2057 lines
57 KiB
C

/* drivers/input/sensors/sensor-dev.c - handle all gsensor in this file
*
* Copyright (C) 2012-2015 Rockchip Electronics Co., Ltd.
* Author: luowei <lw@rock-chips.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/gpio.h>
#include <linux/uaccess.h>
#include <asm/atomic.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>
#include <linux/proc_fs.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of.h>
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif
#include <linux/l3g4200d.h>
#include <linux/sensor-dev.h>
#include <linux/module.h>
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <linux/soc/rockchip/rk_vendor_storage.h>
#define SENSOR_CALIBRATION_LEN 64
struct sensor_calibration_data {
s32 accel_offset[3];
s32 gyro_offset[3];
u8 is_accel_calibrated;
u8 is_gyro_calibrated;
};
static struct sensor_private_data *g_sensor[SENSOR_NUM_TYPES];
static struct sensor_operate *sensor_ops[SENSOR_NUM_ID];
static int sensor_probe_times[SENSOR_NUM_ID];
static struct class *sensor_class;
static struct sensor_calibration_data sensor_cali_data;
static int sensor_calibration_data_write(struct sensor_calibration_data *calibration_data)
{
int ret;
u8 data[SENSOR_CALIBRATION_LEN] = {0};
memcpy(data, (u8 *)calibration_data, sizeof(struct sensor_calibration_data));
ret = rk_vendor_write(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
if (ret < 0) {
printk(KERN_ERR "%s failed\n", __func__);
return ret;
}
return 0;
}
static int sensor_calibration_data_read(struct sensor_calibration_data *calibration_data)
{
int ret;
u8 data[SENSOR_CALIBRATION_LEN] = {0};
struct sensor_calibration_data *cdata = (struct sensor_calibration_data *)data;
ret = rk_vendor_read(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
if (ret < 0) {
printk(KERN_ERR "%s failed\n", __func__);
return ret;
}
if (cdata->is_accel_calibrated == 1) {
calibration_data->accel_offset[0] = cdata->accel_offset[0];
calibration_data->accel_offset[1] = cdata->accel_offset[1];
calibration_data->accel_offset[2] = cdata->accel_offset[2];
calibration_data->is_accel_calibrated = 1;
}
if (cdata->is_gyro_calibrated == 1) {
calibration_data->gyro_offset[0] = cdata->gyro_offset[0];
calibration_data->gyro_offset[1] = cdata->gyro_offset[1];
calibration_data->gyro_offset[2] = cdata->gyro_offset[2];
calibration_data->is_gyro_calibrated = 1;
}
return 0;
}
static ssize_t accel_calibration_show(struct class *class,
struct class_attribute *attr, char *buf)
{
int ret;
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
if (sensor == NULL)
return sprintf(buf, "no accel sensor find\n");
if (sensor_cali_data.is_accel_calibrated == 1)
return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
ret = sensor_calibration_data_read(&sensor_cali_data);
if (ret) {
dev_err(&sensor->client->dev, "read accel sensor calibration data failed\n");
return sprintf(buf, "read error\n");
}
if (sensor_cali_data.is_accel_calibrated == 1)
return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
return sprintf(buf, "read error\n");
}
#define ACCEL_CAPTURE_TIMES 20
#define ACCEL_SENSITIVE 16384
/* +-1 * 16384 / 9.8 */
#define ACCEL_OFFSET_MAX 1600
static int accel_do_calibration(struct sensor_private_data *sensor)
{
int i;
int ret;
int max_try_times = 20;
long int sum_accel[3] = {0, 0, 0};
mutex_lock(&sensor->operation_mutex);
for (i = 0; i < ACCEL_CAPTURE_TIMES; ) {
ret = sensor->ops->report(sensor->client);
if (ret < 0)
dev_err(&sensor->client->dev, "in %s read accel data error\n", __func__);
if (abs(sensor->axis.x) > ACCEL_OFFSET_MAX ||
abs(sensor->axis.y) > ACCEL_OFFSET_MAX ||
abs(abs(sensor->axis.z) - ACCEL_SENSITIVE) > ACCEL_OFFSET_MAX) {
sum_accel[0] = 0;
sum_accel[1] = 0;
sum_accel[2] = 0;
i = 0;
max_try_times--;
} else {
sum_accel[0] += sensor->axis.x;
sum_accel[1] += sensor->axis.y;
sum_accel[2] += sensor->axis.z;
i++;
}
if (max_try_times == 0) {
mutex_unlock(&sensor->operation_mutex);
return -1;
}
dev_info(&sensor->client->dev, "%d times, read accel data is %d, %d, %d\n",
i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
msleep(sensor->pdata->poll_delay_ms);
}
mutex_unlock(&sensor->operation_mutex);
sensor_cali_data.accel_offset[0] = sum_accel[0] / ACCEL_CAPTURE_TIMES;
sensor_cali_data.accel_offset[1] = sum_accel[1] / ACCEL_CAPTURE_TIMES;
sensor_cali_data.accel_offset[2] = sum_accel[2] / ACCEL_CAPTURE_TIMES;
sensor_cali_data.accel_offset[2] = sensor_cali_data.accel_offset[2] > 0
? sensor_cali_data.accel_offset[2] - ACCEL_SENSITIVE : sensor_cali_data.accel_offset[2] + ACCEL_SENSITIVE;
sensor_cali_data.is_accel_calibrated = 1;
dev_info(&sensor->client->dev, "accel offset is %d, %d, %d\n", sensor_cali_data.accel_offset[0],
sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
return 0;
}
static ssize_t accel_calibration_store(struct class *class,
struct class_attribute *attr, const char *buf, size_t count)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
int val, ret;
int pre_status;
if (sensor == NULL)
return -1;
ret = kstrtoint(buf, 10, &val);
if (ret) {
dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
return -1;
}
if (val != 1) {
dev_err(&sensor->client->dev, "%s: error value\n", __func__);
return -1;
}
atomic_set(&sensor->is_factory, 1);
pre_status = sensor->status_cur;
if (pre_status == SENSOR_OFF) {
mutex_lock(&sensor->operation_mutex);
sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
mutex_unlock(&sensor->operation_mutex);
} else {
sensor->stop_work = 1;
if (sensor->pdata->irq_enable)
disable_irq_nosync(sensor->client->irq);
else
cancel_delayed_work_sync(&sensor->delaywork);
}
ret = accel_do_calibration(sensor);
if (ret < 0) {
dev_err(&sensor->client->dev, "accel do calibration failed\n");
goto OUT;
}
ret = sensor_calibration_data_write(&sensor_cali_data);
if (ret)
dev_err(&sensor->client->dev, "write accel sensor calibration data failed\n");
OUT:
if (pre_status == SENSOR_ON) {
sensor->stop_work = 0;
if (sensor->pdata->irq_enable)
enable_irq(sensor->client->irq);
else
schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
} else {
mutex_lock(&sensor->operation_mutex);
sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
