2772 lines
74 KiB
C
2772 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0 or MIT
|
|
/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
|
|
/* Copyright 2023 Collabora ltd. */
|
|
|
|
#include <drm/drm_drv.h>
|
|
#include <drm/drm_exec.h>
|
|
#include <drm/drm_gpuvm.h>
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/gpu_scheduler.h>
|
|
#include <drm/panthor_drm.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/io-pgtable.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include "panthor_device.h"
|
|
#include "panthor_gem.h"
|
|
#include "panthor_heap.h"
|
|
#include "panthor_mmu.h"
|
|
#include "panthor_regs.h"
|
|
#include "panthor_sched.h"
|
|
|
|
#define MAX_AS_SLOTS 32
|
|
|
|
struct panthor_vm;
|
|
|
|
/**
|
|
* struct panthor_as_slot - Address space slot
|
|
*/
|
|
struct panthor_as_slot {
|
|
/** @vm: VM bound to this slot. NULL is no VM is bound. */
|
|
struct panthor_vm *vm;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_mmu - MMU related data
|
|
*/
|
|
struct panthor_mmu {
|
|
/** @irq: The MMU irq. */
|
|
struct panthor_irq irq;
|
|
|
|
/**
|
|
* @as: Address space related fields.
|
|
*
|
|
* The GPU has a limited number of address spaces (AS) slots, forcing
|
|
* us to re-assign them to re-assign slots on-demand.
|
|
*/
|
|
struct {
|
|
/** @as.slots_lock: Lock protecting access to all other AS fields. */
|
|
struct mutex slots_lock;
|
|
|
|
/** @as.alloc_mask: Bitmask encoding the allocated slots. */
|
|
unsigned long alloc_mask;
|
|
|
|
/** @as.faulty_mask: Bitmask encoding the faulty slots. */
|
|
unsigned long faulty_mask;
|
|
|
|
/** @as.slots: VMs currently bound to the AS slots. */
|
|
struct panthor_as_slot slots[MAX_AS_SLOTS];
|
|
|
|
/**
|
|
* @as.lru_list: List of least recently used VMs.
|
|
*
|
|
* We use this list to pick a VM to evict when all slots are
|
|
* used.
|
|
*
|
|
* There should be no more active VMs than there are AS slots,
|
|
* so this LRU is just here to keep VMs bound until there's
|
|
* a need to release a slot, thus avoid unnecessary TLB/cache
|
|
* flushes.
|
|
*/
|
|
struct list_head lru_list;
|
|
} as;
|
|
|
|
/** @vm: VMs management fields */
|
|
struct {
|
|
/** @vm.lock: Lock protecting access to list. */
|
|
struct mutex lock;
|
|
|
|
/** @vm.list: List containing all VMs. */
|
|
struct list_head list;
|
|
|
|
/** @vm.reset_in_progress: True if a reset is in progress. */
|
|
bool reset_in_progress;
|
|
|
|
/** @vm.wq: Workqueue used for the VM_BIND queues. */
|
|
struct workqueue_struct *wq;
|
|
} vm;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_vm_pool - VM pool object
|
|
*/
|
|
struct panthor_vm_pool {
|
|
/** @xa: Array used for VM handle tracking. */
|
|
struct xarray xa;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_vma - GPU mapping object
|
|
*
|
|
* This is used to track GEM mappings in GPU space.
|
|
*/
|
|
struct panthor_vma {
|
|
/** @base: Inherits from drm_gpuva. */
|
|
struct drm_gpuva base;
|
|
|
|
/** @node: Used to implement deferred release of VMAs. */
|
|
struct list_head node;
|
|
|
|
/**
|
|
* @flags: Combination of drm_panthor_vm_bind_op_flags.
|
|
*
|
|
* Only map related flags are accepted.
|
|
*/
|
|
u32 flags;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_vm_op_ctx - VM operation context
|
|
*
|
|
* With VM operations potentially taking place in a dma-signaling path, we
|
|
* need to make sure everything that might require resource allocation is
|
|
* pre-allocated upfront. This is what this operation context is far.
|
|
*
|
|
* We also collect resources that have been freed, so we can release them
|
|
* asynchronously, and let the VM_BIND scheduler process the next VM_BIND
|
|
* request.
|
|
*/
|
|
struct panthor_vm_op_ctx {
|
|
/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
|
|
struct {
|
|
/** @rsvd_page_tables.count: Number of pages reserved. */
|
|
u32 count;
|
|
|
|
/** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
|
|
u32 ptr;
|
|
|
|
/**
|
|
* @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
|
|
*
|
|
* After an VM operation, there might be free pages left in this array.
|
|
* They should be returned to the pt_cache as part of the op_ctx cleanup.
|
|
*/
|
|
void **pages;
|
|
} rsvd_page_tables;
|
|
|
|
/**
|
|
* @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
|
|
*
|
|
* Partial unmap requests or map requests overlapping existing mappings will
|
|
* trigger a remap call, which need to register up to three panthor_vma objects
|
|
* (one for the new mapping, and two for the previous and next mappings).
|
|
*/
|
|
struct panthor_vma *preallocated_vmas[3];
|
|
|
|
/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
|
|
u32 flags;
|
|
|
|
/** @va: Virtual range targeted by the VM operation. */
|
|
struct {
|
|
/** @va.addr: Start address. */
|
|
u64 addr;
|
|
|
|
/** @va.range: Range size. */
|
|
u64 range;
|
|
} va;
|
|
|
|
/**
|
|
* @returned_vmas: List of panthor_vma objects returned after a VM operation.
|
|
*
|
|
* For unmap operations, this will contain all VMAs that were covered by the
|
|
* specified VA range.
|
|
*
|
|
* For map operations, this will contain all VMAs that previously mapped to
|
|
* the specified VA range.
|
|
*
|
|
* Those VMAs, and the resources they point to will be released as part of
|
|
* the op_ctx cleanup operation.
|
|
*/
|
|
struct list_head returned_vmas;
|
|
|
|
/** @map: Fields specific to a map operation. */
|
|
struct {
|
|
/** @map.vm_bo: Buffer object to map. */
|
|
struct drm_gpuvm_bo *vm_bo;
|
|
|
|
/** @map.bo_offset: Offset in the buffer object. */
|
|
u64 bo_offset;
|
|
|
|
/**
|
|
* @map.sgt: sg-table pointing to pages backing the GEM object.
