1305 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* gc2385 driver
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
*
* V0.0X01.0X01 add poweron function.
* V0.0X01.0X02 fix mclk issue when probe multiple camera.
* V0.0X01.0X03 add enum_frame_interval function.
* V0.0X01.0X04 add quick stream on/off
* V0.0X01.0X05 add function g_mbus_config
* V0.0X01.0X06 set max framerate to strictly 30FPS for cts
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/version.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <linux/pinctrl/consumer.h>
#define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x05)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
#define GC2385_LANES 1
#define GC2385_BITS_PER_SAMPLE 10
#define GC2385_LINK_FREQ_MHZ 328000000
/* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */
#define GC2385_PIXEL_RATE (GC2385_LINK_FREQ_MHZ * 2 * 1 / 10)
#define GC2385_XVCLK_FREQ 24000000
#define CHIP_ID 0x2385
#define GC2385_REG_CHIP_ID_H 0xf0
#define GC2385_REG_CHIP_ID_L 0xf1
#define GC2385_REG_SET_PAGE 0xfe
#define GC2385_SET_PAGE_ONE 0x00
#define GC2385_REG_CTRL_MODE 0xed
#define GC2385_MODE_SW_STANDBY 0x00
#define GC2385_MODE_STREAMING 0x90
#define GC2385_REG_EXPOSURE_H 0x03
#define GC2385_REG_EXPOSURE_L 0x04
#define GC2385_FETCH_HIGH_BYTE_EXP(VAL) (((VAL) >> 8) & 0x3F) /* 6 Bits */
#define GC2385_FETCH_LOW_BYTE_EXP(VAL) ((VAL) & 0xFF) /* 8 Bits */
#define GC2385_EXPOSURE_MIN 4
#define GC2385_EXPOSURE_STEP 1
#define GC2385_VTS_MAX 0x1fff
#define GC2385_REG_AGAIN 0xb6
#define GC2385_REG_DGAIN_INT 0xb1
#define GC2385_REG_DGAIN_FRAC 0xb2
#define GC2385_GAIN_MIN 64
#define GC2385_GAIN_MAX 1092
#define GC2385_GAIN_STEP 1
#define GC2385_GAIN_DEFAULT 64
#define GC2385_REG_VTS_H 0x07
#define GC2385_REG_VTS_L 0x08
#define REG_NULL 0xFF
#define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default"
#define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep"
#define GC2385_NAME "gc2385"
static const char * const gc2385_supply_names[] = {
"avdd", /* Analog power */
"dovdd", /* Digital I/O power */
"dvdd", /* Digital core power */
};
#define GC2385_NUM_SUPPLIES ARRAY_SIZE(gc2385_supply_names)
struct regval {
u8 addr;
u8 val;
};
struct gc2385_mode {
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
const struct regval *reg_list;
};
struct gc2385 {
struct i2c_client *client;
struct clk *xvclk;
struct gpio_desc *reset_gpio;
struct gpio_desc *pwdn_gpio;
struct regulator_bulk_data supplies[GC2385_NUM_SUPPLIES];
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *anal_gain;
struct v4l2_ctrl *digi_gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct mutex mutex;
bool streaming;
bool power_on;
const struct gc2385_mode *cur_mode;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
};
#define to_gc2385(sd) container_of(sd, struct gc2385, subdev)
/*
* Xclk 24Mhz
*/
static const struct regval gc2385_global_regs[] = {
{REG_NULL, 0x00},
};
/*
* Xclk 24Mhz
* max_framerate 30fps
* mipi_datarate per lane 656Mbps
*/
static const struct regval gc2385_1600x1200_regs[] = {
{0xfe, 0x00},
{0xfe, 0x00},
{0xfe, 0x00},
{0xf2, 0x02},
{0xf4, 0x03},
{0xf7, 0x01},
{0xf8, 0x28},
{0xf9, 0x02},
{0xfa, 0x08},
{0xfc, 0x8e},
{0xe7, 0xcc},
{0x88, 0x03},
{0x03, 0x04},
{0x04, 0x80},
{0x05, 0x02},
{0x06, 0x86},
{0x07, 0x00},
{0x08, 0x10},
{0x09, 0x00},
{0x0a, 0x04},
{0x0b, 0x00},
{0x0c, 0x02},
{0x17, 0xd4},
{0x18, 0x02},
{0x19, 0x17},
{0x1c, 0x18},
{0x20, 0x73},
{0x21, 0x38},
{0x22, 0xa2},
{0x29, 0x20},
{0x2f, 0x14},
{0x3f, 0x40},
{0xcd, 0x94},
{0xce, 0x45},
{0xd1, 0x0c},
{0xd7, 0x9b},
{0xd8, 0x99},
{0xda, 0x3b},
{0xd9, 0xb5},
{0xdb, 0x75},
{0xe3, 0x1b},
{0xe4, 0xf8},
{0x40, 0x22},
{0x43, 0x07},
{0x4e, 0x3c},
{0x4f, 0x00},
{0x68, 0x00},