mutex_unlock(&sensor->operation_mutex);
}
atomic_set(&sensor->is_factory, 0);
wake_up(&sensor->is_factory_ok);
return ret ? ret : count;
}
static CLASS_ATTR_RW(accel_calibration);
static ssize_t gyro_calibration_show(struct class *class,
struct class_attribute *attr, char *buf)
{
int ret;
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
if (sensor == NULL)
return sprintf(buf, "no gyro sensor find\n");
if (sensor_cali_data.is_gyro_calibrated == 1)
return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
ret = sensor_calibration_data_read(&sensor_cali_data);
if (ret) {
dev_err(&sensor->client->dev, "read gyro sensor calibration data failed\n");
return sprintf(buf, "read error\n");
}
if (sensor_cali_data.is_gyro_calibrated == 1)
return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
return sprintf(buf, "read error\n");
}
#define GYRO_CAPTURE_TIMES 20
static int gyro_do_calibration(struct sensor_private_data *sensor)
{
int i;
int ret;
long int sum_gyro[3] = {0, 0, 0};
mutex_lock(&sensor->operation_mutex);
for (i = 0; i < GYRO_CAPTURE_TIMES; i++) {
ret = sensor->ops->report(sensor->client);
if (ret < 0) {
dev_err(&sensor->client->dev, "in %s read gyro data error\n", __func__);
mutex_unlock(&sensor->operation_mutex);
return -1;
}
sum_gyro[0] += sensor->axis.x;
sum_gyro[1] += sensor->axis.y;
sum_gyro[2] += sensor->axis.z;
dev_info(&sensor->client->dev, "%d times, read gyro data is %d, %d, %d\n",
i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
msleep(sensor->pdata->poll_delay_ms);
}
mutex_unlock(&sensor->operation_mutex);
sensor_cali_data.gyro_offset[0] = sum_gyro[0] / GYRO_CAPTURE_TIMES;
sensor_cali_data.gyro_offset[1] = sum_gyro[1] / GYRO_CAPTURE_TIMES;
sensor_cali_data.gyro_offset[2] = sum_gyro[2] / GYRO_CAPTURE_TIMES;
sensor_cali_data.is_gyro_calibrated = 1;
dev_info(&sensor->client->dev, "gyro offset is %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
return 0;
}
static ssize_t gyro_calibration_store(struct class *class,
struct class_attribute *attr, const char *buf, size_t count)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
int val, ret;
int pre_status;
if (sensor == NULL)
return -1;
ret = kstrtoint(buf, 10, &val);
if (ret) {
dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
return -1;
}
if (val != 1) {
dev_err(&sensor->client->dev, "%s error value\n", __func__);
return -1;
}
atomic_set(&sensor->is_factory, 1);
pre_status = sensor->status_cur;
if (pre_status == SENSOR_OFF) {
mutex_lock(&sensor->operation_mutex);
sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
mutex_unlock(&sensor->operation_mutex);
} else {
sensor->stop_work = 1;
if (sensor->pdata->irq_enable)
disable_irq_nosync(sensor->client->irq);
else
cancel_delayed_work_sync(&sensor->delaywork);
}
ret = gyro_do_calibration(sensor);
if (ret < 0) {
dev_err(&sensor->client->dev, "gyro do calibration failed\n");
goto OUT;
}
ret = sensor_calibration_data_write(&sensor_cali_data);
if (ret)
dev_err(&sensor->client->dev, "write gyro sensor calibration data failed\n");
OUT:
if (pre_status == SENSOR_ON) {
sensor->stop_work = 0;
if (sensor->pdata->irq_enable)
enable_irq(sensor->client->irq);
else
schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
} else {
mutex_lock(&sensor->operation_mutex);
sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
mutex_unlock(&sensor->operation_mutex);
}
atomic_set(&sensor->is_factory, 0);
wake_up(&sensor->is_factory_ok);
return ret ? ret : count;
}
static CLASS_ATTR_RW(gyro_calibration);
static int sensor_class_init(void)
{
int ret ;
sensor_class = class_create(THIS_MODULE, "sensor_class");
ret = class_create_file(sensor_class, &class_attr_accel_calibration);
if (ret) {
printk(KERN_ERR "%s:Fail to creat accel class file\n", __func__);
return ret;
}
ret = class_create_file(sensor_class, &class_attr_gyro_calibration);
if (ret) {
printk(KERN_ERR "%s:Fail to creat gyro class file\n", __func__);
return ret;
}
return 0;
}
static int sensor_get_id(struct i2c_client *client, int *value)
{
struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
int result = 0;
char temp = sensor->ops->id_reg;
int i = 0;
if (sensor->ops->id_reg >= 0) {
for (i = 0; i < 3; i++) {
result = sensor_rx_data(client, &temp, 1);
*value = temp;
if (!result)
break;
}
if (result)
return result;
if (*value != sensor->ops->id_data) {
dev_err(&client->dev, "%s:id=0x%x is not 0x%x\n", __func__, *value, sensor->ops->id_data);
result = -1;
}
}
return result;
}
static int sensor_initial(struct i2c_client *client)
{
struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
int result = 0;
/* register setting according to chip datasheet */
result = sensor->ops->init(client);
if (result < 0) {
dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
return result;
}
return result;
}
static int sensor_chip_init(struct i2c_client *client)
{
struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
struct sensor_operate *ops = sensor_ops[(int)sensor->i2c_id->driver_data];
int result = 0;
if (ops) {
sensor->ops = ops;
} else {
dev_err(&client->dev, "%s:ops is null,sensor name is %s\n", __func__, sensor->i2c_id->name);
result = -1;
goto error;
}
if ((sensor->type != ops->type) || ((int)sensor->i2c_id->driver_data != ops->id_i2c)) {
dev_err(&client->dev, "%s:type or id is different:type=%d,%d,id=%d,%d\n", __func__, sensor->type, ops->type, (int)sensor->i2c_id->driver_data, ops->id_i2c);
result = -1;
goto error;
}
if (!ops->init || !ops->active || !ops->report) {
dev_err(&client->dev, "%s:error:some function is needed\n", __func__);
result = -1;
goto error;
}
result = sensor_get_id(sensor->client, &sensor->devid);
if (result < 0) {
dev_err(&client->dev, "%s:fail to read %s devid:0x%x\n", __func__, sensor->i2c_id->name, sensor->devid);
result = -2;
goto error;
}
dev_info(&client->dev, "%s:%s:devid=0x%x,ops=0x%p\n", __func__, sensor->i2c_id->name, sensor->devid, sensor->ops);
result = sensor_initial(sensor->client);
if (result < 0) {
dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
result = -2;
goto error;
}
return 0;
error:
return result;
}
static int sensor_reset_rate(struct i2c_client *client, int rate)