|
|
*
|
|
* This is gathered at job creation time, such that we don't have
|
|
* to allocate in ::run_job().
|
|
*/
|
|
struct sg_table *sgt;
|
|
|
|
/**
|
|
* @map.new_vma: The new VMA object that will be inserted to the VA tree.
|
|
*/
|
|
struct panthor_vma *new_vma;
|
|
} map;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_vm - VM object
|
|
*
|
|
* A VM is an object representing a GPU (or MCU) virtual address space.
|
|
* It embeds the MMU page table for this address space, a tree containing
|
|
* all the virtual mappings of GEM objects, and other things needed to manage
|
|
* the VM.
|
|
*
|
|
* Except for the MCU VM, which is managed by the kernel, all other VMs are
|
|
* created by userspace and mostly managed by userspace, using the
|
|
* %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
|
|
*
|
|
* A portion of the virtual address space is reserved for kernel objects,
|
|
* like heap chunks, and userspace gets to decide how much of the virtual
|
|
* address space is left to the kernel (half of the virtual address space
|
|
* by default).
|
|
*/
|
|
struct panthor_vm {
|
|
/**
|
|
* @base: Inherit from drm_gpuvm.
|
|
*
|
|
* We delegate all the VA management to the common drm_gpuvm framework
|
|
* and only implement hooks to update the MMU page table.
|
|
*/
|
|
struct drm_gpuvm base;
|
|
|
|
/**
|
|
* @sched: Scheduler used for asynchronous VM_BIND request.
|
|
*
|
|
* We use a 1:1 scheduler here.
|
|
*/
|
|
struct drm_gpu_scheduler sched;
|
|
|
|
/**
|
|
* @entity: Scheduling entity representing the VM_BIND queue.
|
|
*
|
|
* There's currently one bind queue per VM. It doesn't make sense to
|
|
* allow more given the VM operations are serialized anyway.
|
|
*/
|
|
struct drm_sched_entity entity;
|
|
|
|
/** @ptdev: Device. */
|
|
struct panthor_device *ptdev;
|
|
|
|
/** @memattr: Value to program to the AS_MEMATTR register. */
|
|
u64 memattr;
|
|
|
|
/** @pgtbl_ops: Page table operations. */
|
|
struct io_pgtable_ops *pgtbl_ops;
|
|
|
|
/** @root_page_table: Stores the root page table pointer. */
|
|
void *root_page_table;
|
|
|
|
/**
|
|
* @op_lock: Lock used to serialize operations on a VM.
|
|
*
|
|
* The serialization of jobs queued to the VM_BIND queue is already
|
|
* taken care of by drm_sched, but we need to serialize synchronous
|
|
* and asynchronous VM_BIND request. This is what this lock is for.
|
|
*/
|
|
struct mutex op_lock;
|
|
|
|
/**
|
|
* @op_ctx: The context attached to the currently executing VM operation.
|
|
*
|
|
* NULL when no operation is in progress.
|
|
*/
|
|
struct panthor_vm_op_ctx *op_ctx;
|
|
|
|
/**
|
|
* @mm: Memory management object representing the auto-VA/kernel-VA.
|
|
*
|
|
* Used to auto-allocate VA space for kernel-managed objects (tiler
|
|
* heaps, ...).
|
|
*
|
|
* For the MCU VM, this is managing the VA range that's used to map
|
|
* all shared interfaces.
|
|
*
|
|
* For user VMs, the range is specified by userspace, and must not
|
|
* exceed half of the VA space addressable.
|
|
*/
|
|
struct drm_mm mm;
|
|
|
|
/** @mm_lock: Lock protecting the @mm field. */
|
|
struct mutex mm_lock;
|
|
|
|
/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
|
|
struct {
|
|
/** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
|
|
u64 start;
|
|
|
|
/** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
|
|
u64 end;
|
|
} kernel_auto_va;
|
|
|
|
/** @as: Address space related fields. */
|
|
struct {
|
|
/**
|
|
* @as.id: ID of the address space this VM is bound to.
|
|
*
|
|
* A value of -1 means the VM is inactive/not bound.
|
|
*/
|
|
int id;
|
|
|
|
/** @as.active_cnt: Number of active users of this VM. */
|
|
refcount_t active_cnt;
|
|
|
|
/**
|
|
* @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
|
|
*
|
|
* Active VMs should not be inserted in the LRU list.
|
|
*/
|
|
struct list_head lru_node;
|
|
} as;
|
|
|
|
/**
|
|
* @heaps: Tiler heap related fields.
|
|
*/
|
|
struct {
|
|
/**
|
|
* @heaps.pool: The heap pool attached to this VM.
|
|
*
|
|
* Will stay NULL until someone creates a heap context on this VM.
|
|
*/
|
|
struct panthor_heap_pool *pool;
|
|
|
|
/** @heaps.lock: Lock used to protect access to @pool. */
|
|
struct mutex lock;
|
|
} heaps;
|
|
|
|
/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
|
|
struct list_head node;
|
|
|
|
/** @for_mcu: True if this is the MCU VM. */
|
|
bool for_mcu;
|
|
|
|
/**
|
|
* @destroyed: True if the VM was destroyed.
|
|
*
|
|
* No further bind requests should be queued to a destroyed VM.
|
|
*/
|
|
bool destroyed;
|
|
|
|
/**
|
|
* @unusable: True if the VM has turned unusable because something
|
|
* bad happened during an asynchronous request.
|
|
*
|
|
* We don't try to recover from such failures, because this implies
|
|
* informing userspace about the specific operation that failed, and
|
|
* hoping the userspace driver can replay things from there. This all
|
|
* sounds very complicated for little gain.
|
|
*
|
|
* Instead, we should just flag the VM as unusable, and fail any
|
|
* further request targeting this VM.
|
|
*
|
|
* We also provide a way to query a VM state, so userspace can destroy
|
|
* it and create a new one.
|
|
*
|
|
* As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
|
|
* situation, where the logical device needs to be re-created.