{0xb0, 0x46},
{0xb1, 0x01},
{0xb2, 0x00},
{0xb6, 0x00},
{0x90, 0x01},
{0x92, 0x03},
{0x94, 0x05},
{0x95, 0x04},
{0x96, 0xb0},
{0x97, 0x06},
{0x98, 0x40},
{0xfe, 0x00},
{0xed, 0x00},
{0xfe, 0x03},
{0x01, 0x03},
{0x02, 0x82},
{0x03, 0xd0},
{0x04, 0x04},
{0x05, 0x00},
{0x06, 0x80},
{0x11, 0x2b},
{0x12, 0xd0},
{0x13, 0x07},
{0x15, 0x00},
{0x1b, 0x10},
{0x1c, 0x10},
{0x21, 0x08},
{0x22, 0x05},
{0x23, 0x13},
{0x24, 0x02},
{0x25, 0x13},
{0x26, 0x06},
{0x29, 0x06},
{0x2a, 0x08},
{0x2b, 0x06},
{0xfe, 0x00},
{REG_NULL, 0x00},
};
static const struct gc2385_mode supported_modes[] = {
{
.width = 1600,
.height = 1200,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x0480,
.hts_def = 0x10DC,
.vts_def = 0x04F0,
.reg_list = gc2385_1600x1200_regs,
},
};
static const s64 link_freq_menu_items[] = {
GC2385_LINK_FREQ_MHZ
};
/* Write registers up to 4 at a time */
static int gc2385_write_reg(struct i2c_client *client, u8 reg, u8 val)
{
struct i2c_msg msg;
u8 buf[2];
int ret;
buf[0] = reg & 0xFF;
buf[1] = val;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret >= 0)
return 0;
dev_err(&client->dev,
"gc2385 write reg(0x%x val:0x%x) failed !\n", reg, val);
return ret;
}
static int gc2385_write_array(struct i2c_client *client,
const struct regval *regs)
{
u32 i = 0;
int ret = 0;
for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++)
ret = gc2385_write_reg(client, regs[i].addr, regs[i].val);
return ret;
}
/* Read registers up to 4 at a time */
static int gc2385_read_reg(struct i2c_client *client, u8 reg, u8 *val)
{
struct i2c_msg msg[2];
u8 buf[1];
int ret;
buf[0] = reg & 0xFF;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = buf;
msg[1].len = 1;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret >= 0) {
*val = buf[0];
return 0;
}
dev_err(&client->dev,
"gc2385 read reg:0x%x failed !\n", reg);
return ret;
}
static int gc2385_get_reso_dist(const struct gc2385_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct gc2385_mode *
gc2385_find_best_fit(struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(supported_modes); i++) {
dist = gc2385_get_reso_dist(&supported_modes[i], framefmt);
if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &supported_modes[cur_best_fit];
}
static int gc2385_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc2385 *gc2385 = to_gc2385(sd);
const struct gc2385_mode *mode;
s64 h_blank, vblank_def;
mutex_lock(&gc2385->mutex);
mode = gc2385_find_best_fit(fmt);
fmt->format.code = MEDIA_BUS_FMT_SBGGR10_1X10;
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format;
#else
mutex_unlock(&gc2385->mutex);
return -ENOTTY;
#endif
} else {
gc2385->cur_mode = mode;
h_blank = mode->hts_def - mode->width;
__v4l2_ctrl_modify_range(gc2385->hblank, h_blank,
h_blank, 1, h_blank);
vblank_def = mode->vts_def - mode->height;
__v4l2_ctrl_modify_range(gc2385->vblank, vblank_def,
GC2385_VTS_MAX - mode->height,
1, vblank_def);
}
mutex_unlock(&gc2385->mutex);
return 0;
}
static int gc2385_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct gc2385 *gc2385 = to_gc2385(sd);
const struct gc2385_mode *mode = gc2385->cur_mode;
mutex_lock(&gc2385->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
#else
mutex_unlock(&gc2385->mutex);
return -ENOTTY;
#endif
} else {
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = MEDIA_BUS_FMT_SBGGR10_1X10;
fmt->format.field = V4L2_FIELD_NONE;
}
mutex_unlock(&gc2385->mutex);
return 0;
}
static int gc2385_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SBGGR10_1X10;
return 0;
}
static int gc2385_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SBGGR10_1X10)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int gc2385_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct gc2385 *gc2385 = to_gc2385(sd);