{
struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
int result = 0;
if (rate < 5)
rate = 5;
else if (rate > 200)
rate = 200;
dev_info(&client->dev, "set sensor poll time to %dms\n", rate);
/* work queue is always slow, we need more quickly to match hal rate */
if (sensor->pdata->poll_delay_ms == (rate - 4))
return 0;
sensor->pdata->poll_delay_ms = rate - 4;
if (sensor->status_cur == SENSOR_ON) {
if (!sensor->pdata->irq_enable) {
sensor->stop_work = 1;
cancel_delayed_work_sync(&sensor->delaywork);
}
sensor->ops->active(client, SENSOR_OFF, rate);
result = sensor->ops->active(client, SENSOR_ON, rate);
if (!sensor->pdata->irq_enable) {
sensor->stop_work = 0;
schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
}
}
return result;
}
static void sensor_delaywork_func(struct work_struct *work)
{
struct delayed_work *delaywork = container_of(work, struct delayed_work, work);
struct sensor_private_data *sensor = container_of(delaywork, struct sensor_private_data, delaywork);
struct i2c_client *client = sensor->client;
int result;
mutex_lock(&sensor->sensor_mutex);
result = sensor->ops->report(client);
if (result < 0)
dev_err(&client->dev, "%s: Get data failed\n", __func__);
mutex_unlock(&sensor->sensor_mutex);
if ((!sensor->pdata->irq_enable) && (sensor->stop_work == 0))
schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
}
/*
* This is a threaded IRQ handler so can access I2C/SPI. Since all
* interrupts are clear on read the IRQ line will be reasserted and
* the physical IRQ will be handled again if another interrupt is
* asserted while we run - in the normal course of events this is a
* rare occurrence so we save I2C/SPI reads. We're also assuming that
* it's rare to get lots of interrupts firing simultaneously so try to
* minimise I/O.
*/
static irqreturn_t sensor_interrupt(int irq, void *dev_id)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *)dev_id;
struct i2c_client *client = sensor->client;
mutex_lock(&sensor->sensor_mutex);
if (sensor->ops->report(client) < 0)
dev_err(&client->dev, "%s: Get data failed\n", __func__);
mutex_unlock(&sensor->sensor_mutex);
return IRQ_HANDLED;
}
static int sensor_irq_init(struct i2c_client *client)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *) i2c_get_clientdata(client);
int result = 0;
int irq;
if ((sensor->pdata->irq_enable) && (sensor->pdata->irq_flags != SENSOR_UNKNOW_DATA)) {
if (sensor->pdata->poll_delay_ms <= 0)
sensor->pdata->poll_delay_ms = 30;
result = gpio_request(client->irq, sensor->i2c_id->name);
if (result)
dev_err(&client->dev, "%s:fail to request gpio :%d\n", __func__, client->irq);
irq = gpio_to_irq(client->irq);
result = devm_request_threaded_irq(&client->dev, irq, NULL, sensor_interrupt, sensor->pdata->irq_flags | IRQF_ONESHOT, sensor->ops->name, sensor);
if (result) {
dev_err(&client->dev, "%s:fail to request irq = %d, ret = 0x%x\n", __func__, irq, result);
goto error;
}
client->irq = irq;
disable_irq_nosync(client->irq);
dev_info(&client->dev, "%s:use irq=%d\n", __func__, irq);
} else if (!sensor->pdata->irq_enable) {
INIT_DELAYED_WORK(&sensor->delaywork, sensor_delaywork_func);
sensor->stop_work = 1;
if (sensor->pdata->poll_delay_ms <= 0)
sensor->pdata->poll_delay_ms = 30;
dev_info(&client->dev, "%s:use polling,delay=%d ms\n", __func__, sensor->pdata->poll_delay_ms);
}
error:
return result;
}
void sensor_shutdown(struct i2c_client *client)
{
#ifdef CONFIG_HAS_EARLYSUSPEND
struct sensor_private_data *sensor =
(struct sensor_private_data *) i2c_get_clientdata(client);
if ((sensor->ops->suspend) && (sensor->ops->resume))
unregister_early_suspend(&sensor->early_suspend);
#endif
}
EXPORT_SYMBOL(sensor_shutdown);
#ifdef CONFIG_HAS_EARLYSUSPEND
static void sensor_suspend(struct early_suspend *h)
{
struct sensor_private_data *sensor =
container_of(h, struct sensor_private_data, early_suspend);
if (sensor->ops->suspend)
sensor->ops->suspend(sensor->client);
}
static void sensor_resume(struct early_suspend *h)
{
struct sensor_private_data *sensor =
container_of(h, struct sensor_private_data, early_suspend);
if (sensor->ops->resume)
sensor->ops->resume(sensor->client);
}
#endif
#ifdef CONFIG_PM
static int __maybe_unused sensor_of_suspend(struct device *dev)
{
struct sensor_private_data *sensor = dev_get_drvdata(dev);
if (sensor->ops->suspend)
sensor->ops->suspend(sensor->client);
return 0;
}
static int __maybe_unused sensor_of_resume(struct device *dev)
{
struct sensor_private_data *sensor = dev_get_drvdata(dev);
if (sensor->ops->resume)
sensor->ops->resume(sensor->client);
if (sensor->pdata->power_off_in_suspend)
sensor_initial(sensor->client);
return 0;
}
const struct dev_pm_ops sensor_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sensor_of_suspend, sensor_of_resume)
};
EXPORT_SYMBOL(sensor_pm_ops);
#define SENSOR_PM_OPS (&sensor_pm_ops)
#else
#define SENSOR_PM_OPS NULL
#endif
static int angle_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int angle_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
static int sensor_enable(struct sensor_private_data *sensor, int enable)
{
int result = 0;
struct i2c_client *client = sensor->client;
if (enable == SENSOR_ON) {
result = sensor->ops->active(client, 1, sensor->pdata->poll_delay_ms);
if (result < 0) {
dev_err(&client->dev, "%s:fail to active sensor,ret=%d\n", __func__, result);
return result;
}
sensor->status_cur = SENSOR_ON;
sensor->stop_work = 0;
if (sensor->pdata->irq_enable)
enable_irq(client->irq);
else
schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
dev_info(&client->dev, "sensor on: starting poll sensor data %dms\n", sensor->pdata->poll_delay_ms);
} else {
sensor->stop_work = 1;
if (sensor->pdata->irq_enable)
disable_irq_nosync(client->irq);
else
cancel_delayed_work_sync(&sensor->delaywork);
result = sensor->ops->active(client, 0, sensor->pdata->poll_delay_ms);
if (result < 0) {
dev_err(&client->dev, "%s:fail to disable sensor,ret=%d\n", __func__, result);
return result;
}
sensor->status_cur = SENSOR_OFF;
}
return result;
}
/* ioctl - I/O control */
static long angle_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ANGLE];
