, 0x0f},
{0x4f, 0xf0},
{0x67, 0x0c},
{0xae, 0x40},
{0xaf, 0x04},
{0x60, 0x00},
{0x61, 0x80},
{0xb0, 0x58},
{0xb1, 0x01},
{0xb2, 0x00},
{0xb6, 0x00},
{0x91, 0x00},
{0x92, 0x02},
{0x94, 0x03},
{0xfe, 0x03},
{0x02, 0x03},
{0x03, 0x8e},
{0x06, 0x80},
{0x15, 0x00},
{0x16, 0x09},
{0x18, 0x0a},
{0x21, 0x10},
{0x22, 0x05},
{0x23, 0x20},
{0x24, 0x02},
{0x25, 0x20},
{0x26, 0x08},
{0x29, 0x06},
{0x2a, 0x0a},
{0x2b, 0x08},
{0xfe, 0x00},
{REG_NULL, 0x00},
};
static const struct regval gc5025_doublereset_reg[] = {
{0xfe, 0x00},
{0x1c, 0x1c},
{0x2f, 0x4a},
{0x38, 0x02},
{0x39, 0x00},
{0x3c, 0x02},
{0x3d, 0x02},
{0xd3, 0xcc},
{0x43, 0x03},
{0x1d, 0x13},
{REG_NULL, 0x00},
};
static const struct regval gc5025_disable_doublereset_reg[] = {
{0xfe, 0x00},
{0x1c, 0x2c},
{0x2f, 0x4d},
{0x38, 0x04},
{0x39, 0x02},
{0x3c, 0x08},
{0x3d, 0x0f},
{0xd3, 0xc4},
{0x43, 0x08},
{0x1d, 0x00},
{REG_NULL, 0x00},
};
static const struct gc5025_mode supported_modes[] = {
{
.width = 2592,
.height = 1944,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x07C0,
.hts_def = 0x12C0,
.vts_def = 0x07D0,
.reg_list = gc5025_2592x1944_regs,
},
};
static const s64 link_freq_menu_items[] = {
GC5025_LINK_FREQ_MHZ
};
/* Write registers up to 4 at a time */
static int gc5025_write_reg(struct i2c_client *client, u8 reg, u8 val)
{
struct i2c_msg msg;
u8 buf[2];
int ret;
buf[0] = reg & 0xFF;
buf[1] = val;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret >= 0)
return 0;
dev_err(&client->dev,
"gc5025 write reg(0x%x val:0x%x) failed !\n", reg, val);
return ret;
}
static int gc5025_write_array(struct i2c_client *client,
const struct regval *regs)
{
u32 i = 0;
int ret = 0;
for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++)
ret = gc5025_write_reg(client, regs[i].addr, regs[i].val);
return ret;
}
/* Read registers up to 4 at a time */
static int gc5025_read_reg(struct i2c_client *client, u8 reg, u8 *val)
{
struct i2c_msg msg[2];
u8 buf[1];
int ret;
buf[0] = reg & 0xFF;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = buf;
msg[1].len = 1;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret >= 0) {
*val = buf[0];
return 0;
}
dev_err(&client->dev,
"gc5025 read reg:0x%x failed !\n", reg);
return ret;
}
static int gc5025_get_reso_dist(const struct gc5025_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct gc5025_mode *
gc5025_find_best_fit(struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(supported_modes); i++) {
dist = gc5025_get_reso_dist(&supported_modes[i], framefmt);
if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &supported_modes[cur_best_fit];
}
static int gc5025_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc5025 *gc5025 = to_gc5025(sd);
const struct gc5025_mode *mode;
s64 h_blank, vblank_def;
mutex_lock(&gc5025->mutex);
mode = gc5025_find_best_fit(fmt);
fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format;
#else
mutex_unlock(&gc5025->mutex);
return -ENOTTY;
#endif
} else {
gc5025->cur_mode = mode;
h_blank = mode->hts_def - mode->width;
__v4l2_ctrl_modify_range(gc5025->hblank, h_blank,
h_blank, 1, h_blank);
vblank_def = mode->vts_def - mode->height;
__v4l2_ctrl_modify_range(gc5025->vblank, vblank_def,
GC5025_VTS_MAX - mode->height,
1, vblank_def);
}
mutex_unlock(&gc5025->mutex);
return 0;
}
static int gc5025_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc5025 *gc5025 = to_gc5025(sd);
const struct gc5025_mode *mode = gc5025->cur_mode;
mutex_lock(&gc5025->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
#else
mutex_unlock(&gc5025->mutex);
return -ENOTTY;
#endif
} else {
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
fmt->format.field = V4L2_FIELD_NONE;
}
mutex_unlock(&gc5025->mutex);
return 0;
}
static int gc5025_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SRGGB10_1X10;
return 0;
}
static int gc5025_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SRGGB10_1X10)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int gc5025_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct gc5025 *gc5025 = to_gc5025(sd);
const struct gc5025_mode *mode = gc5025->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
static int gc5025_otp_read_reg(struct i2c_client *client,
int page,
int address)
{
int ret = 0;
u8 val = 0;
u8 addr_high = 0;
ret = gc5025_write_reg(client, 0xfe, 0x00);
ret |= gc5025_read_reg(client, 0xd4, &addr_high);
switch (page) {
case 0:
addr_high &= 0xfb;
break;
case 1:
addr_high |= 0x04;
break;
default:
break;
}
addr_high &= 0xfc;
addr_high |= (address & 0x300) >> 8;
ret |= gc5025_write_reg(client, 0xD4, addr_high);