const struct gc2385_mode *mode = gc2385->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
static void gc2385_get_module_inf(struct gc2385 *gc2385,
struct rkmodule_inf *inf)
{
memset(inf, 0, sizeof(*inf));
strlcpy(inf->base.sensor, GC2385_NAME, sizeof(inf->base.sensor));
strlcpy(inf->base.module, gc2385->module_name,
sizeof(inf->base.module));
strlcpy(inf->base.lens, gc2385->len_name, sizeof(inf->base.lens));
}
static long gc2385_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct gc2385 *gc2385 = to_gc2385(sd);
long ret = 0;
u32 stream = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
gc2385_get_module_inf(gc2385, (struct rkmodule_inf *)arg);
break;
case RKMODULE_SET_QUICK_STREAM:
stream = *((u32 *)arg);
if (stream) {
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE,
GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_CTRL_MODE,
GC2385_MODE_STREAMING);
} else {
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE, GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_CTRL_MODE, GC2385_MODE_SW_STANDBY);
}
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long gc2385_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
struct rkmodule_awb_cfg *cfg;
long ret;
u32 stream = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = gc2385_ioctl(sd, cmd, inf);
if (!ret)
ret = copy_to_user(up, inf, sizeof(*inf));
kfree(inf);
break;
case RKMODULE_AWB_CFG:
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(cfg, up, sizeof(*cfg));
if (!ret)
ret = gc2385_ioctl(sd, cmd, cfg);
kfree(cfg);
break;
case RKMODULE_SET_QUICK_STREAM:
ret = copy_from_user(&stream, up, sizeof(u32));
if (!ret)
ret = gc2385_ioctl(sd, cmd, &stream);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#endif
static int __gc2385_start_stream(struct gc2385 *gc2385)
{
int ret;
ret = gc2385_write_array(gc2385->client, gc2385->cur_mode->reg_list);
if (ret)
return ret;
/* In case these controls are set before streaming */
mutex_unlock(&gc2385->mutex);
ret = v4l2_ctrl_handler_setup(&gc2385->ctrl_handler);
mutex_lock(&gc2385->mutex);
if (ret)
return ret;
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE,
GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_CTRL_MODE,
GC2385_MODE_STREAMING);
return ret;
}
static int __gc2385_stop_stream(struct gc2385 *gc2385)
{
int ret;
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE, GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_CTRL_MODE, GC2385_MODE_SW_STANDBY);
return ret;
}
static int gc2385_s_stream(struct v4l2_subdev *sd, int on)
{
struct gc2385 *gc2385 = to_gc2385(sd);
struct i2c_client *client = gc2385->client;
int ret = 0;
mutex_lock(&gc2385->mutex);
on = !!on;
if (on == gc2385->streaming)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = __gc2385_start_stream(gc2385);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__gc2385_stop_stream(gc2385);
pm_runtime_put(&client->dev);
}
gc2385->streaming = on;
unlock_and_return:
mutex_unlock(&gc2385->mutex);
return ret;
}
static int gc2385_s_power(struct v4l2_subdev *sd, int on)
{
struct gc2385 *gc2385 = to_gc2385(sd);
struct i2c_client *client = gc2385->client;
int ret = 0;
mutex_lock(&gc2385->mutex);
/* If the power state is not modified - no work to do. */
if (gc2385->power_on == !!on)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = gc2385_write_array(gc2385->client, gc2385_global_regs);
if (ret) {
v4l2_err(sd, "could not set init registers\n");
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
gc2385->power_on = true;
} else {
pm_runtime_put(&client->dev);
gc2385->power_on = false;
}
unlock_and_return:
mutex_unlock(&gc2385->mutex);
return ret;
}
/* Calculate the delay in us by clock rate and clock cycles */