|
|
*/
|
|
bool unusable;
|
|
|
|
/**
|
|
* @unhandled_fault: Unhandled fault happened.
|
|
*
|
|
* This should be reported to the scheduler, and the queue/group be
|
|
* flagged as faulty as a result.
|
|
*/
|
|
bool unhandled_fault;
|
|
};
|
|
|
|
/**
|
|
* struct panthor_vm_bind_job - VM bind job
|
|
*/
|
|
struct panthor_vm_bind_job {
|
|
/** @base: Inherit from drm_sched_job. */
|
|
struct drm_sched_job base;
|
|
|
|
/** @refcount: Reference count. */
|
|
struct kref refcount;
|
|
|
|
/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
|
|
struct work_struct cleanup_op_ctx_work;
|
|
|
|
/** @vm: VM targeted by the VM operation. */
|
|
struct panthor_vm *vm;
|
|
|
|
/** @ctx: Operation context. */
|
|
struct panthor_vm_op_ctx ctx;
|
|
};
|
|
|
|
/*
|
|
* @pt_cache: Cache used to allocate MMU page tables.
|
|
*
|
|
* The pre-allocation pattern forces us to over-allocate to plan for
|
|
* the worst case scenario, and return the pages we didn't use.
|
|
*
|
|
* Having a kmem_cache allows us to speed allocations.
|
|
*/
|
|
static struct kmem_cache *pt_cache;
|
|
|
|
/**
|
|
* alloc_pt() - Custom page table allocator
|
|
* @cookie: Cookie passed at page table allocation time.
|
|
* @size: Size of the page table. This size should be fixed,
|
|
* and determined at creation time based on the granule size.
|
|
* @gfp: GFP flags.
|
|
*
|
|
* We want a custom allocator so we can use a cache for page table
|
|
* allocations and amortize the cost of the over-reservation that's
|
|
* done to allow asynchronous VM operations.
|
|
*
|
|
* Return: non-NULL on success, NULL if the allocation failed for any
|
|
* reason.
|
|
*/
|
|
static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
|
|
{
|
|
struct panthor_vm *vm = cookie;
|
|
void *page;
|
|
|
|
/* Allocation of the root page table happening during init. */
|
|
if (unlikely(!vm->root_page_table)) {
|
|
struct page *p;
|
|
|
|
drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
|
|
p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
|
|
gfp | __GFP_ZERO, get_order(size));
|
|
page = p ? page_address(p) : NULL;
|
|
vm->root_page_table = page;
|
|
return page;
|
|
}
|
|
|
|
/* We're not supposed to have anything bigger than 4k here, because we picked a
|
|
* 4k granule size at init time.
|
|
*/
|
|
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
|
|
return NULL;
|
|
|
|
/* We must have some op_ctx attached to the VM and it must have at least one
|
|
* free page.
|
|
*/
|
|
if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
|
|
drm_WARN_ON(&vm->ptdev->base,
|
|
vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
|
|
return NULL;
|
|
|
|
page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
|
|
memset(page, 0, SZ_4K);
|
|
|
|
/* Page table entries don't use virtual addresses, which trips out
|
|
* kmemleak. kmemleak_alloc_phys() might work, but physical addresses
|
|
* are mixed with other fields, and I fear kmemleak won't detect that
|
|
* either.
|
|
*
|
|
* Let's just ignore memory passed to the page-table driver for now.
|
|
*/
|
|
kmemleak_ignore(page);
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* free_pt() - Custom page table free function
|
|
* @cookie: Cookie passed at page table allocation time.
|
|
* @data: Page table to free.
|
|
* @size: Size of the page table. This size should be fixed,
|
|
* and determined at creation time based on the granule size.
|
|
*/
|
|
static void free_pt(void *cookie, void *data, size_t size)
|
|
{
|
|
struct panthor_vm *vm = cookie;
|
|
|
|
if (unlikely(vm->root_page_table == data)) {
|
|
free_pages((unsigned long)data, get_order(size));
|
|
vm->root_page_table = NULL;
|
|
return;
|
|
}
|
|
|
|
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
|
|
return;
|
|
|
|
/* Return the page to the pt_cache. */
|
|
kmem_cache_free(pt_cache, data);
|
|
}
|
|
|
|
static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
/* Wait for the MMU status to indicate there is no active command, in
|
|
* case one is pending.
|
|
*/
|
|
ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
|
|
val, !(val & AS_STATUS_AS_ACTIVE),
|
|
10, 100000);
|
|
|
|
if (ret) {
|
|
panthor_device_schedule_reset(ptdev);
|
|
drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
|
|
{
|
|
int status;
|
|
|
|
/* write AS_COMMAND when MMU is ready to accept another command */
|
|
status = wait_ready(ptdev, as_nr);
|
|
if (!status)
|
|
gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void lock_region(struct panthor_device *ptdev, u32 as_nr,
|
|
u64 region_start, u64 size)
|
|
{
|
|
u8 region_width;
|
|
u64 region;
|
|
u64 region_end = region_start + size;
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
/*
|
|
* The locked region is a naturally aligned power of 2 block encoded as
|
|
* log2 minus(1).
|
|
* Calculate the desired start/end and look for the highest bit which
|
|
* differs. The smallest naturally aligned block must include this bit
|
|
* change, the desired region starts with this bit (and subsequent bits)
|
|
* zeroed and ends with the bit (and subsequent bits) set to one.