struct i2c_client *client = sensor->client;
void __user *argp = (void __user *)arg;
struct sensor_axis axis = {0};
short rate;
int result = 0;
switch (cmd) {
case GSENSOR_IOCTL_APP_SET_RATE:
if (copy_from_user(&rate, argp, sizeof(rate))) {
result = -EFAULT;
goto error;
}
break;
default:
break;
}
switch (cmd) {
case GSENSOR_IOCTL_START:
mutex_lock(&sensor->operation_mutex);
if (++sensor->start_count == 1) {
if (sensor->status_cur == SENSOR_OFF) {
sensor_enable(sensor, SENSOR_ON);
}
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_CLOSE:
mutex_lock(&sensor->operation_mutex);
if (--sensor->start_count == 0) {
if (sensor->status_cur == SENSOR_ON) {
sensor_enable(sensor, SENSOR_OFF);
}
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_APP_SET_RATE:
mutex_lock(&sensor->operation_mutex);
result = sensor_reset_rate(client, rate);
if (result < 0) {
mutex_unlock(&sensor->operation_mutex);
goto error;
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_GETDATA:
mutex_lock(&sensor->data_mutex);
memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
mutex_unlock(&sensor->data_mutex);
break;
default:
result = -ENOTTY;
goto error;
}
switch (cmd) {
case GSENSOR_IOCTL_GETDATA:
if (copy_to_user(argp, &axis, sizeof(axis))) {
dev_err(&client->dev, "failed to copy sense data to user space.\n");
result = -EFAULT;
goto error;
}
break;
default:
break;
}
error:
return result;
}
static int gsensor_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int gsensor_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
/* ioctl - I/O control */
static long gsensor_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
struct i2c_client *client = sensor->client;
void __user *argp = (void __user *)arg;
struct sensor_axis axis = {0};
short rate;
int result = 0;
wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
switch (cmd) {
case GSENSOR_IOCTL_APP_SET_RATE:
if (copy_from_user(&rate, argp, sizeof(rate))) {
result = -EFAULT;
goto error;
}
break;
default:
break;
}
switch (cmd) {
case GSENSOR_IOCTL_START:
mutex_lock(&sensor->operation_mutex);
if (++sensor->start_count == 1) {
if (sensor->status_cur == SENSOR_OFF) {
sensor_enable(sensor, SENSOR_ON);
}
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_CLOSE:
mutex_lock(&sensor->operation_mutex);
if (--sensor->start_count == 0) {
if (sensor->status_cur == SENSOR_ON) {
sensor_enable(sensor, SENSOR_OFF);
}
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_APP_SET_RATE:
mutex_lock(&sensor->operation_mutex);
result = sensor_reset_rate(client, rate);
if (result < 0) {
mutex_unlock(&sensor->operation_mutex);
goto error;
}
mutex_unlock(&sensor->operation_mutex);
break;
case GSENSOR_IOCTL_GETDATA:
mutex_lock(&sensor->data_mutex);
memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
mutex_unlock(&sensor->data_mutex);
break;
case GSENSOR_IOCTL_GET_CALIBRATION:
if (sensor_cali_data.is_accel_calibrated != 1) {
if (sensor_calibration_data_read(&sensor_cali_data)) {
dev_err(&client->dev, "failed to read accel offset data from storage\n");
result = -EFAULT;
goto error;
}
}
if (sensor_cali_data.is_accel_calibrated == 1) {
if (copy_to_user(argp, sensor_cali_data.accel_offset, sizeof(sensor_cali_data.accel_offset))) {
dev_err(&client->dev, "failed to copy accel offset data to user\n");
result = -EFAULT;
goto error;
}
}
break;
default:
result = -ENOTTY;
goto error;
}
switch (cmd) {
case GSENSOR_IOCTL_GETDATA:
if (copy_to_user(argp, &axis, sizeof(axis))) {
dev_err(&client->dev, "failed to copy sense data to user space.\n");
result = -EFAULT;
goto error;
}
break;
default:
break;
}
error:
return result;
}
static int compass_dev_open(struct inode *inode, struct file *file)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
int flag = 0;
flag = atomic_read(&sensor->flags.open_flag);
if (!flag) {
atomic_set(&sensor->flags.open_flag, 1);
wake_up(&sensor->flags.open_wq);
}
return 0;
}
static int compass_dev_release(struct inode *inode, struct file *file)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
int flag = 0;
flag = atomic_read(&sensor->flags.open_flag);
if (flag) {
atomic_set(&sensor->flags.open_flag, 0);
wake_up(&sensor->flags.open_wq);
}
return 0;
}
#ifdef CONFIG_COMPAT
/* ioctl - I/O control */
static long compass_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
void __user *arg64 = compat_ptr(arg);
int result = 0;
if (!file->f_op || !file->f_op->unlocked_ioctl) {
printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
return -ENOTTY;
}
switch (cmd) {
case COMPAT_ECS_IOCTL_APP_SET_MFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_GET_MFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_SET_AFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_AFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_GET_AFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_AFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_SET_MVFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MVFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_GET_MVFLAG:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MVFLAG, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_SET_DELAY:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_DELAY, (unsigned long)arg64);
break;
case COMPAT_ECS_IOCTL_APP_GET_DELAY:
if (file->f_op->unlocked_ioctl)
result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_DELAY, (unsigned long)arg64);
break;
default:
break;
}
return result;
}
#endif
/* ioctl - I/O control */
static long compass_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
struct i2c_client *client = sensor->client;
void __user *argp = (void __user *)arg;
int result = 0;
short flag;
switch (cmd) {
case ECS_IOCTL_APP_SET_MFLAG:
case ECS_IOCTL_APP_SET_AFLAG:
case ECS_IOCTL_APP_SET_MVFLAG:
if (copy_from_user(&flag, argp, sizeof(flag)))
return -EFAULT;
if (flag < 0 || flag > 1)
return -EINVAL;
break;
case ECS_IOCTL_APP_SET_DELAY:
if (copy_from_user(&flag, argp, sizeof(flag)))
return -EFAULT;
break;
default:
break;
}
switch (cmd) {
case ECS_IOCTL_APP_SET_MFLAG:
atomic_set(&sensor->flags.m_flag, flag);
break;
case ECS_IOCTL_APP_GET_MFLAG:
flag = atomic_read(&sensor->flags.m_flag);
break;
case ECS_IOCTL_APP_SET_AFLAG:
atomic_set(&sensor->flags.a_flag, flag);
break;
case ECS_IOCTL_APP_GET_AFLAG:
flag = atomic_read(&sensor->flags.a_flag);
break;
case ECS_IOCTL_APP_SET_MVFLAG:
atomic_set(&sensor->flags.mv_flag, flag);
break;
case ECS_IOCTL_APP_GET_MVFLAG:
flag = atomic_read(&sensor->flags.mv_flag);
break;
case ECS_IOCTL_APP_SET_DELAY:
sensor->flags.delay = flag;
mutex_lock(&sensor->operation_mutex);
result = sensor_reset_rate(client, flag);
if (result < 0) {
mutex_unlock(&sensor->operation_mutex);
return result;
}
mutex_unlock(&sensor->operation_mutex);
break;
case ECS_IOCTL_APP_GET_DELAY:
flag = sensor->flags.delay;
break;
default:
return -ENOTTY;
}
switch (cmd) {
case ECS_IOCTL_APP_GET_MFLAG:
case ECS_IOCTL_APP_GET_AFLAG:
case ECS_IOCTL_APP_GET_MVFLAG:
case ECS_IOCTL_APP_GET_DELAY:
if (copy_to_user(argp, &flag, sizeof(flag)))
return -EFAULT;
break;
default:
break;
}
return result;
}
static int gyro_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int gyro_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
/* ioctl - I/O control */
static long gyro_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
struct i2c_client *client = sensor->client;
void __user *argp = (void __user *)arg;
int result = 0;
int rate;
wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
switch (cmd) {
case L3G4200D_IOCTL_GET_ENABLE:
result = !sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
dev_err(&client->dev, "%s:failed to copy status to user space.\n", __func__);
return -EFAULT;
}
break;
case L3G4200D_IOCTL_SET_ENABLE:
if (copy_from_user(&result, argp, sizeof(result))) {
dev_err(&client->dev, "%s:failed to copy gyro sensor status from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
if (result) {
if (sensor->status_cur == SENSOR_OFF)
sensor_enable(sensor, SENSOR_ON);
} else {
if (sensor->status_cur == SENSOR_ON)
sensor_enable(sensor, SENSOR_OFF);
}
result = sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
mutex_unlock(&sensor->operation_mutex);
dev_err(&client->dev, "%s:failed to copy sense data to user space.\n", __func__);
return -EFAULT;
}
mutex_unlock(&sensor->operation_mutex);
break;
case L3G4200D_IOCTL_SET_DELAY:
if (copy_from_user(&rate, argp, sizeof(rate))) {
dev_err(&client->dev, "L3G4200D_IOCTL_SET_DELAY: copy form user failed\n");
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
result = sensor_reset_rate(client, rate);
if (result < 0) {
dev_err(&client->dev, "gyro reset rate failed\n");
mutex_unlock(&sensor->operation_mutex);
goto error;
}
mutex_unlock(&sensor->operation_mutex);
break;
case L3G4200D_IOCTL_GET_CALIBRATION:
if (sensor_cali_data.is_gyro_calibrated != 1) {
if (sensor_calibration_data_read(&sensor_cali_data)) {
dev_err(&client->dev, "failed to read gyro offset data from storage\n");
result = -EFAULT;
goto error;
}
}
if (sensor_cali_data.is_gyro_calibrated == 1) {
if (copy_to_user(argp, sensor_cali_data.gyro_offset, sizeof(sensor_cali_data.gyro_offset))) {
dev_err(&client->dev, "failed to copy gyro offset data to user\n");
result = -EFAULT;
goto error;
}
}
break;
default:
return -ENOTTY;
}
error:
return result;
}
static int light_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int light_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
#ifdef CONFIG_COMPAT
static long light_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret = 0;
void __user *arg64 = compat_ptr(arg);
if (!file->f_op || !file->f_op->unlocked_ioctl) {
printk(KERN_ERR "[DEBUG] file->f_op or file->f_op->unlocked_ioctl is null\n");
return -ENOTTY;
}
switch (cmd) {
case COMPAT_LIGHTSENSOR_IOCTL_GET_ENABLED:
if (file->f_op->unlocked_ioctl)
ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
break;
case COMPAT_LIGHTSENSOR_IOCTL_ENABLE:
if (file->f_op->unlocked_ioctl)
ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
break;
case COMPAT_LIGHTSENSOR_IOCTL_SET_RATE:
if (file->f_op->unlocked_ioctl)
ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_SET_RATE, (unsigned long)arg64);
break;
default:
break;
}
return ret;
}
#endif
/* ioctl - I/O control */
static long light_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_LIGHT];
struct i2c_client *client = sensor->client;
void __user *argp = (void __user *)arg;
int result = 0;
short rate;
switch (cmd) {
case LIGHTSENSOR_IOCTL_SET_RATE:
if (copy_from_user(&rate, argp, sizeof(rate))) {
dev_err(&client->dev, "%s:failed to copy light sensor rate from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
result = sensor_reset_rate(client, rate);
if (result < 0) {
mutex_unlock(&sensor->operation_mutex);
goto error;
}
mutex_unlock(&sensor->operation_mutex);
break;
case LIGHTSENSOR_IOCTL_GET_ENABLED:
result = sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
dev_err(&client->dev, "%s:failed to copy light sensor status to user space.\n", __func__);
return -EFAULT;
}
break;
case LIGHTSENSOR_IOCTL_ENABLE:
if (copy_from_user(&result, argp, sizeof(result))) {
dev_err(&client->dev, "%s:failed to copy light sensor status from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
if (result) {
if (sensor->status_cur == SENSOR_OFF)
sensor_enable(sensor, SENSOR_ON);
} else {
if (sensor->status_cur == SENSOR_ON)
sensor_enable(sensor, SENSOR_OFF);
}
mutex_unlock(&sensor->operation_mutex);
break;
default:
break;
}
error:
return result;
}
static int proximity_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int proximity_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
#ifdef CONFIG_COMPAT
static long proximity_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret = 0;
void __user *arg64 = compat_ptr(arg);
if (!file->f_op || !file->f_op->unlocked_ioctl) {
printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
return -ENOTTY;
}
switch (cmd) {
case COMPAT_PSENSOR_IOCTL_GET_ENABLED:
if (file->f_op->unlocked_ioctl)
ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
break;
case COMPAT_PSENSOR_IOCTL_ENABLE:
if (file->f_op->unlocked_ioctl)
ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
break;
default:
break;
}
return ret;
}
#endif
/* ioctl - I/O control */