static inline u32 gc2385_cal_delay(u32 cycles)
{
return DIV_ROUND_UP(cycles, GC2385_XVCLK_FREQ / 1000 / 1000);
}
static int __gc2385_power_on(struct gc2385 *gc2385)
{
int ret;
u32 delay_us;
struct device *dev = &gc2385->client->dev;
if (!IS_ERR_OR_NULL(gc2385->pins_default)) {
ret = pinctrl_select_state(gc2385->pinctrl,
gc2385->pins_default);
if (ret < 0)
dev_err(dev, "could not set pins\n");
}
ret = clk_set_rate(gc2385->xvclk, GC2385_XVCLK_FREQ);
if (ret < 0)
dev_warn(dev, "Failed to set xvclk rate (24MHz)\n");
if (clk_get_rate(gc2385->xvclk) != GC2385_XVCLK_FREQ)
dev_warn(dev, "xvclk mismatched, modes are based on 24MHz\n");
ret = clk_prepare_enable(gc2385->xvclk);
if (ret < 0) {
dev_err(dev, "Failed to enable xvclk\n");
return ret;
}
if (!IS_ERR(gc2385->reset_gpio))
gpiod_set_value_cansleep(gc2385->reset_gpio, 1);
ret = regulator_bulk_enable(GC2385_NUM_SUPPLIES, gc2385->supplies);
if (ret < 0) {
dev_err(dev, "Failed to enable regulators\n");
goto disable_clk;
}
usleep_range(1000, 1100);
if (!IS_ERR(gc2385->reset_gpio))
gpiod_set_value_cansleep(gc2385->reset_gpio, 0);
usleep_range(500, 1000);
if (!IS_ERR(gc2385->pwdn_gpio))
gpiod_set_value_cansleep(gc2385->pwdn_gpio, 1);
/* 8192 cycles prior to first SCCB transaction */
delay_us = gc2385_cal_delay(8192);
usleep_range(delay_us, delay_us * 2);
return 0;
disable_clk:
clk_disable_unprepare(gc2385->xvclk);
return ret;
}
static void __gc2385_power_off(struct gc2385 *gc2385)
{
int ret = 0;
if (!IS_ERR(gc2385->pwdn_gpio))
gpiod_set_value_cansleep(gc2385->pwdn_gpio, 0);
clk_disable_unprepare(gc2385->xvclk);
if (!IS_ERR(gc2385->reset_gpio))
gpiod_set_value_cansleep(gc2385->reset_gpio, 1);
if (!IS_ERR_OR_NULL(gc2385->pins_sleep)) {
ret = pinctrl_select_state(gc2385->pinctrl,
gc2385->pins_sleep);
if (ret < 0)
dev_dbg(&gc2385->client->dev, "could not set pins\n");
}
regulator_bulk_disable(GC2385_NUM_SUPPLIES, gc2385->supplies);
}
static int __maybe_unused gc2385_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc2385 *gc2385 = to_gc2385(sd);
return __gc2385_power_on(gc2385);
}
static int __maybe_unused gc2385_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc2385 *gc2385 = to_gc2385(sd);
__gc2385_power_off(gc2385);
return 0;
}
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int gc2385_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct gc2385 *gc2385 = to_gc2385(sd);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
const struct gc2385_mode *def_mode = &supported_modes[0];
mutex_lock(&gc2385->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&gc2385->mutex);
/* No crop or compose */
return 0;
}
#endif
static int gc2385_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
if (fie->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
fie->code = MEDIA_BUS_FMT_SBGGR10_1X10;
fie->width = supported_modes[fie->index].width;
fie->height = supported_modes[fie->index].height;
fie->interval = supported_modes[fie->index].max_fps;
return 0;
}
static int gc2385_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
struct v4l2_mbus_config *config)
{
config->type = V4L2_MBUS_CSI2_DPHY;
config->bus.mipi_csi2.num_data_lanes = GC2385_LANES;
return 0;
}
static const struct dev_pm_ops gc2385_pm_ops = {
SET_RUNTIME_PM_OPS(gc2385_runtime_suspend,
gc2385_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops gc2385_internal_ops = {
.open = gc2385_open,
};
#endif
static const struct v4l2_subdev_core_ops gc2385_core_ops = {
.s_power = gc2385_s_power,
.ioctl = gc2385_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = gc2385_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops gc2385_video_ops = {
.s_stream = gc2385_s_stream,
.g_frame_interval = gc2385_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops gc2385_pad_ops = {