|
|
*/
|
|
region_width = max(fls64(region_start ^ (region_end - 1)),
|
|
const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
|
|
|
|
/*
|
|
* Mask off the low bits of region_start (which would be ignored by
|
|
* the hardware anyway)
|
|
*/
|
|
region_start &= GENMASK_ULL(63, region_width);
|
|
|
|
region = region_width | region_start;
|
|
|
|
/* Lock the region that needs to be updated */
|
|
gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
|
|
gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
|
|
write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
|
|
}
|
|
|
|
static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
|
|
u64 iova, u64 size, u32 op)
|
|
{
|
|
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
|
|
|
|
if (as_nr < 0)
|
|
return 0;
|
|
|
|
/*
|
|
* If the AS number is greater than zero, then we can be sure
|
|
* the device is up and running, so we don't need to explicitly
|
|
* power it up
|
|
*/
|
|
|
|
if (op != AS_COMMAND_UNLOCK)
|
|
lock_region(ptdev, as_nr, iova, size);
|
|
|
|
/* Run the MMU operation */
|
|
write_cmd(ptdev, as_nr, op);
|
|
|
|
/* Wait for the flush to complete */
|
|
return wait_ready(ptdev, as_nr);
|
|
}
|
|
|
|
static int mmu_hw_do_operation(struct panthor_vm *vm,
|
|
u64 iova, u64 size, u32 op)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
int ret;
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
|
|
u64 transtab, u64 transcfg, u64 memattr)
|
|
{
|
|
int ret;
|
|
|
|
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
|
|
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
|
|
|
|
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
|
|
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
|
|
|
|
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
|
|
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
|
|
|
|
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
|
|
}
|
|
|
|
static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
|
|
{
|
|
int ret;
|
|
|
|
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
|
|
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
|
|
|
|
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
|
|
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
|
|
|
|
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
|
|
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
|
|
|
|
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
|
|
}
|
|
|
|
static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
|
|
{
|
|
/* Bits 16 to 31 mean REQ_COMPLETE. */
|
|
return value & GENMASK(15, 0);
|
|
}
|
|
|
|
static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
|
|
{
|
|
return BIT(as);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
|
|
* @vm: VM to check.
|
|
*
|
|
* Return: true if the VM has unhandled faults, false otherwise.
|
|
*/
|
|
bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
|
|
{
|
|
return vm->unhandled_fault;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_is_unusable() - Check if the VM is still usable
|
|
* @vm: VM to check.
|
|
*
|
|
* Return: true if the VM is unusable, false otherwise.
|
|
*/
|
|
bool panthor_vm_is_unusable(struct panthor_vm *vm)
|
|
{
|
|
return vm->unusable;
|
|
}
|
|
|
|
static void panthor_vm_release_as_locked(struct panthor_vm *vm)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
|
|
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
|
|
|
|
if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
|
|
return;
|
|
|
|
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
|
|
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
|
|
refcount_set(&vm->as.active_cnt, 0);
|
|
list_del_init(&vm->as.lru_node);
|
|
vm->as.id = -1;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_active() - Flag a VM as active
|
|
* @vm: VM to flag as active.
|
|
*
|
|
* Assigns an address space to a VM so it can be used by the GPU/MCU.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_active(struct panthor_vm *vm)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
|
|
struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
|
|
int ret = 0, as, cookie;
|
|
u64 transtab, transcfg;
|
|
|
|
if (!drm_dev_enter(&ptdev->base, &cookie))
|
|
return -ENODEV;
|
|
|
|
if (refcount_inc_not_zero(&vm->as.active_cnt))
|
|
goto out_dev_exit;
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
|
|
if (refcount_inc_not_zero(&vm->as.active_cnt))
|
|
goto out_unlock;
|
|
|
|
as = vm->as.id;
|
|
if (as >= 0) {
|
|
/* Unhandled pagefault on this AS, the MMU was disabled. We need to
|
|
* re-enable the MMU after clearing+unmasking the AS interrupts.
|
|
*/
|
|
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
|
|
goto out_enable_as;
|
|
|
|
goto out_make_active;
|
|
}
|
|
|
|
/* Check for a free AS */
|
|
if (vm->for_mcu) {
|
|
drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
|
|
as = 0;
|
|
} else {
|
|
as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
|
|
}
|
|
|
|
if (!(BIT(as) & ptdev->gpu_info.as_present)) {
|
|
struct panthor_vm *lru_vm;
|
|
|
|
lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
|
|
struct panthor_vm,
|
|
as.lru_node);
|
|
if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
|
|
as = lru_vm->as.id;
|
|
panthor_vm_release_as_locked(lru_vm);
|
|
}
|
|
|
|
/* Assign the free or reclaimed AS to the FD */
|
|
vm->as.id = as;
|
|
set_bit(as, &ptdev->mmu->as.alloc_mask);
|
|
ptdev->mmu->as.slots[as].vm = vm;
|
|
|
|
out_enable_as:
|
|
transtab = cfg->arm_lpae_s1_cfg.ttbr;
|
|
transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
|
|
AS_TRANSCFG_PTW_RA |
|
|
AS_TRANSCFG_ADRMODE_AARCH64_4K |
|
|
AS_TRANSCFG_INA_BITS(55 - va_bits);
|
|
if (ptdev->coherent)
|
|
transcfg |= AS_TRANSCFG_PTW_SH_OS;
|
|
|
|
/* If the VM is re-activated, we clear the fault. */
|
|
vm->unhandled_fault = false;
|
|
|
|
/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
|
|
* before enabling the AS.
|
|
*/
|
|
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
|
|
gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
|
|
ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
|
|
gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
|
|
}
|
|
|
|
ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
|
|
|
|
out_make_active:
|
|
if (!ret) {
|
|
refcount_set(&vm->as.active_cnt, 1);
|
|
list_del_init(&vm->as.lru_node);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
out_dev_exit:
|
|
drm_dev_exit(cookie);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_idle() - Flag a VM idle
|
|
* @vm: VM to flag as idle.
|
|
*
|
|
* When we know the GPU is done with the VM (no more jobs to process),
|
|
* we can relinquish the AS slot attached to this VM, if any.
|
|
*
|
|
* We don't release the slot immediately, but instead place the VM in
|
|
* the LRU list, so it can be evicted if another VM needs an AS slot.
|
|
* This way, VMs keep attached to the AS they were given until we run
|
|
* out of free slot, limiting the number of MMU operations (TLB flush
|
|
* and other AS updates).
|
|
*/
|
|
void panthor_vm_idle(struct panthor_vm *vm)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
|
|
if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
|
|
return;
|
|
|
|
if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
|
|
list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
|
|
|
|
refcount_set(&vm->as.active_cnt, 0);
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
}
|
|
|
|
u32 panthor_vm_page_size(struct panthor_vm *vm)
|
|
{
|
|
const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
|
|
u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
|
|
|
|
return 1u << pg_shift;
|
|
}
|
|
|
|
static void panthor_vm_stop(struct panthor_vm *vm)
|
|
{
|
|
drm_sched_stop(&vm->sched, NULL);
|
|
}
|
|
|
|
static void panthor_vm_start(struct panthor_vm *vm)
|
|
{
|
|
drm_sched_start(&vm->sched, 0);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_as() - Get the AS slot attached to a VM
|
|
* @vm: VM to get the AS slot of.