ret |= gc5025_write_reg(client, 0xD5, address & 0xff);
ret |= gc5025_write_reg(client, 0xF3, 0x20);
ret |= gc5025_read_reg(client, 0xD7, &val);
if (ret != 0)
return ret;
return val;
}
static int gc5025_otp_enable(struct gc5025 *gc5025)
{
struct i2c_client *client = gc5025->client;
u8 otp_clk = 0;
u8 otp_en = 0;
int ret = 0;
ret = gc5025_write_reg(client, 0xfe, 0x00);
ret |= gc5025_write_reg(client, 0xf7, 0x01);
ret |= gc5025_write_reg(client, 0xf8, 0x11);
ret |= gc5025_write_reg(client, 0xf9, 0x00);
ret |= gc5025_write_reg(client, 0xfa, 0xa0);
ret |= gc5025_write_reg(client, 0xfc, 0x2a);
ret |= gc5025_write_reg(client, 0xfe, 0x03);
ret |= gc5025_write_reg(client, 0x01, 0x07);
ret |= gc5025_write_reg(client, 0xfc, 0x2e);
ret |= gc5025_write_reg(client, 0xfe, 0x00);
usleep_range(10, 20);
ret |= gc5025_write_reg(client, 0x88, 0x03);
ret |= gc5025_write_reg(client, 0xe7, 0xcc);
ret |= gc5025_write_reg(client, 0xfc, 0x2e);
ret |= gc5025_write_reg(client, 0xfa, 0xb0);
ret |= gc5025_read_reg(client, 0xfa, &otp_clk);
ret |= gc5025_read_reg(client, 0xd4, &otp_en);
otp_clk |= 0x10;
otp_en |= 0x80;
ret |= gc5025_write_reg(client, 0xfa, otp_clk);
ret |= gc5025_write_reg(client, 0xd4, otp_en);
usleep_range(100, 200);
return ret;
}
static int gc5025_otp_disable(struct gc5025 *gc5025)
{
struct i2c_client *client = gc5025->client;
u8 otp_clk = 0;
u8 otp_en = 0;
int ret = 0;
ret = gc5025_read_reg(client, 0xfa, &otp_clk);
ret |= gc5025_read_reg(client, 0xd4, &otp_en);
otp_clk &= 0xef;
otp_en &= 0x7f;
ret |= gc5025_write_reg(client, 0xfa, otp_clk);
ret |= gc5025_write_reg(client, 0xd4, otp_en);
return ret;
}
static int gc5025_otp_read(struct gc5025 *gc5025)
{
int otp_flag, i, j, index, temp, tmpH, tmpL;
struct gc5025_otp_info *otp_p;
struct device *dev = &gc5025->client->dev;
struct i2c_client *client = gc5025->client;
int checksum = 0;
int page = 0;
int total_number = 0;
u8 m_DD_Otp_Value[182];
u16 dd_rom_start, offset;
u8 info_start_add, wb_start_add, golden_start_add;
u8 check_dd_flag, type;
u8 dd0 = 0, dd1 = 0, dd2 = 0;
u16 x, y;
int cnt = 0;
otp_p = devm_kzalloc(dev, sizeof(*otp_p), GFP_KERNEL);
if (!otp_p)
return -ENOMEM;
/* OTP info and awb*/
otp_flag = gc5025_otp_read_reg(client, 1, 0x00);
for (index = 0; index < 2; index++) {
switch ((otp_flag >> (4 + 2 * index)) & 0x03) {
case 0x00:
dev_err(dev, "%s GC5025_OTP_INFO group %d is Empty!\n",
__func__, index + 1);
break;
case 0x01:
dev_dbg(dev, "%s GC5025_OTP_INFO group %d is Valid!\n",
__func__, index + 1);
checksum = 0;
info_start_add =
INFO_ROM_START_5025 + 8 * index * INFO_WIDTH_5025;
otp_p->module_id = gc5025_otp_read_reg(client,
1, info_start_add);
checksum += otp_p->module_id;
otp_p->lens_id = gc5025_otp_read_reg(client,
1, info_start_add + 8 * 1);
checksum += otp_p->lens_id;
otp_p->vcm_driver_id = gc5025_otp_read_reg(client,
1, info_start_add + 8 * 2);
checksum += otp_p->vcm_driver_id;
otp_p->vcm_id = gc5025_otp_read_reg(client, 1,
info_start_add + 8 * 3);
checksum += otp_p->vcm_id;
otp_p->year = gc5025_otp_read_reg(client, 1,
info_start_add + 8 * 4);
checksum += otp_p->year;
otp_p->month = gc5025_otp_read_reg(client,
1, info_start_add + 8 * 5);
checksum += otp_p->month;
otp_p->day = gc5025_otp_read_reg(client,
1, info_start_add + 8 * 6);
checksum += otp_p->day;
checksum = checksum % 255 + 1;
temp = gc5025_otp_read_reg(client,
1, 0x40 + 8 * index * INFO_WIDTH_5025);
if (checksum == temp) {
otp_p->flag = 0x80;
dev_dbg(dev, "fac info: module(0x%x) lens(0x%x) time(%d_%d_%d)\n",
otp_p->module_id,
otp_p->lens_id,
otp_p->year,
otp_p->month,
otp_p->day);
} else {
dev_err(dev, "otp module info check sum error\n");
}
break;
case 0x02:
case 0x03:
dev_err(dev, "%s GC5025_OTP_INFO group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
switch ((otp_flag >> (2 * index)) & 0x03) {
case 0x00:
dev_err(dev, "%s GC5025_OTP_WB group %d is Empty !\n",
__func__, index + 1);
break;
case 0x01:
dev_dbg(dev, "%s GC5025_OTP_WB group %d is Valid !!\n",
__func__, index + 1);
checksum = 0;
wb_start_add =
WB_ROM_START_5025 + 8 * index * WB_WIDTH_5025;
tmpH = gc5025_otp_read_reg(client,
1, wb_start_add);
checksum += tmpH;
tmpL = gc5025_otp_read_reg(client,
1, wb_start_add + 8 * 1);
checksum += tmpL;
otp_p->rg_ratio = (tmpH << 8) | tmpL;
tmpH = gc5025_otp_read_reg(client,
1, wb_start_add + 8 * 2);
checksum += tmpH;
tmpL = gc5025_otp_read_reg(client,
1, wb_start_add + 8 * 3);
checksum += tmpL;
otp_p->bg_ratio = (tmpH << 8) | tmpL;
checksum = checksum % 255 + 1;
temp = gc5025_otp_read_reg(client,
1, 0xa8 + 8 * index * WB_WIDTH_5025);