.enum_mbus_code = gc2385_enum_mbus_code,
.enum_frame_size = gc2385_enum_frame_sizes,
.enum_frame_interval = gc2385_enum_frame_interval,
.get_fmt = gc2385_get_fmt,
.set_fmt = gc2385_set_fmt,
.get_mbus_config = gc2385_g_mbus_config,
};
static const struct v4l2_subdev_ops gc2385_subdev_ops = {
.core = &gc2385_core_ops,
.video = &gc2385_video_ops,
.pad = &gc2385_pad_ops,
};
#define GC2385_ANALOG_GAIN_1 64 /*1.00x*/
#define GC2385_ANALOG_GAIN_2 92 // 1.43x
#define GC2385_ANALOG_GAIN_3 127 // 1.99x
#define GC2385_ANALOG_GAIN_4 183 // 2.86x
#define GC2385_ANALOG_GAIN_5 257 // 4.01x
#define GC2385_ANALOG_GAIN_6 369 // 5.76x
#define GC2385_ANALOG_GAIN_7 531 //8.30x
#define GC2385_ANALOG_GAIN_8 750 // 11.72x
#define GC2385_ANALOG_GAIN_9 1092 // 17.06x
static int gc2385_set_gain_reg(struct gc2385 *gc2385, u32 a_gain)
{
int ret = 0;
u32 temp = 0;
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE, GC2385_SET_PAGE_ONE);
if (a_gain >= GC2385_ANALOG_GAIN_1 &&
a_gain < GC2385_ANALOG_GAIN_2) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa2);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x0);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_1;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_2 &&
a_gain < GC2385_ANALOG_GAIN_3) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa2);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x1);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_2;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_3 &&
a_gain < GC2385_ANALOG_GAIN_4) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa2);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x2);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_3;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_4 &&
a_gain < GC2385_ANALOG_GAIN_5) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa2);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x3);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_4;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_5 &&
a_gain < GC2385_ANALOG_GAIN_6) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa3);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x4);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_5;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_6 &&
a_gain < GC2385_ANALOG_GAIN_7) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x73);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa3);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x5);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_6;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_7 &&
a_gain < GC2385_ANALOG_GAIN_8) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x74);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa3);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x6);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_7;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else if (a_gain >= GC2385_ANALOG_GAIN_8 &&
a_gain < GC2385_ANALOG_GAIN_9) {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x74);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa3);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x7);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_8;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
} else {
ret |= gc2385_write_reg(gc2385->client, 0x20, 0x75);
ret |= gc2385_write_reg(gc2385->client, 0x22, 0xa4);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_AGAIN, 0x8);
temp = 256 * a_gain / GC2385_ANALOG_GAIN_9;
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_INT, (temp >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_DGAIN_FRAC, temp & 0xff);
}
return ret;
}