static long proximity_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PROXIMITY];
void __user *argp = (void __user *)arg;
int result = 0;
switch (cmd) {
case PSENSOR_IOCTL_GET_ENABLED:
result = sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy psensor status to user space.\n", __func__);
return -EFAULT;
}
break;
case PSENSOR_IOCTL_ENABLE:
if (copy_from_user(&result, argp, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy psensor status from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
if (result) {
if (sensor->status_cur == SENSOR_OFF)
sensor_enable(sensor, SENSOR_ON);
} else {
if (sensor->status_cur == SENSOR_ON)
sensor_enable(sensor, SENSOR_OFF);
}
mutex_unlock(&sensor->operation_mutex);
break;
default:
break;
}
return result;
}
static int temperature_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int temperature_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
/* ioctl - I/O control */
static long temperature_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_TEMPERATURE];
void __user *argp = (void __user *)arg;
int result = 0;
switch (cmd) {
case TEMPERATURE_IOCTL_GET_ENABLED:
result = sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status to user space.\n", __func__);
return -EFAULT;
}
break;
case TEMPERATURE_IOCTL_ENABLE:
if (copy_from_user(&result, argp, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
if (result) {
if (sensor->status_cur == SENSOR_OFF)
sensor_enable(sensor, SENSOR_ON);
} else {
if (sensor->status_cur == SENSOR_ON)
sensor_enable(sensor, SENSOR_OFF);
}
mutex_unlock(&sensor->operation_mutex);
break;
default:
break;
}
return result;
}
static int pressure_dev_open(struct inode *inode, struct file *file)
{
return 0;
}
static int pressure_dev_release(struct inode *inode, struct file *file)
{
return 0;
}
/* ioctl - I/O control */
static long pressure_dev_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PRESSURE];
void __user *argp = (void __user *)arg;
int result = 0;
switch (cmd) {
case PRESSURE_IOCTL_GET_ENABLED:
result = sensor->status_cur;
if (copy_to_user(argp, &result, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status to user space.\n", __func__);
return -EFAULT;
}
break;
case PRESSURE_IOCTL_ENABLE:
if (copy_from_user(&result, argp, sizeof(result))) {
dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status from user space.\n", __func__);
return -EFAULT;
}
mutex_lock(&sensor->operation_mutex);
if (result) {
if (sensor->status_cur == SENSOR_OFF)
sensor_enable(sensor, SENSOR_ON);
} else {
if (sensor->status_cur == SENSOR_ON)
sensor_enable(sensor, SENSOR_OFF);
}
mutex_unlock(&sensor->operation_mutex);
break;
default:
break;
}
return result;
}
static int sensor_misc_device_register(struct sensor_private_data *sensor, int type)
{
int result = 0;
switch (type) {
case SENSOR_TYPE_ANGLE:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = angle_dev_ioctl;
sensor->fops.open = angle_dev_open;
sensor->fops.release = angle_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "angle";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_ACCEL:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = gsensor_dev_ioctl;
#ifdef CONFIG_COMPAT
sensor->fops.compat_ioctl = gsensor_dev_ioctl;
#endif
sensor->fops.open = gsensor_dev_open;
sensor->fops.release = gsensor_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "mma8452_daemon";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_COMPASS:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = compass_dev_ioctl;
#ifdef CONFIG_COMPAT
sensor->fops.compat_ioctl = compass_dev_compat_ioctl;
#endif
sensor->fops.open = compass_dev_open;
sensor->fops.release = compass_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "compass";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_GYROSCOPE:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = gyro_dev_ioctl;
sensor->fops.open = gyro_dev_open;
sensor->fops.release = gyro_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "gyrosensor";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_LIGHT:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = light_dev_ioctl;
#ifdef CONFIG_COMPAT
sensor->fops.compat_ioctl = light_dev_compat_ioctl;
#endif
sensor->fops.open = light_dev_open;
sensor->fops.release = light_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "lightsensor";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_PROXIMITY:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = proximity_dev_ioctl;
#ifdef CONFIG_COMPAT
sensor->fops.compat_ioctl = proximity_dev_compat_ioctl;
#endif
sensor->fops.open = proximity_dev_open;
sensor->fops.release = proximity_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "psensor";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_TEMPERATURE:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = temperature_dev_ioctl;
sensor->fops.open = temperature_dev_open;
sensor->fops.release = temperature_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "temperature";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
case SENSOR_TYPE_PRESSURE:
if (!sensor->ops->misc_dev) {
sensor->fops.owner = THIS_MODULE;
sensor->fops.unlocked_ioctl = pressure_dev_ioctl;
sensor->fops.open = pressure_dev_open;
sensor->fops.release = pressure_dev_release;
sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
sensor->miscdev.name = "pressure";
sensor->miscdev.fops = &sensor->fops;
} else {
memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
}
break;
default:
dev_err(&sensor->client->dev, "%s:unknow sensor type=%d\n", __func__, type);
result = -1;
goto error;
}
sensor->miscdev.parent = &sensor->client->dev;
result = misc_register(&sensor->miscdev);
if (result < 0) {
dev_err(&sensor->client->dev,
"fail to register misc device %s\n", sensor->miscdev.name);
goto error;
}
dev_info(&sensor->client->dev, "%s:miscdevice: %s\n", __func__, sensor->miscdev.name);
error:
return result;
}
static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *devid)
{
struct sensor_private_data *sensor;
struct sensor_platform_data *pdata;
struct device_node *np = client->dev.of_node;
enum of_gpio_flags rst_flags, pwr_flags;