if (checksum == temp) {
otp_p->flag = 0x40;
dev_dbg(dev, "otp:(rg_ratio 0x%x, bg_ratio 0x%x)\n",
otp_p->rg_ratio, otp_p->bg_ratio);
}
break;
case 0x02:
case 0x03:
dev_err(dev, "%s GC5025_OTP_WB group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP awb golden*/
otp_flag = gc5025_otp_read_reg(client, 1, 0xd8);
for (index = 0; index < 2; index++) {
switch ((otp_flag >> (2 * index)) & 0x03) {
case 0x00:
dev_err(dev, "%s GC5025_OTP_GOLDEN group %d is Empty !\n",
__func__, index + 1);
break;
case 0x01:
dev_dbg(dev, "%s GC5025_OTP_GOLDEN group %d is Valid !!\n",
__func__, index + 1);
checksum = 0;
golden_start_add =
GOLDEN_ROM_START_5025 + 8 * index * GOLDEN_WIDTH_5025;
tmpH = gc5025_otp_read_reg(client,
1, golden_start_add);
checksum += tmpH;
tmpL = gc5025_otp_read_reg(client,
1, golden_start_add + 8 * 1);
checksum += tmpL;
otp_p->golden_rg = (tmpH << 8) | tmpL;
tmpH = gc5025_otp_read_reg(client,
1, golden_start_add + 8 * 2);
checksum += tmpH;
tmpL = gc5025_otp_read_reg(client,
1, golden_start_add + 8 * 3);
checksum += tmpL;
otp_p->golden_bg = (tmpH << 8) | tmpL;
checksum = checksum % 255 + 1;
temp = gc5025_otp_read_reg(client,
1,
0x100 + 8 * index * GOLDEN_WIDTH_5025);
if (checksum == temp) {
dev_dbg(dev, "otp:(golden_rg 0x%x, golden_bg 0x%x)\n",
otp_p->golden_rg, otp_p->golden_bg);
}
break;
case 0x02:
case 0x03:
dev_err(dev, "%s GC5025_OTP_GOLDEN group %d is Invalid !!\n",
__func__, index + 1);
break;
default:
break;
}
}
/* OTP DD calibration data */
otp_flag = gc5025_otp_read_reg(client, 0, 0);
switch (otp_flag & 0x03) {
case 0x00:
dev_err(dev, "%s GC5025 OTP:flag_dd is EMPTY!\n",
__func__);
break;
case 0x01:
dev_dbg(dev, "%s GC5025 OTP:flag_dd is Valid!\n",
__func__);
checksum = 0;
total_number = gc5025_otp_read_reg(client, 0, 0x08) +
gc5025_otp_read_reg(client, 0, 0x10);
for (i = 0; i < 126; i++) {
m_DD_Otp_Value[i] =
gc5025_otp_read_reg(client,
0, 0x08 + 8 * i);
checksum += m_DD_Otp_Value[i];
}
for (i = 0; i < 56; i++) {
m_DD_Otp_Value[126 + i] =
gc5025_otp_read_reg(client,
1, 0x148 + 8 * i);
checksum += m_DD_Otp_Value[126 + i];
}
checksum = checksum % 255 + 1;
temp = gc5025_otp_read_reg(client, 1, 0x308);
if (checksum == temp) {
for (i = 0; i < total_number; i++) {
if (i < 31) {
page = 0;
dd_rom_start = 0x18;
offset = 0;
} else {
page = 1;
dd_rom_start = 0x148;
offset = 124;//31*4
}
check_dd_flag = gc5025_otp_read_reg(client,
page,
dd_rom_start + 8 * (4 * i - offset + 3));
if (check_dd_flag & 0x10) {
//Read OTP
type = check_dd_flag & 0x0f;
dd0 = gc5025_otp_read_reg(client, page,
dd_rom_start + 8 * (4 * i - offset));
dd1 = gc5025_otp_read_reg(client,
page,
dd_rom_start + 8 * (4 * i - offset + 1));
dd2 = gc5025_otp_read_reg(client,
page,
dd_rom_start + 8 * (4 * i - offset + 2));
x = ((dd1 & 0x0f) << 8) + dd0;
y = (dd2 << 4) + ((dd1 & 0xf0) >> 4);
if (type == 3) {
for (j = 0; j < 4; j++) {
otp_p->dd_param_x[cnt] = x;
otp_p->dd_param_y[cnt] = y + j;
otp_p->dd_param_type[cnt++] = 2;
}
} else if (type == 4) {
for (j = 0; j < 2; j++) {
otp_p->dd_param_x[cnt] = x;
otp_p->dd_param_y[cnt] = y + j;
otp_p->dd_param_type[cnt++] = 2;
}
} else {
otp_p->dd_param_x[cnt] = x;
otp_p->dd_param_y[cnt] = y;
otp_p->dd_param_type[cnt++] = type;
}
} else {
dev_err(dev, "%s GC5025_OTP_DD:check_id[%d] = %x,checkid error!!\n",
__func__, i, check_dd_flag);
}
}
otp_p->dd_cnt = cnt;
otp_p->flag |= 0x08;
}
break;
case 0x02:
case 0x03:
dev_err(dev, "%s GC5025 OTP:flag_dd is Invalid!\n",
__func__);
break;
default:
break;
}
if (otp_p->flag) {
gc5025->otp = otp_p;
} else {
gc5025->otp = NULL;
devm_kfree(dev, otp_p);
}
return 0;
}
static void gc5025_get_otp(struct gc5025_otp_info *otp,
struct rkmodule_inf *inf)
{
u32 i;
/* fac */
if (otp->flag & 0x80) {
inf->fac.flag = 1;
inf->fac.year = otp->year;
inf->fac.month = otp->month;
inf->fac.day = otp->day;
for (i = 0; i < ARRAY_SIZE(gc5025_module_info) - 1; i++) {
if (gc5025_module_info[i].id == otp->module_id)
break;
}
strlcpy(inf->fac.module, gc5025_module_info[i].name,
sizeof(inf->fac.module));
for (i = 0; i < ARRAY_SIZE(gc5025_lens_info) - 1; i++) {
if (gc5025_lens_info[i].id == otp->lens_id)
break;
}
strlcpy(inf->fac.lens, gc5025_lens_info[i].name,
sizeof(inf->fac.lens));
}
/* awb */
if (otp->flag & 0x40) {
inf->awb.flag = 1;
inf->awb.r_value = otp->rg_ratio;
inf->awb.b_value = otp->bg_ratio;
inf->awb.gr_value = 0;
inf->awb.gb_value = 0;
inf->awb.golden_r_value = 0;
inf->awb.golden_b_value = 0;
inf->awb.golden_gr_value = 0;
inf->awb.golden_gb_value = 0;
}
}
static void gc5025_get_module_inf(struct gc5025 *gc5025,