static int gc2385_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct gc2385 *gc2385 = container_of(ctrl->handler,
struct gc2385, ctrl_handler);
struct i2c_client *client = gc2385->client;
s64 max;
int ret = 0;
/* Propagate change of current control to all related controls */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
/* Update max exposure while meeting expected vblanking */
max = gc2385->cur_mode->height + ctrl->val - 4;
__v4l2_ctrl_modify_range(gc2385->exposure,
gc2385->exposure->minimum, max,
gc2385->exposure->step,
gc2385->exposure->default_value);
break;
}
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* 4 least significant bits of expsoure are fractional part */
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE,
GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_EXPOSURE_H,
GC2385_FETCH_HIGH_BYTE_EXP(ctrl->val));
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_EXPOSURE_L,
GC2385_FETCH_LOW_BYTE_EXP(ctrl->val));
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = gc2385_set_gain_reg(gc2385, ctrl->val);
break;
case V4L2_CID_VBLANK:
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE,
GC2385_SET_PAGE_ONE);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_VTS_H,
((ctrl->val - 32) >> 8) & 0xff);
ret |= gc2385_write_reg(gc2385->client,
GC2385_REG_VTS_L,
(ctrl->val - 32) & 0xff);
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops gc2385_ctrl_ops = {
.s_ctrl = gc2385_set_ctrl,
};
static int gc2385_initialize_controls(struct gc2385 *gc2385)
{
const struct gc2385_mode *mode;
struct v4l2_ctrl_handler *handler;
struct v4l2_ctrl *ctrl;
s64 exposure_max, vblank_def;
u32 h_blank;
int ret;
handler = &gc2385->ctrl_handler;
mode = gc2385->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 8);
if (ret)
return ret;
handler->lock = &gc2385->mutex;
ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ,
0, 0, link_freq_menu_items);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE,
0, GC2385_PIXEL_RATE, 1, GC2385_PIXEL_RATE);
h_blank = mode->hts_def - mode->width;
gc2385->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (gc2385->hblank)
gc2385->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
vblank_def = mode->vts_def - mode->height;
gc2385->vblank = v4l2_ctrl_new_std(handler, &gc2385_ctrl_ops,
V4L2_CID_VBLANK, vblank_def,
GC2385_VTS_MAX - mode->height,
1, vblank_def);
exposure_max = mode->vts_def - 4;
gc2385->exposure = v4l2_ctrl_new_std(handler, &gc2385_ctrl_ops,
V4L2_CID_EXPOSURE, GC2385_EXPOSURE_MIN,
exposure_max, GC2385_EXPOSURE_STEP,
mode->exp_def);
gc2385->anal_gain = v4l2_ctrl_new_std(handler, &gc2385_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, GC2385_GAIN_MIN,
GC2385_GAIN_MAX, GC2385_GAIN_STEP,
GC2385_GAIN_DEFAULT);
if (handler->error) {
ret = handler->error;
dev_err(&gc2385->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
gc2385->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int gc2385_check_sensor_id(struct gc2385 *gc2385,
struct i2c_client *client)
{
struct device *dev = &gc2385->client->dev;
u16 id = 0;
u8 reg_H = 0;
u8 reg_L = 0;
int ret;
ret = gc2385_write_reg(gc2385->client,
GC2385_REG_SET_PAGE,
GC2385_SET_PAGE_ONE);
ret |= gc2385_read_reg(client, GC2385_REG_CHIP_ID_H, &reg_H);
ret |= gc2385_read_reg(client, GC2385_REG_CHIP_ID_L, &reg_L);
id = ((reg_H << 8) & 0xff00) | (reg_L & 0xff);
if (id != CHIP_ID) {
dev_err(dev, "Unexpected sensor id(%06x), ret(%d)\n", id, ret);
return -ENODEV;
}
return ret;
}
static int gc2385_configure_regulators(struct gc2385 *gc2385)
{
unsigned int i;
for (i = 0; i < GC2385_NUM_SUPPLIES; i++)
gc2385->supplies[i].supply = gc2385_supply_names[i];
return devm_regulator_bulk_get(&gc2385->client->dev,
GC2385_NUM_SUPPLIES,
gc2385->supplies);
}