unsigned long irq_flags;
int result = 0;
int type = 0;
int reprobe_en = 0;
dev_info(&client->adapter->dev, "%s: %s,%p\n", __func__, devid->name, client);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
result = -ENODEV;
goto out_no_free;
}
if (!np) {
dev_err(&client->dev, "no device tree\n");
return -EINVAL;
}
pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
result = -ENOMEM;
goto out_no_free;
}
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor) {
result = -ENOMEM;
goto out_no_free;
}
of_property_read_u32(np, "type", &(pdata->type));
pdata->irq_pin = of_get_named_gpio_flags(np, "irq-gpio", 0, (enum of_gpio_flags *)&irq_flags);
pdata->reset_pin = of_get_named_gpio_flags(np, "reset-gpio", 0, &rst_flags);
pdata->power_pin = of_get_named_gpio_flags(np, "power-gpio", 0, &pwr_flags);
of_property_read_u32(np, "irq_enable", &(pdata->irq_enable));
of_property_read_u32(np, "poll_delay_ms", &(pdata->poll_delay_ms));
of_property_read_u32(np, "x_min", &(pdata->x_min));
of_property_read_u32(np, "y_min", &(pdata->y_min));
of_property_read_u32(np, "z_min", &(pdata->z_min));
of_property_read_u32(np, "factory", &(pdata->factory));
of_property_read_u32(np, "layout", &(pdata->layout));
of_property_read_u32(np, "reprobe_en", &reprobe_en);
of_property_read_u8(np, "address", &(pdata->address));
of_get_property(np, "project_name", pdata->project_name);
of_property_read_u32(np, "power-off-in-suspend",
&pdata->power_off_in_suspend);
switch (pdata->layout) {
case 1:
pdata->orientation[0] = 1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = 1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = 1;
break;
case 2:
pdata->orientation[0] = 0;
pdata->orientation[1] = -1;
pdata->orientation[2] = 0;
pdata->orientation[3] = 1;
pdata->orientation[4] = 0;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = 1;
break;
case 3:
pdata->orientation[0] = -1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = -1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = 1;
break;
case 4:
pdata->orientation[0] = 0;
pdata->orientation[1] = 1;
pdata->orientation[2] = 0;
pdata->orientation[3] = -1;
pdata->orientation[4] = 0;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = 1;
break;
case 5:
pdata->orientation[0] = 1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = -1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = -1;
break;
case 6:
pdata->orientation[0] = 0;
pdata->orientation[1] = -1;
pdata->orientation[2] = 0;
pdata->orientation[3] = -1;
pdata->orientation[4] = 0;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = -1;
break;
case 7:
pdata->orientation[0] = -1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = 1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = -1;
break;
case 8:
pdata->orientation[0] = 0;
pdata->orientation[1] = 1;
pdata->orientation[2] = 0;
pdata->orientation[3] = 1;
pdata->orientation[4] = 0;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = -1;
break;
case 9:
pdata->orientation[0] = -1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = -1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = -1;
break;
default:
pdata->orientation[0] = 1;
pdata->orientation[1] = 0;
pdata->orientation[2] = 0;
pdata->orientation[3] = 0;
pdata->orientation[4] = 1;
pdata->orientation[5] = 0;
pdata->orientation[6] = 0;
pdata->orientation[7] = 0;
pdata->orientation[8] = 1;
break;
}
client->irq = pdata->irq_pin;
type = pdata->type;
pdata->irq_flags = irq_flags;
pdata->poll_delay_ms = 30;
if ((type >= SENSOR_NUM_TYPES) || (type <= SENSOR_TYPE_NULL)) {
dev_err(&client->adapter->dev, "sensor type is error %d\n", type);
result = -EFAULT;
goto out_no_free;
}
if (((int)devid->driver_data >= SENSOR_NUM_ID) || ((int)devid->driver_data <= ID_INVALID)) {
dev_err(&client->adapter->dev, "sensor id is error %d\n", (int)devid->driver_data);
result = -EFAULT;
goto out_no_free;
}
i2c_set_clientdata(client, sensor);
sensor->client = client;
sensor->pdata = pdata;
sensor->type = type;
sensor->i2c_id = (struct i2c_device_id *)devid;
memset(&(sensor->axis), 0, sizeof(struct sensor_axis));
mutex_init(&sensor->data_mutex);
mutex_init(&sensor->operation_mutex);
mutex_init(&sensor->sensor_mutex);
mutex_init(&sensor->i2c_mutex);
atomic_set(&sensor->is_factory, 0);
init_waitqueue_head(&sensor->is_factory_ok);
/* As default, report all information */
atomic_set(&sensor->flags.m_flag, 1);
atomic_set(&sensor->flags.a_flag, 1);
atomic_set(&sensor->flags.mv_flag, 1);
atomic_set(&sensor->flags.open_flag, 0);
atomic_set(&sensor->flags.debug_flag, 1);
init_waitqueue_head(&sensor->flags.open_wq);
sensor->flags.delay = 100;
sensor->status_cur = SENSOR_OFF;
sensor->axis.x = 0;
sensor->axis.y = 0;
sensor->axis.z = 0;
result = sensor_chip_init(sensor->client);
if (result < 0) {
if (reprobe_en && (result == -2)) {
sensor_probe_times[sensor->ops->id_i2c]++;
if (sensor_probe_times[sensor->ops->id_i2c] < 3)
result = -EPROBE_DEFER;
}
goto out_free_memory;
}
sensor->input_dev = devm_input_allocate_device(&client->dev);
if (!sensor->input_dev) {
result = -ENOMEM;
dev_err(&client->dev,
"Failed to allocate input device\n");
goto out_free_memory;
}
switch (type) {
case SENSOR_TYPE_ANGLE:
sensor->input_dev->name = "angle";
set_bit(EV_ABS, sensor->input_dev->evbit);
/* x-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* y-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* z-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
case SENSOR_TYPE_ACCEL:
sensor->input_dev->name = "gsensor";
set_bit(EV_ABS, sensor->input_dev->evbit);
/* x-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* y-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* z-axis acceleration */
input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
case SENSOR_TYPE_COMPASS:
sensor->input_dev->name = "compass";
/* Setup input device */
set_bit(EV_ABS, sensor->input_dev->evbit);
/* yaw (0, 360) */
input_set_abs_params(sensor->input_dev, ABS_RX, 0, 23040, 0, 0);
/* pitch (-180, 180) */
input_set_abs_params(sensor->input_dev, ABS_RY, -11520, 11520, 0, 0);
/* roll (-90, 90) */
input_set_abs_params(sensor->input_dev, ABS_RZ, -5760, 5760, 0, 0);