struct rkmodule_inf *inf)
{
struct gc5025_otp_info *otp = gc5025->otp;
strlcpy(inf->base.sensor,
GC5025_NAME,
sizeof(inf->base.sensor));
strlcpy(inf->base.module,
gc5025->module_name,
sizeof(inf->base.module));
strlcpy(inf->base.lens,
gc5025->len_name,
sizeof(inf->base.lens));
if (otp)
gc5025_get_otp(otp, inf);
}
static void gc5025_set_module_inf(struct gc5025 *gc5025,
struct rkmodule_awb_cfg *cfg)
{
mutex_lock(&gc5025->mutex);
memcpy(&gc5025->awb_cfg, cfg, sizeof(*cfg));
mutex_unlock(&gc5025->mutex);
}
static long gc5025_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct gc5025 *gc5025 = to_gc5025(sd);
long ret = 0;
u32 stream = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
gc5025_get_module_inf(gc5025, (struct rkmodule_inf *)arg);
break;
case RKMODULE_AWB_CFG:
gc5025_set_module_inf(gc5025, (struct rkmodule_awb_cfg *)arg);
break;
case RKMODULE_SET_QUICK_STREAM:
stream = *((u32 *)arg);
if (stream) {
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_CTRL_MODE,
GC5025_MODE_STREAMING);
} else {
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_CTRL_MODE,
GC5025_MODE_SW_STANDBY);
}
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long gc5025_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
struct rkmodule_awb_cfg *cfg;
long ret = 0;
u32 stream = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = gc5025_ioctl(sd, cmd, inf);
if (!ret)
ret = copy_to_user(up, inf, sizeof(*inf));
kfree(inf);
break;
case RKMODULE_AWB_CFG:
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(cfg, up, sizeof(*cfg));
if (!ret)
ret = gc5025_ioctl(sd, cmd, cfg);
kfree(cfg);
break;
case RKMODULE_SET_QUICK_STREAM:
ret = copy_from_user(&stream, up, sizeof(u32));
if (!ret)
ret = gc5025_ioctl(sd, cmd, &stream);
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
#endif
/*--------------------------------------------------------------------------*/
static int gc5025_apply_otp(struct gc5025 *gc5025)
{
int R_gain, G_gain, B_gain, base_gain;
struct i2c_client *client = gc5025->client;
struct gc5025_otp_info *otp_p = gc5025->otp;
struct rkmodule_awb_cfg *awb_cfg = &gc5025->awb_cfg;
u32 golden_bg_ratio;
u32 golden_rg_ratio;
u32 golden_g_value;
u16 i, j;
u16 temp_x = 0, temp_y = 0;
u8 temp_type = 0;
u8 temp_val0, temp_val1, temp_val2;
u16 column, ii, iii, jj;
if (!gc5025->awb_cfg.enable)
return 0;
golden_g_value = (awb_cfg->golden_gb_value +
awb_cfg->golden_gr_value) / 2;
golden_bg_ratio =
awb_cfg->golden_b_value * 0x400 / golden_g_value;
golden_rg_ratio =
awb_cfg->golden_r_value * 0x400 / golden_g_value;
/* apply OTP WB Calibration */
if ((otp_p->flag & 0x40) && golden_bg_ratio && golden_rg_ratio) {
/* calculate G gain */
R_gain = golden_rg_ratio * 1000 / otp_p->rg_ratio;
B_gain = golden_bg_ratio * 1000 / otp_p->bg_ratio;
G_gain = 1000;
base_gain = (R_gain < B_gain) ? R_gain : B_gain;
base_gain = (base_gain < G_gain) ? base_gain : G_gain;
R_gain = 0x400 * R_gain / (base_gain);
B_gain = 0x400 * B_gain / (base_gain);
G_gain = 0x400 * G_gain / (base_gain);
/* update sensor WB gain */
gc5025_write_reg(client, 0xfe, 0x00);
gc5025_write_reg(client, 0xc6,
(G_gain & 0x7f8) >> 3);
gc5025_write_reg(client, 0xc7,
(R_gain & 0x7f8) >> 3);
gc5025_write_reg(client, 0xc8,
(B_gain & 0x7f8) >> 3);
gc5025_write_reg(client, 0xc9,
(G_gain & 0x7f8) >> 3);
gc5025_write_reg(client, 0xc4,
((G_gain & 0X07) << 4) | (R_gain & 0x07));
gc5025_write_reg(client, 0xc5,
((B_gain & 0X07) << 4) | (G_gain & 0x07));
dev_dbg(&client->dev, "apply awb gain: 0x%x, 0x%x, 0x%x\n",
R_gain, G_gain, B_gain);
}
/* apply OTP DD Calibration */
if (otp_p->flag & 0x08) {
#if defined IMAGE_NORMAL_MIRROR
#elif defined IMAGE_H_MIRROR
for (i = 0; i < otp_p->dd_cnt; i++) {
if (otp_p->dd_param_type[i] == 0) {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i] + 1;
} else if (otp_p->dd_param_type[i] == 1) {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i] - 1;
} else {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i];
}
}
#elif defined IMAGE_V_MIRROR
for (i = 0; i < otp_p->dd_cnt; i++) {
otp_p->dd_param_y[i] =
WINDOW_HEIGHT - otp_p->dd_param_y[i] + 1;
}
#elif defined IMAGE_HV_MIRROR
for (i = 0; i < otp_p->dd_cnt; i++) {
if (otp_p->dd_param_type[i] == 0) {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i] + 1;
otp_p->dd_param_y[i] =
WINDOW_HEIGHT - otp_p->dd_param_y[i] + 1;
} else if (otp_p->dd_param_type[i] == 1) {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i] - 1;
otp_p->dd_param_y[i] =
WINDOW_HEIGHT - otp_p->dd_param_y[i] + 1;
} else {
otp_p->dd_param_x[i] =
WINDOW_WIDTH - otp_p->dd_param_x[i];