static int gc2385_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct gc2385 *gc2385;
struct v4l2_subdev *sd;
char facing[2];
int ret;
dev_info(dev, "driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
gc2385 = devm_kzalloc(dev, sizeof(*gc2385), GFP_KERNEL);
if (!gc2385)
return -ENOMEM;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&gc2385->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&gc2385->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&gc2385->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&gc2385->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
gc2385->client = client;
gc2385->cur_mode = &supported_modes[0];
gc2385->xvclk = devm_clk_get(dev, "xvclk");
if (IS_ERR(gc2385->xvclk)) {
dev_err(dev, "Failed to get xvclk\n");
return -EINVAL;
}
gc2385->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(gc2385->reset_gpio))
dev_warn(dev, "Failed to get reset-gpios\n");
gc2385->pwdn_gpio = devm_gpiod_get(dev, "pwdn", GPIOD_OUT_LOW);
if (IS_ERR(gc2385->pwdn_gpio))
dev_warn(dev, "Failed to get pwdn-gpios\n");
ret = gc2385_configure_regulators(gc2385);
if (ret) {
dev_err(dev, "Failed to get power regulators\n");
return ret;
}
gc2385->pinctrl = devm_pinctrl_get(dev);
if (!IS_ERR(gc2385->pinctrl)) {
gc2385->pins_default =
pinctrl_lookup_state(gc2385->pinctrl,
OF_CAMERA_PINCTRL_STATE_DEFAULT);
if (IS_ERR(gc2385->pins_default))
dev_err(dev, "could not get default pinstate\n");
gc2385->pins_sleep =
pinctrl_lookup_state(gc2385->pinctrl,
OF_CAMERA_PINCTRL_STATE_SLEEP);
if (IS_ERR(gc2385->pins_sleep))
dev_err(dev, "could not get sleep pinstate\n");
}
mutex_init(&gc2385->mutex);
sd = &gc2385->subdev;
v4l2_i2c_subdev_init(sd, client, &gc2385_subdev_ops);
ret = gc2385_initialize_controls(gc2385);
if (ret)
goto err_destroy_mutex;
ret = __gc2385_power_on(gc2385);
if (ret)
goto err_free_handler;
ret = gc2385_check_sensor_id(gc2385, client);
if (ret)
goto err_power_off;
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &gc2385_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
gc2385->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &gc2385->pad);
if (ret < 0)
goto err_power_off;
#endif
memset(facing, 0, sizeof(facing));
if (strcmp(gc2385->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
gc2385->module_index, facing,
GC2385_NAME, dev_name(sd->dev));
ret = v4l2_async_register_subdev_sensor(sd);
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_power_off:
__gc2385_power_off(gc2385);
err_free_handler:
v4l2_ctrl_handler_free(&gc2385->ctrl_handler);
err_destroy_mutex:
mutex_destroy(&gc2385->mutex);
return ret;
}
static void gc2385_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct gc2385 *gc2385 = to_gc2385(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&gc2385->ctrl_handler);
mutex_destroy(&gc2385->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__gc2385_power_off(gc2385);
pm_runtime_set_suspended(&client->dev);
}
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id gc2385_of_match[] = {
{ .compatible = "galaxycore,gc2385" },
{},
};
MODULE_DEVICE_TABLE(of, gc2385_of_match);
#endif
static const struct i2c_device_id gc2385_match_id[] = {
{ "galaxycore,gc2385", 0 },
{ },
};
static struct i2c_driver gc2385_i2c_driver = {
.driver = {
.name = GC2385_NAME,
.pm = &gc2385_pm_ops,
.of_match_table = of_match_ptr(gc2385_of_match),
},
.probe = &gc2385_probe,
.remove = &gc2385_remove,
.id_table = gc2385_match_id,
};
static int __init sensor_mod_init(void)
{
return i2c_add_driver(&gc2385_i2c_driver);
}
static void __exit sensor_mod_exit(void)
{
i2c_del_driver(&gc2385_i2c_driver);
}
device_initcall_sync(sensor_mod_init);
module_exit(sensor_mod_exit);
MODULE_DESCRIPTION("GalaxyCore gc2385 sensor driver");
MODULE_LICENSE("GPL v2");