/* x-axis acceleration (720 x 8G) */
input_set_abs_params(sensor->input_dev, ABS_X, -5760, 5760, 0, 0);
/* y-axis acceleration (720 x 8G) */
input_set_abs_params(sensor->input_dev, ABS_Y, -5760, 5760, 0, 0);
/* z-axis acceleration (720 x 8G) */
input_set_abs_params(sensor->input_dev, ABS_Z, -5760, 5760, 0, 0);
/* status of magnetic sensor */
input_set_abs_params(sensor->input_dev, ABS_RUDDER, -32768, 3, 0, 0);
/* status of acceleration sensor */
input_set_abs_params(sensor->input_dev, ABS_WHEEL, -32768, 3, 0, 0);
/* x-axis of raw magnetic vector (-4096, 4095) */
input_set_abs_params(sensor->input_dev, ABS_HAT0X, -20480, 20479, 0, 0);
/* y-axis of raw magnetic vector (-4096, 4095) */
input_set_abs_params(sensor->input_dev, ABS_HAT0Y, -20480, 20479, 0, 0);
/* z-axis of raw magnetic vector (-4096, 4095) */
input_set_abs_params(sensor->input_dev, ABS_BRAKE, -20480, 20479, 0, 0);
break;
case SENSOR_TYPE_GYROSCOPE:
sensor->input_dev->name = "gyro";
/* x-axis acceleration */
input_set_capability(sensor->input_dev, EV_REL, REL_RX);
input_set_abs_params(sensor->input_dev, ABS_RX, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* y-axis acceleration */
input_set_capability(sensor->input_dev, EV_REL, REL_RY);
input_set_abs_params(sensor->input_dev, ABS_RY, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
/* z-axis acceleration */
input_set_capability(sensor->input_dev, EV_REL, REL_RZ);
input_set_abs_params(sensor->input_dev, ABS_RZ, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
case SENSOR_TYPE_LIGHT:
sensor->input_dev->name = "lightsensor-level";
set_bit(EV_ABS, sensor->input_dev->evbit);
input_set_abs_params(sensor->input_dev, ABS_MISC, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
input_set_abs_params(sensor->input_dev, ABS_TOOL_WIDTH, sensor->ops->brightness[0], sensor->ops->brightness[1], 0, 0);
break;
case SENSOR_TYPE_PROXIMITY:
sensor->input_dev->name = "proximity";
set_bit(EV_ABS, sensor->input_dev->evbit);
input_set_abs_params(sensor->input_dev, ABS_DISTANCE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
case SENSOR_TYPE_TEMPERATURE:
sensor->input_dev->name = "temperature";
set_bit(EV_ABS, sensor->input_dev->evbit);
input_set_abs_params(sensor->input_dev, ABS_THROTTLE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
case SENSOR_TYPE_PRESSURE:
sensor->input_dev->name = "pressure";
set_bit(EV_ABS, sensor->input_dev->evbit);
input_set_abs_params(sensor->input_dev, ABS_PRESSURE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
break;
default:
dev_err(&client->dev, "%s:unknow sensor type=%d\n", __func__, type);
break;
}
sensor->input_dev->dev.parent = &client->dev;
result = input_register_device(sensor->input_dev);
if (result) {
dev_err(&client->dev,
"Unable to register input device %s\n", sensor->input_dev->name);
goto out_input_register_device_failed;
}
result = sensor_irq_init(sensor->client);
if (result) {
dev_err(&client->dev,
"fail to init sensor irq,ret=%d\n", result);
goto out_input_register_device_failed;
}
sensor->miscdev.parent = &client->dev;
result = sensor_misc_device_register(sensor, type);
if (result) {
dev_err(&client->dev,
"fail to register misc device %s\n", sensor->miscdev.name);
goto out_misc_device_register_device_failed;
}
g_sensor[type] = sensor;
#ifdef CONFIG_HAS_EARLYSUSPEND
if ((sensor->ops->suspend) && (sensor->ops->resume)) {
sensor->early_suspend.suspend = sensor_suspend;
sensor->early_suspend.resume = sensor_resume;
sensor->early_suspend.level = 0x02;
register_early_suspend(&sensor->early_suspend);
}
#endif
dev_info(&client->dev, "%s:initialized ok,sensor name:%s,type:%d,id=%d\n\n", __func__, sensor->ops->name, type, (int)sensor->i2c_id->driver_data);
return result;
out_misc_device_register_device_failed:
out_input_register_device_failed:
out_free_memory:
out_no_free:
dev_err(&client->adapter->dev, "%s failed %d\n\n", __func__, result);
return result;
}
static int sensor_remove(struct i2c_client *client)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *) i2c_get_clientdata(client);
sensor->stop_work = 1;
cancel_delayed_work_sync(&sensor->delaywork);
misc_deregister(&sensor->miscdev);
#ifdef CONFIG_HAS_EARLYSUSPEND
if ((sensor->ops->suspend) && (sensor->ops->resume))
unregister_early_suspend(&sensor->early_suspend);
#endif
return 0;
}
int sensor_register_device(struct i2c_client *client,
struct sensor_platform_data *slave_pdata,
const struct i2c_device_id *devid,
struct sensor_operate *ops)
{
int result = 0;
if (!client || !ops) {
dev_err(&client->dev, "%s: no device or ops.\n", __func__);
return -ENODEV;
}
if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID) ||
(((int)devid->driver_data) != ops->id_i2c)) {
dev_err(&client->dev, "%s: %s id is error %d\n",
__func__, ops->name, ops->id_i2c);
return -EINVAL;
}
sensor_ops[ops->id_i2c] = ops;
dev_info(&client->dev, "%s: %s, id = %d\n",
__func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
sensor_probe(client, devid);
return result;
}
EXPORT_SYMBOL(sensor_register_device);
int sensor_unregister_device(struct i2c_client *client,
struct sensor_platform_data *slave_pdata,
struct sensor_operate *ops)
{
int result = 0;
if (!client || !ops) {
dev_err(&client->dev, "%s: no device or ops.\n", __func__);
return -ENODEV;
}
if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID)) {
dev_err(&client->dev, "%s: %s id is error %d\n",
__func__, ops->name, ops->id_i2c);
return -EINVAL;
}
sensor_remove(client);
dev_info(&client->dev, "%s: %s, id = %d\n",
__func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
sensor_ops[ops->id_i2c] = NULL;
return result;
}
EXPORT_SYMBOL(sensor_unregister_device);
static int __init sensor_init(void)
{
sensor_class_init();
return 0;
}
static void __exit sensor_exit(void)
{
class_remove_file(sensor_class, &class_attr_gyro_calibration);
class_remove_file(sensor_class, &class_attr_accel_calibration);
class_destroy(sensor_class);
}
module_init(sensor_init);
module_exit(sensor_exit);
MODULE_AUTHOR("ROCKCHIP Corporation:lw@rock-chips.com");
MODULE_DESCRIPTION("User space character device interface for sensors");
MODULE_LICENSE("GPL");