otp_p->dd_param_y[i] =
WINDOW_HEIGHT - otp_p->dd_param_y[i] + 1;
}
}
#endif
//y
for (i = 0; i < otp_p->dd_cnt - 1; i++) {
for (j = 0; j < otp_p->dd_cnt - 1 - i; j++) {
if (otp_p->dd_param_y[j] >
otp_p->dd_param_y[j + 1]) {
temp_x = otp_p->dd_param_x[j];
otp_p->dd_param_x[j] =
otp_p->dd_param_x[j + 1];
otp_p->dd_param_x[j + 1] =
temp_x;
temp_y =
otp_p->dd_param_y[j];
otp_p->dd_param_y[j] =
otp_p->dd_param_y[j + 1];
otp_p->dd_param_y[j + 1] =
temp_y;
temp_type =
otp_p->dd_param_type[j];
otp_p->dd_param_type[j] =
otp_p->dd_param_type[j + 1];
otp_p->dd_param_type[j + 1] =
temp_type;
}
}
}
//x
column = 0;
for (i = 0 ; i < otp_p->dd_cnt - 1; ++i) {
if (otp_p->dd_param_y[i] == otp_p->dd_param_y[i + 1]) {
column++;
if (otp_p->dd_cnt - 2 != i)
continue;
}
if (otp_p->dd_cnt - 2 == i &&
otp_p->dd_param_y[i] == otp_p->dd_param_y[i + 1]) {
i = otp_p->dd_cnt - 1;
}
iii = i - column;
for (ii = i - column; ii < i ; ++ii) {
for (jj = i - column; jj <
i - (ii - iii); ++jj) {
if (otp_p->dd_param_x[jj] >
otp_p->dd_param_x[jj + 1]) {
temp_x = otp_p->dd_param_x[jj];
otp_p->dd_param_x[jj] =
otp_p->dd_param_x[jj + 1];
otp_p->dd_param_x[jj + 1] =
temp_x;
temp_y =
otp_p->dd_param_y[jj];
otp_p->dd_param_y[jj] =
otp_p->dd_param_y[jj + 1];
otp_p->dd_param_y[jj + 1] =
temp_y;
temp_type =
otp_p->dd_param_type[jj];
otp_p->dd_param_type[jj] =
otp_p->dd_param_type[jj + 1];
otp_p->dd_param_type[jj + 1] =
temp_type;
}
}
}
column = 0;
}
//write SRAM
gc5025_write_reg(client, 0xfe, 0x00);
gc5025_write_reg(client, 0x80, 0x50);
gc5025_write_reg(client, 0xfe, 0x01);
gc5025_write_reg(client, 0xa8, 0x00);
gc5025_write_reg(client, 0x9d, 0x04);
gc5025_write_reg(client, 0xbe, 0x00);
gc5025_write_reg(client, 0xa9, 0x01);
for (i = 0; i < otp_p->dd_cnt; i++) {
temp_val0 = otp_p->dd_param_x[i] & 0x00ff;
temp_val1 = ((otp_p->dd_param_y[i] << 4) & 0x00f0) +
((otp_p->dd_param_x[i] >> 8) & 0x000f);
temp_val2 = (otp_p->dd_param_y[i] >> 4) & 0xff;
gc5025_write_reg(client, 0xaa, i);
gc5025_write_reg(client, 0xac, temp_val0);
gc5025_write_reg(client, 0xac, temp_val1);
gc5025_write_reg(client, 0xac, temp_val2);
gc5025_write_reg(client, 0xac,
otp_p->dd_param_type[i]);
}
gc5025_write_reg(client, 0xbe, 0x01);
gc5025_write_reg(client, 0xfe, 0x00);
}
return 0;
}
static int __gc5025_start_stream(struct gc5025 *gc5025)
{
int ret;
ret = gc5025_write_array(gc5025->client, gc5025->cur_mode->reg_list);
if (ret)
return ret;
if (gc5025->DR_State) {
ret = gc5025_write_array(gc5025->client,
gc5025_doublereset_reg);
} else {
ret = gc5025_write_array(gc5025->client,
gc5025_disable_doublereset_reg);
}
if (ret)
return ret;
/* In case these controls are set before streaming */
mutex_unlock(&gc5025->mutex);
ret = v4l2_ctrl_handler_setup(&gc5025->ctrl_handler);
mutex_lock(&gc5025->mutex);
if (ret)
return ret;
if (gc5025->otp) {
ret = gc5025_otp_enable(gc5025);
ret |= gc5025_apply_otp(gc5025);
ret |= gc5025_otp_disable(gc5025);
if (ret)
return ret;
}
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_CTRL_MODE,
GC5025_MODE_STREAMING);
return ret;
}
static int __gc5025_stop_stream(struct gc5025 *gc5025)
{
int ret;
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_CTRL_MODE,
GC5025_MODE_SW_STANDBY);
return ret;
}
static int gc5025_s_stream(struct v4l2_subdev *sd, int on)
{
struct gc5025 *gc5025 = to_gc5025(sd);
struct i2c_client *client = gc5025->client;
int ret = 0;
mutex_lock(&gc5025->mutex);
on = !!on;
if (on == gc5025->streaming)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = __gc5025_start_stream(gc5025);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__gc5025_stop_stream(gc5025);
pm_runtime_put(&client->dev);
}
gc5025->streaming = on;
unlock_and_return:
mutex_unlock(&gc5025->mutex);
return ret;
}
static int gc5025_s_power(struct v4l2_subdev *sd, int on)
{
struct gc5025 *gc5025 = to_gc5025(sd);
struct i2c_client *client = gc5025->client;
int ret = 0;
mutex_lock(&gc5025->mutex);
/* If the power state is not modified - no work to do. */
if (gc5025->power_on == !!on)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = gc5025_write_array(gc5025->client, gc5025_global_regs);
if (ret) {
v4l2_err(sd, "could not set init registers\n");
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
gc5025->power_on = true;
} else {
pm_runtime_put(&client->dev);
gc5025->power_on = false;
}
unlock_and_return:
mutex_unlock(&gc5025->mutex);
return ret;
}
/* Calculate the delay in us by clock rate and clock cycles */
static inline u32 gc5025_cal_delay(u32 cycles)
{
return DIV_ROUND_UP(cycles, GC5025_XVCLK_FREQ / 1000 / 1000);