|
|
*
|
|
* Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
|
|
*/
|
|
int panthor_vm_as(struct panthor_vm *vm)
|
|
{
|
|
return vm->as.id;
|
|
}
|
|
|
|
static size_t get_pgsize(u64 addr, size_t size, size_t *count)
|
|
{
|
|
/*
|
|
* io-pgtable only operates on multiple pages within a single table
|
|
* entry, so we need to split at boundaries of the table size, i.e.
|
|
* the next block size up. The distance from address A to the next
|
|
* boundary of block size B is logically B - A % B, but in unsigned
|
|
* two's complement where B is a power of two we get the equivalence
|
|
* B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
|
|
*/
|
|
size_t blk_offset = -addr % SZ_2M;
|
|
|
|
if (blk_offset || size < SZ_2M) {
|
|
*count = min_not_zero(blk_offset, size) / SZ_4K;
|
|
return SZ_4K;
|
|
}
|
|
blk_offset = -addr % SZ_1G ?: SZ_1G;
|
|
*count = min(blk_offset, size) / SZ_2M;
|
|
return SZ_2M;
|
|
}
|
|
|
|
static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
int ret = 0, cookie;
|
|
|
|
if (vm->as.id < 0)
|
|
return 0;
|
|
|
|
/* If the device is unplugged, we just silently skip the flush. */
|
|
if (!drm_dev_enter(&ptdev->base, &cookie))
|
|
return 0;
|
|
|
|
ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
|
|
|
|
drm_dev_exit(cookie);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
|
|
* @vm: VM whose cache to flush
|
|
*
|
|
* Return: 0 on success, a negative error code if flush failed.
|
|
*/
|
|
int panthor_vm_flush_all(struct panthor_vm *vm)
|
|
{
|
|
return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
|
|
}
|
|
|
|
static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
struct io_pgtable_ops *ops = vm->pgtbl_ops;
|
|
u64 offset = 0;
|
|
|
|
drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
|
|
|
|
while (offset < size) {
|
|
size_t unmapped_sz = 0, pgcount;
|
|
size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
|
|
|
|
unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
|
|
|
|
if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
|
|
drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
|
|
iova + offset + unmapped_sz,
|
|
iova + offset + pgsize * pgcount,
|
|
iova, iova + size);
|
|
panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
|
|
return -EINVAL;
|
|
}
|
|
offset += unmapped_sz;
|
|
}
|
|
|
|
return panthor_vm_flush_range(vm, iova, size);
|
|
}
|
|
|
|
static int
|
|
panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
|
|
struct sg_table *sgt, u64 offset, u64 size)
|
|
{
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
unsigned int count;
|
|
struct scatterlist *sgl;
|
|
struct io_pgtable_ops *ops = vm->pgtbl_ops;
|
|
u64 start_iova = iova;
|
|
int ret;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
for_each_sgtable_dma_sg(sgt, sgl, count) {
|
|
dma_addr_t paddr = sg_dma_address(sgl);
|
|
size_t len = sg_dma_len(sgl);
|
|
|
|
if (len <= offset) {
|
|
offset -= len;
|
|
continue;
|
|
}
|
|
|
|
paddr += offset;
|
|
len -= offset;
|
|
len = min_t(size_t, len, size);
|
|
size -= len;
|
|
|
|
drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
|
|
vm->as.id, iova, &paddr, len);
|
|
|
|
while (len) {
|
|
size_t pgcount, mapped = 0;
|
|
size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
|
|
|
|
ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
|
|
GFP_KERNEL, &mapped);
|
|
iova += mapped;
|
|
paddr += mapped;
|
|
len -= mapped;
|
|
|
|
if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
|
|
ret = -ENOMEM;
|
|
|
|
if (ret) {
|
|
/* If something failed, unmap what we've already mapped before
|
|
* returning. The unmap call is not supposed to fail.
|
|
*/
|
|
drm_WARN_ON(&ptdev->base,
|
|
panthor_vm_unmap_pages(vm, start_iova,
|
|
iova - start_iova));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (!size)
|
|
break;
|
|
|
|
offset = 0;
|
|
}
|
|
|
|
return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
|
|
}
|
|
|
|
static int flags_to_prot(u32 flags)
|
|
{
|
|
int prot = 0;
|
|
|
|
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
|
|
prot |= IOMMU_NOEXEC;
|
|
|
|
if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
|
|
prot |= IOMMU_CACHE;
|
|
|
|
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
|
|
prot |= IOMMU_READ;
|
|
else
|
|
prot |= IOMMU_READ | IOMMU_WRITE;
|
|
|
|
return prot;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_alloc_va() - Allocate a region in the auto-va space
|
|
* @vm: VM to allocate a region on.
|
|
* @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
|
|
* wants the VA to be automatically allocated from the auto-VA range.
|
|
* @size: size of the VA range.
|
|
* @va_node: drm_mm_node to initialize. Must be zero-initialized.
|
|
*
|
|
* Some GPU objects, like heap chunks, are fully managed by the kernel and
|
|
* need to be mapped to the userspace VM, in the region reserved for kernel
|
|
* objects.
|
|
*
|
|
* This function takes care of allocating a region in the kernel auto-VA space.
|
|
*
|
|
* Return: 0 on success, an error code otherwise.
|
|
*/
|
|
int
|
|
panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
|
|
struct drm_mm_node *va_node)
|
|
{
|
|
ssize_t vm_pgsz = panthor_vm_page_size(vm);
|
|
int ret;
|
|
|
|
if (!size || !IS_ALIGNED(size, vm_pgsz))
|
|
return -EINVAL;
|
|
|
|
if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&vm->mm_lock);
|
|
if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
|
|
va_node->start = va;
|
|
va_node->size = size;
|
|
ret = drm_mm_reserve_node(&vm->mm, va_node);
|
|
} else {
|
|
ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
|
|
size >= SZ_2M ? SZ_2M : SZ_4K,
|
|
0, vm->kernel_auto_va.start,
|
|
vm->kernel_auto_va.end,
|
|
DRM_MM_INSERT_BEST);
|
|
}
|
|
mutex_unlock(&vm->mm_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
|
|
* @vm: VM to free the region on.