}
static int __gc5025_power_on(struct gc5025 *gc5025)
{
int ret;
u32 delay_us;
struct device *dev = &gc5025->client->dev;
if (!IS_ERR(gc5025->power_gpio)) {
gpiod_set_value_cansleep(gc5025->power_gpio, 1);
usleep_range(5000, 5100);
}
if (!IS_ERR_OR_NULL(gc5025->pins_default)) {
ret = pinctrl_select_state(gc5025->pinctrl,
gc5025->pins_default);
if (ret < 0)
dev_err(dev, "could not set pins\n");
}
ret = clk_set_rate(gc5025->xvclk, GC5025_XVCLK_FREQ);
if (ret < 0)
dev_warn(dev, "Failed to set xvclk rate (24MHz)\n");
if (clk_get_rate(gc5025->xvclk) != GC5025_XVCLK_FREQ)
dev_warn(dev, "xvclk mismatched, modes are based on 24MHz\n");
ret = clk_prepare_enable(gc5025->xvclk);
if (ret < 0) {
dev_err(dev, "Failed to enable xvclk\n");
return ret;
}
if (!IS_ERR(gc5025->reset_gpio))
gpiod_set_value_cansleep(gc5025->reset_gpio, 1);
ret = regulator_bulk_enable(GC5025_NUM_SUPPLIES, gc5025->supplies);
if (ret < 0) {
dev_err(dev, "Failed to enable regulators\n");
goto disable_clk;
}
usleep_range(1000, 1100);
if (!IS_ERR(gc5025->reset_gpio))
gpiod_set_value_cansleep(gc5025->reset_gpio, 0);
usleep_range(500, 1000);
if (!IS_ERR(gc5025->pwdn_gpio))
gpiod_set_value_cansleep(gc5025->pwdn_gpio, 0);
/* 8192 cycles prior to first SCCB transaction */
delay_us = gc5025_cal_delay(8192);
usleep_range(delay_us, delay_us * 2);
return 0;
disable_clk:
clk_disable_unprepare(gc5025->xvclk);
return ret;
}
static void __gc5025_power_off(struct gc5025 *gc5025)
{
int ret;
if (!IS_ERR(gc5025->pwdn_gpio))
gpiod_set_value_cansleep(gc5025->pwdn_gpio, 1);
clk_disable_unprepare(gc5025->xvclk);
if (!IS_ERR(gc5025->reset_gpio))
gpiod_set_value_cansleep(gc5025->reset_gpio, 1);
if (!IS_ERR_OR_NULL(gc5025->pins_sleep)) {
ret = pinctrl_select_state(gc5025->pinctrl,
gc5025->pins_sleep);
if (ret < 0)
dev_dbg(&gc5025->client->dev, "could not set pins\n");
}
regulator_bulk_disable(GC5025_NUM_SUPPLIES, gc5025->supplies);
}
static int gc5025_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc5025 *gc5025 = to_gc5025(sd);
return __gc5025_power_on(gc5025);
}
static int gc5025_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc5025 *gc5025 = to_gc5025(sd);
__gc5025_power_off(gc5025);
return 0;
}
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int gc5025_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct gc5025 *gc5025 = to_gc5025(sd);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
const struct gc5025_mode *def_mode = &supported_modes[0];
mutex_lock(&gc5025->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = MEDIA_BUS_FMT_SRGGB10_1X10;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&gc5025->mutex);
/* No crop or compose */
return 0;
}
#endif
static int gc5025_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
if (fie->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
fie->code = MEDIA_BUS_FMT_SRGGB10_1X10;
fie->width = supported_modes[fie->index].width;
fie->height = supported_modes[fie->index].height;
fie->interval = supported_modes[fie->index].max_fps;
return 0;
}
static int gc5025_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
struct v4l2_mbus_config *config)
{
config->type = V4L2_MBUS_CSI2_DPHY;
config->bus.mipi_csi2.num_data_lanes = GC5025_LANES;
return 0;
}
static int gc5025_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
sel->r.left = 0;
sel->r.width = 2592;
sel->r.top = 0;
sel->r.height = 1944;
return 0;
}
return -EINVAL;
}
static const struct dev_pm_ops gc5025_pm_ops = {
SET_RUNTIME_PM_OPS(gc5025_runtime_suspend,
gc5025_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops gc5025_internal_ops = {
.open = gc5025_open,
};
#endif
static const struct v4l2_subdev_core_ops gc5025_core_ops = {
.s_power = gc5025_s_power,
.ioctl = gc5025_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = gc5025_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops gc5025_video_ops = {
.s_stream = gc5025_s_stream,
.g_frame_interval = gc5025_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops gc5025_pad_ops = {
.enum_mbus_code = gc5025_enum_mbus_code,
.enum_frame_size = gc5025_enum_frame_sizes,
.enum_frame_interval = gc5025_enum_frame_interval,
.get_fmt = gc5025_get_fmt,
.set_fmt = gc5025_set_fmt,
.get_selection = gc5025_get_selection,
.get_mbus_config = gc5025_g_mbus_config,
};
static const struct v4l2_subdev_ops gc5025_subdev_ops = {
.core = &gc5025_core_ops,
.video = &gc5025_video_ops,
.pad = &gc5025_pad_ops,
};
static int gc5025_set_exposure_reg(struct gc5025 *gc5025, u32 exposure)
{
u32 caltime = 0;
int ret = 0;
caltime = exposure / 2;
caltime = caltime * 2;
gc5025->Dgain_ratio = 256 * exposure / caltime;
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
if (!gc5025->DR_State) {
if (caltime <= 10)
ret |= gc5025_write_reg(gc5025->client, 0xd9, 0xdd);
else
ret |= gc5025_write_reg(gc5025->client, 0xd9, 0xaa);
}
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_EXPOSURE_H,
(caltime >> 8) & 0x3F);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_EXPOSURE_L,
caltime & 0xFF);
return ret;
}
#define GC5025_ANALOG_GAIN_1 64 /*1.00x*/
#define GC5025_ANALOG_GAIN_2 92 // 1.445x
static int gc5025_set_gain_reg(struct gc5025 *gc5025, u32 a_gain)
{
int ret = 0;
u32 temp = 0;
if (a_gain < 0x40)
a_gain = 0x40;
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
if (a_gain >= GC5025_ANALOG_GAIN_1 &&
a_gain < GC5025_ANALOG_GAIN_2) {
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_AGAIN, 0x0);
temp = a_gain;
} else {
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_AGAIN, 0x1);
temp = 64 * a_gain / GC5025_ANALOG_GAIN_2;
}
temp = temp * gc5025->Dgain_ratio / 256;
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_DGAIN_INT,
temp >> 6);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_DGAIN_FRAC,
(temp << 2) & 0xfc);
return ret;
}
static int gc5025_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct gc5025 *gc5025 = container_of(ctrl->handler,
struct gc5025, ctrl_handler);
struct i2c_client *client = gc5025->client;
s64 max;
int ret = 0;
/* Propagate change of current control to all related controls */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
/* Update max exposure while meeting expected vblanking */
max = gc5025->cur_mode->height + ctrl->val - 4;
__v4l2_ctrl_modify_range(gc5025->exposure,
gc5025->exposure->minimum, max,
gc5025->exposure->step,
gc5025->exposure->default_value);
break;
}
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* 4 least significant bits of expsoure are fractional part */
ret = gc5025_set_exposure_reg(gc5025, ctrl->val);
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = gc5025_set_gain_reg(gc5025, ctrl->val);
break;
case V4L2_CID_VBLANK:
ret = gc5025_write_reg(gc5025->client,
GC5025_REG_SET_PAGE,
GC5025_SET_PAGE_ONE);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_VTS_H,
((ctrl->val - 24) >> 8) & 0xff);
ret |= gc5025_write_reg(gc5025->client,
GC5025_REG_VTS_L,
(ctrl->val - 24) & 0xff);
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops gc5025_ctrl_ops = {
.s_ctrl = gc5025_set_ctrl,
};
static int gc5025_initialize_controls(struct gc5025 *gc5025)
{
const struct gc5025_mode *mode;
struct v4l2_ctrl_handler *handler;
struct v4l2_ctrl *ctrl;
s64 exposure_max, vblank_def;
u32 h_blank;
int ret;
handler = &gc5025->ctrl_handler;
mode = gc5025->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 8);
if (ret)
return ret;
handler->lock = &gc5025->mutex;
ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ,
0, 0, link_freq_menu_items);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE,
0, GC5025_PIXEL_RATE, 1, GC5025_PIXEL_RATE);
h_blank = mode->hts_def - mode->width;
gc5025->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (gc5025->hblank)
gc5025->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
vblank_def = mode->vts_def - mode->height;
gc5025->vblank = v4l2_ctrl_new_std(handler, &gc5025_ctrl_ops,
V4L2_CID_VBLANK, vblank_def,
GC5025_VTS_MAX - mode->height,
1, vblank_def);
exposure_max = mode->vts_def - 4;
gc5025->exposure = v4l2_ctrl_new_std(handler, &gc5025_ctrl_ops,
V4L2_CID_EXPOSURE, GC5025_EXPOSURE_MIN,
exposure_max, GC5025_EXPOSURE_STEP,
mode->exp_def);
gc5025->anal_gain = v4l2_ctrl_new_std(handler, &gc5025_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, GC5025_GAIN_MIN,
GC5025_GAIN_MAX, GC5025_GAIN_STEP,
GC5025_GAIN_DEFAULT);
if (handler->error) {
ret = handler->error;
dev_err(&gc5025->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
gc5025->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int gc5025_check_sensor_id(struct gc5025 *gc5025,
struct i2c_client *client)
{
struct device *dev = &gc5025->client->dev;
u16 id = 0;
u8 reg_H = 0;
u8 reg_L = 0;
u8 flag_doublereset = 0;
u8 flag_GC5025A = 0;
int ret;
ret = gc5025_read_reg(client, GC5025_REG_CHIP_ID_H, &reg_H);
ret |= gc5025_read_reg(client, GC5025_REG_CHIP_ID_L, &reg_L);
id = ((reg_H << 8) & 0xff00) | (reg_L & 0xff);
if (id != CHIP_ID) {
dev_err(dev, "Unexpected sensor id(%06x), ret(%d)\n", id, ret);
return -ENODEV;
}
ret |= gc5025_read_reg(client, 0x26, &flag_doublereset);
ret |= gc5025_read_reg(client, 0x27, &flag_GC5025A);