|
|
* @va_node: Memory node representing the region to free.
|
|
*/
|
|
void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
|
|
{
|
|
mutex_lock(&vm->mm_lock);
|
|
drm_mm_remove_node(va_node);
|
|
mutex_unlock(&vm->mm_lock);
|
|
}
|
|
|
|
static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
|
|
{
|
|
struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
|
|
struct drm_gpuvm *vm = vm_bo->vm;
|
|
bool unpin;
|
|
|
|
/* We must retain the GEM before calling drm_gpuvm_bo_put(),
|
|
* otherwise the mutex might be destroyed while we hold it.
|
|
* Same goes for the VM, since we take the VM resv lock.
|
|
*/
|
|
drm_gem_object_get(&bo->base.base);
|
|
drm_gpuvm_get(vm);
|
|
|
|
/* We take the resv lock to protect against concurrent accesses to the
|
|
* gpuvm evicted/extobj lists that are modified in
|
|
* drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
|
|
* releases sthe last vm_bo reference.
|
|
* We take the BO GPUVA list lock to protect the vm_bo removal from the
|
|
* GEM vm_bo list.
|
|
*/
|
|
dma_resv_lock(drm_gpuvm_resv(vm), NULL);
|
|
mutex_lock(&bo->gpuva_list_lock);
|
|
unpin = drm_gpuvm_bo_put(vm_bo);
|
|
mutex_unlock(&bo->gpuva_list_lock);
|
|
dma_resv_unlock(drm_gpuvm_resv(vm));
|
|
|
|
/* If the vm_bo object was destroyed, release the pin reference that
|
|
* was hold by this object.
|
|
*/
|
|
if (unpin && !bo->base.base.import_attach)
|
|
drm_gem_shmem_unpin(&bo->base);
|
|
|
|
drm_gpuvm_put(vm);
|
|
drm_gem_object_put(&bo->base.base);
|
|
}
|
|
|
|
static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
|
|
struct panthor_vm *vm)
|
|
{
|
|
struct panthor_vma *vma, *tmp_vma;
|
|
|
|
u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
|
|
op_ctx->rsvd_page_tables.ptr;
|
|
|
|
if (remaining_pt_count) {
|
|
kmem_cache_free_bulk(pt_cache, remaining_pt_count,
|
|
op_ctx->rsvd_page_tables.pages +
|
|
op_ctx->rsvd_page_tables.ptr);
|
|
}
|
|
|
|
kfree(op_ctx->rsvd_page_tables.pages);
|
|
|
|
if (op_ctx->map.vm_bo)
|
|
panthor_vm_bo_put(op_ctx->map.vm_bo);
|
|
|
|
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
|
|
kfree(op_ctx->preallocated_vmas[i]);
|
|
|
|
list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
|
|
list_del(&vma->node);
|
|
panthor_vm_bo_put(vma->base.vm_bo);
|
|
kfree(vma);
|
|
}
|
|
}
|
|
|
|
static struct panthor_vma *
|
|
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
|
|
{
|
|
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
|
|
struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
|
|
|
|
if (vma) {
|
|
op_ctx->preallocated_vmas[i] = NULL;
|
|
return vma;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
|
|
{
|
|
u32 vma_count;
|
|
|
|
switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
|
|
/* One VMA for the new mapping, and two more VMAs for the remap case
|
|
* which might contain both a prev and next VA.
|
|
*/
|
|
vma_count = 3;
|
|
break;
|
|
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
|
|
/* Partial unmaps might trigger a remap with either a prev or a next VA,
|
|
* but not both.
|
|
*/
|
|
vma_count = 1;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
for (u32 i = 0; i < vma_count; i++) {
|
|
struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
|
|
|
|
if (!vma)
|
|
return -ENOMEM;
|
|
|
|
op_ctx->preallocated_vmas[i] = vma;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PANTHOR_VM_BIND_OP_MAP_FLAGS \
|
|
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
|
|
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
|
|
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
|
|
DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
|
|
|
|
static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
|
|
struct panthor_vm *vm,
|
|
struct panthor_gem_object *bo,
|
|
u64 offset,
|
|
u64 size, u64 va,
|
|
u32 flags)
|
|
{
|
|
struct drm_gpuvm_bo *preallocated_vm_bo;
|
|
struct sg_table *sgt = NULL;
|
|
u64 pt_count;
|
|
int ret;
|
|
|
|
if (!bo)
|
|
return -EINVAL;
|
|
|
|
if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
|
|
(flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
|
|
return -EINVAL;
|
|
|
|
/* Make sure the VA and size are aligned and in-bounds. */
|
|
if (size > bo->base.base.size || offset > bo->base.base.size - size)
|
|
return -EINVAL;
|
|
|
|
/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
|
|
if (bo->exclusive_vm_root_gem &&
|
|
bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
|
|
return -EINVAL;
|
|
|
|
memset(op_ctx, 0, sizeof(*op_ctx));
|
|
INIT_LIST_HEAD(&op_ctx->returned_vmas);
|
|
op_ctx->flags = flags;
|
|
op_ctx->va.range = size;
|
|
op_ctx->va.addr = va;
|
|
|
|
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
|
|
if (ret)
|
|
goto err_cleanup;
|
|
|
|
if (!bo->base.base.import_attach) {
|
|
/* Pre-reserve the BO pages, so the map operation doesn't have to
|
|
* allocate.