if ((flag_GC5025A & 0x01) == 0x01) {
dev_warn(dev, "GC5025A sensor!\n");
gc5025->DR_State = false;
} else {
if ((flag_doublereset & 0x03) == 0x01) {
gc5025->DR_State = false;
dev_warn(dev, "GC5025 double reset off\n");
} else {
gc5025->DR_State = true;
dev_warn(dev, "GC5025 double reset on\n");
}
}
return ret;
}
static int gc5025_configure_regulators(struct gc5025 *gc5025)
{
unsigned int i;
for (i = 0; i < GC5025_NUM_SUPPLIES; i++)
gc5025->supplies[i].supply = gc5025_supply_names[i];
return devm_regulator_bulk_get(&gc5025->client->dev,
GC5025_NUM_SUPPLIES,
gc5025->supplies);
}
static int gc5025_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct gc5025 *gc5025;
struct v4l2_subdev *sd;
char facing[2];
int ret;
dev_info(dev, "driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
gc5025 = devm_kzalloc(dev, sizeof(*gc5025), GFP_KERNEL);
if (!gc5025)
return -ENOMEM;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&gc5025->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&gc5025->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&gc5025->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&gc5025->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
gc5025->client = client;
gc5025->cur_mode = &supported_modes[0];
gc5025->xvclk = devm_clk_get(dev, "xvclk");
if (IS_ERR(gc5025->xvclk)) {
dev_err(dev, "Failed to get xvclk\n");
return -EINVAL;
}
gc5025->power_gpio = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
if (IS_ERR(gc5025->power_gpio))
dev_warn(dev, "Failed to get power-gpios\n");
gc5025->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(gc5025->reset_gpio))
dev_warn(dev, "Failed to get reset-gpios\n");
gc5025->pwdn_gpio = devm_gpiod_get(dev, "pwdn", GPIOD_OUT_LOW);
if (IS_ERR(gc5025->pwdn_gpio))
dev_warn(dev, "Failed to get pwdn-gpios\n");
ret = gc5025_configure_regulators(gc5025);
if (ret) {
dev_err(dev, "Failed to get power regulators\n");
return ret;
}
gc5025->pinctrl = devm_pinctrl_get(dev);
if (!IS_ERR(gc5025->pinctrl)) {
gc5025->pins_default =
pinctrl_lookup_state(gc5025->pinctrl,
OF_CAMERA_PINCTRL_STATE_DEFAULT);
if (IS_ERR(gc5025->pins_default))
dev_err(dev, "could not get default pinstate\n");
gc5025->pins_sleep =
pinctrl_lookup_state(gc5025->pinctrl,
OF_CAMERA_PINCTRL_STATE_SLEEP);
if (IS_ERR(gc5025->pins_sleep))
dev_err(dev, "could not get sleep pinstate\n");
}
mutex_init(&gc5025->mutex);
sd = &gc5025->subdev;
v4l2_i2c_subdev_init(sd, client, &gc5025_subdev_ops);
ret = gc5025_initialize_controls(gc5025);
if (ret)
goto err_destroy_mutex;
ret = __gc5025_power_on(gc5025);
if (ret)
goto err_free_handler;
ret = gc5025_check_sensor_id(gc5025, client);
if (ret)
goto err_power_off;
gc5025_otp_enable(gc5025);
gc5025_otp_read(gc5025);
gc5025_otp_disable(gc5025);
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &gc5025_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
gc5025->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &gc5025->pad);
if (ret < 0)
goto err_power_off;
#endif
memset(facing, 0, sizeof(facing));
if (strcmp(gc5025->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
gc5025->module_index, facing,
GC5025_NAME, dev_name(sd->dev));
ret = v4l2_async_register_subdev_sensor(sd);
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_power_off:
__gc5025_power_off(gc5025);
err_free_handler:
v4l2_ctrl_handler_free(&gc5025->ctrl_handler);
err_destroy_mutex:
mutex_destroy(&gc5025->mutex);
return ret;
}
static void gc5025_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc5025 *gc5025 = to_gc5025(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&gc5025->ctrl_handler);
mutex_destroy(&gc5025->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__gc5025_power_off(gc5025);
pm_runtime_set_suspended(&client->dev);
}
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id gc5025_of_match[] = {
{ .compatible = "galaxycore,gc5025" },
{},
};
MODULE_DEVICE_TABLE(of, gc5025_of_match);
#endif
static const struct i2c_device_id gc5025_match_id[] = {
{ "galaxycore,gc5025", 0 },
{ },
};
static struct i2c_driver gc5025_i2c_driver = {
.driver = {
.name = GC5025_NAME,
.pm = &gc5025_pm_ops,
.of_match_table = of_match_ptr(gc5025_of_match),
},
.probe = &gc5025_probe,
.remove = &gc5025_remove,
.id_table = gc5025_match_id,
};
static int __init sensor_mod_init(void)
{
return i2c_add_driver(&gc5025_i2c_driver);
}
static void __exit sensor_mod_exit(void)
{
i2c_del_driver(&gc5025_i2c_driver);
}
device_initcall_sync(sensor_mod_init);
module_exit(sensor_mod_exit);
MODULE_DESCRIPTION("GalaxyCore gc5025 sensor driver");
MODULE_LICENSE("GPL v2");