|
|
*/
|
|
ret = drm_gem_shmem_pin(&bo->base);
|
|
if (ret)
|
|
goto err_cleanup;
|
|
}
|
|
|
|
sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
|
|
if (IS_ERR(sgt)) {
|
|
if (!bo->base.base.import_attach)
|
|
drm_gem_shmem_unpin(&bo->base);
|
|
|
|
ret = PTR_ERR(sgt);
|
|
goto err_cleanup;
|
|
}
|
|
|
|
op_ctx->map.sgt = sgt;
|
|
|
|
preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
|
|
if (!preallocated_vm_bo) {
|
|
if (!bo->base.base.import_attach)
|
|
drm_gem_shmem_unpin(&bo->base);
|
|
|
|
ret = -ENOMEM;
|
|
goto err_cleanup;
|
|
}
|
|
|
|
/* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
|
|
* pre-allocated BO if the <BO,VM> association exists. Given we
|
|
* only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
|
|
* be called immediately, and we have to hold the VM resv lock when
|
|
* calling this function.
|
|
*/
|
|
dma_resv_lock(panthor_vm_resv(vm), NULL);
|
|
mutex_lock(&bo->gpuva_list_lock);
|
|
op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
|
|
mutex_unlock(&bo->gpuva_list_lock);
|
|
dma_resv_unlock(panthor_vm_resv(vm));
|
|
|
|
/* If the a vm_bo for this <VM,BO> combination exists, it already
|
|
* retains a pin ref, and we can release the one we took earlier.
|
|
*
|
|
* If our pre-allocated vm_bo is picked, it now retains the pin ref,
|
|
* which will be released in panthor_vm_bo_put().
|
|
*/
|
|
if (preallocated_vm_bo != op_ctx->map.vm_bo &&
|
|
!bo->base.base.import_attach)
|
|
drm_gem_shmem_unpin(&bo->base);
|
|
|
|
op_ctx->map.bo_offset = offset;
|
|
|
|
/* L1, L2 and L3 page tables.
|
|
* We could optimize L3 allocation by iterating over the sgt and merging
|
|
* 2M contiguous blocks, but it's simpler to over-provision and return
|
|
* the pages if they're not used.
|
|
*/
|
|
pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
|
|
((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
|
|
((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
|
|
|
|
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
|
|
sizeof(*op_ctx->rsvd_page_tables.pages),
|
|
GFP_KERNEL);
|
|
if (!op_ctx->rsvd_page_tables.pages) {
|
|
ret = -ENOMEM;
|
|
goto err_cleanup;
|
|
}
|
|
|
|
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
|
|
op_ctx->rsvd_page_tables.pages);
|
|
op_ctx->rsvd_page_tables.count = ret;
|
|
if (ret != pt_count) {
|
|
ret = -ENOMEM;
|
|
goto err_cleanup;
|
|
}
|
|
|
|
/* Insert BO into the extobj list last, when we know nothing can fail. */
|
|
dma_resv_lock(panthor_vm_resv(vm), NULL);
|
|
drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
|
|
dma_resv_unlock(panthor_vm_resv(vm));
|
|
|
|
return 0;
|
|
|
|
err_cleanup:
|
|
panthor_vm_cleanup_op_ctx(op_ctx, vm);
|
|
return ret;
|
|
}
|
|
|
|
static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
|
|
struct panthor_vm *vm,
|
|
u64 va, u64 size)
|
|
{
|
|
u32 pt_count = 0;
|
|
int ret;
|
|
|
|
memset(op_ctx, 0, sizeof(*op_ctx));
|
|
INIT_LIST_HEAD(&op_ctx->returned_vmas);
|
|
op_ctx->va.range = size;
|
|
op_ctx->va.addr = va;
|
|
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
|
|
|
|
/* Pre-allocate L3 page tables to account for the split-2M-block
|
|
* situation on unmap.
|
|
*/
|
|
if (va != ALIGN(va, SZ_2M))
|
|
pt_count++;
|
|
|
|
if (va + size != ALIGN(va + size, SZ_2M) &&
|
|
ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
|
|
pt_count++;
|
|
|
|
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
|
|
if (ret)
|
|
goto err_cleanup;
|
|
|
|
if (pt_count) {
|
|
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
|
|
sizeof(*op_ctx->rsvd_page_tables.pages),
|
|
GFP_KERNEL);
|
|
if (!op_ctx->rsvd_page_tables.pages) {
|
|
ret = -ENOMEM;
|
|
goto err_cleanup;
|
|
}
|
|
|
|
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
|
|
op_ctx->rsvd_page_tables.pages);
|
|
if (ret != pt_count) {
|
|
ret = -ENOMEM;
|
|
goto err_cleanup;
|
|
}
|
|
op_ctx->rsvd_page_tables.count = pt_count;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_cleanup:
|
|
panthor_vm_cleanup_op_ctx(op_ctx, vm);
|
|
return ret;
|
|
}
|
|
|
|
static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
|
|
struct panthor_vm *vm)
|
|
{
|
|
memset(op_ctx, 0, sizeof(*op_ctx));
|
|
INIT_LIST_HEAD(&op_ctx->returned_vmas);
|
|
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
|
|
* @vm: VM to look into.
|
|
* @va: Virtual address to search for.
|
|
* @bo_offset: Offset of the GEM object mapped at this virtual address.
|
|
* Only valid on success.
|
|
*
|
|
* The object returned by this function might no longer be mapped when the
|
|
* function returns. It's the caller responsibility to ensure there's no
|
|
* concurrent map/unmap operations making the returned value invalid, or
|
|
* make sure it doesn't matter if the object is no longer mapped.
|
|
*
|
|
* Return: A valid pointer on success, an ERR_PTR() otherwise.
|
|
*/
|
|
struct panthor_gem_object *
|
|
panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
|
|
{
|
|
struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
|
|
struct drm_gpuva *gpuva;
|
|
struct panthor_vma *vma;
|
|
|
|
/* Take the VM lock to prevent concurrent map/unmap operations. */
|
|
mutex_lock(&vm->op_lock);
|
|
gpuva = drm_gpuva_find_first(&vm->base, va, 1);
|
|
vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
|
|
if (vma && vma->base.gem.obj) {
|
|
drm_gem_object_get(vma->base.gem.obj);
|
|
bo = to_panthor_bo(vma->base.gem.obj);
|
|
*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
|
|
}
|
|
mutex_unlock(&vm->op_lock);
|
|
|
|
return bo;
|
|
}
|
|
|
|
#define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
|
|
|
|
static u64
|
|
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
|
|
u64 full_va_range)
|
|
{
|
|
u64 user_va_range;
|
|
|
|
/* Make sure we have a minimum amount of VA space for kernel objects. */
|
|
if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
|
|
return 0;
|
|
|
|
if (args->user_va_range) {
|
|
/* Use the user provided value if != 0. */
|
|
user_va_range = args->user_va_range;
|
|
} else if (TASK_SIZE_OF(current) < full_va_range) {
|
|
/* If the task VM size is smaller than the GPU VA range, pick this
|
|
* as our default user VA range, so userspace can CPU/GPU map buffers
|
|
* at the same address.
|
|
*/
|
|
user_va_range = TASK_SIZE_OF(current);
|
|
} else {
|
|
/* If the GPU VA range is smaller than the task VM size, we
|
|
* just have to live with the fact we won't be able to map
|
|
* all buffers at the same GPU/CPU address.
|
|
*
|
|
* If the GPU VA range is bigger than 4G (more than 32-bit of
|
|
* VA), we split the range in two, and assign half of it to
|
|
* the user and the other half to the kernel, if it's not, we
|
|
* keep the kernel VA space as small as possible.
|
|
*/
|
|
user_va_range = full_va_range > SZ_4G ?
|
|
full_va_range / 2 :
|
|
full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
|
|
}
|
|
|
|
if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
|
|
user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
|
|
|
|
return user_va_range;
|
|
}
|
|
|
|
#define PANTHOR_VM_CREATE_FLAGS 0
|
|
|
|
static int
|
|
panthor_vm_create_check_args(const struct panthor_device *ptdev,
|
|
const struct drm_panthor_vm_create *args,
|
|
u64 *kernel_va_start, u64 *kernel_va_range)
|
|
{
|
|
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
|
|
u64 full_va_range = 1ull << va_bits;
|
|
u64 user_va_range;
|
|
|
|
if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
|
|
return -EINVAL;
|
|
|
|
user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
|
|
if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
|
|
return -EINVAL;
|
|
|
|
/* Pick a kernel VA range that's a power of two, to have a clear split. */
|
|
*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
|
|
*kernel_va_start = full_va_range - *kernel_va_range;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only 32 VMs per open file. If that becomes a limiting factor, we can
|
|
* increase this number.
|
|
*/
|
|
#define PANTHOR_MAX_VMS_PER_FILE 32
|
|
|
|
/**
|
|
* panthor_vm_pool_create_vm() - Create a VM
|
|
* @ptdev: The panthor device
|
|
* @pool: The VM to create this VM on.
|
|
* @args: VM creation args.
|
|
*
|
|
* Return: a positive VM ID on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
|
|
struct panthor_vm_pool *pool,
|
|
struct drm_panthor_vm_create *args)
|
|
{
|
|
u64 kernel_va_start, kernel_va_range;
|
|
struct panthor_vm *vm;
|
|
int ret;
|
|
u32 id;
|
|
|
|
ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
|
|
kernel_va_start, kernel_va_range);
|
|
if (IS_ERR(vm))
|
|
return PTR_ERR(vm);
|
|
|
|
ret = xa_alloc(&pool->xa, &id, vm,
|
|
XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
|
|
|
|
if (ret) {
|
|
panthor_vm_put(vm);
|
|
return ret;
|
|
}
|
|
|
|
args->user_va_range = kernel_va_start;
|
|
return id;
|
|
}
|
|
|
|
static void panthor_vm_destroy(struct panthor_vm *vm)
|
|
{
|
|
if (!vm)
|
|
return;
|
|
|
|
vm->destroyed = true;
|
|
|
|
mutex_lock(&vm->heaps.lock);
|
|
panthor_heap_pool_destroy(vm->heaps.pool);
|
|
vm->heaps.pool = NULL;
|
|
mutex_unlock(&vm->heaps.lock);
|
|
|
|
drm_WARN_ON(&vm->ptdev->base,
|
|
panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
|
|
panthor_vm_put(vm);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_pool_destroy_vm() - Destroy a VM.
|
|
* @pool: VM pool.
|
|
* @handle: VM handle.
|
|
*
|
|
* This function doesn't free the VM object or its resources, it just kills
|
|
* all mappings, and makes sure nothing can be mapped after that point.
|
|
*
|
|
* If there was any active jobs at the time this function is called, these
|
|
* jobs should experience page faults and be killed as a result.
|
|
*
|
|
* The VM resources are freed when the last reference on the VM object is
|
|
* dropped.
|
|
*
|
|
* Return: %0 for success, negative errno value for failure
|
|
*/
|
|
int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
|
|
{
|
|
struct panthor_vm *vm;
|
|
|
|
vm = xa_erase(&pool->xa, handle);
|
|
|
|
panthor_vm_destroy(vm);
|
|
|
|
return vm ? 0 : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
|
|
* @pool: VM pool to check.
|
|
* @handle: Handle of the VM to retrieve.
|
|
*
|
|
* Return: A valid pointer if the VM exists, NULL otherwise.
|
|
*/
|
|
struct panthor_vm *
|
|
panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
|
|
{
|
|
struct panthor_vm *vm;
|
|
|
|
xa_lock(&pool->xa);
|
|
vm = panthor_vm_get(xa_load(&pool->xa, handle));
|
|
xa_unlock(&pool->xa);
|
|
|
|
return vm;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_pool_destroy() - Destroy a VM pool.
|
|
* @pfile: File.
|
|
*
|
|
* Destroy all VMs in the pool, and release the pool resources.
|
|
*
|
|
* Note that VMs can outlive the pool they were created from if other
|
|
* objects hold a reference to there VMs.
|
|
*/
|
|
void panthor_vm_pool_destroy(struct panthor_file *pfile)
|
|
{
|
|
struct panthor_vm *vm;
|
|
unsigned long i;
|
|
|
|
if (!pfile->vms)
|
|
return;
|
|
|
|
xa_for_each(&pfile->vms->xa, i, vm)
|
|
panthor_vm_destroy(vm);
|
|
|
|
xa_destroy(&pfile->vms->xa);
|
|
kfree(pfile->vms);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_pool_create() - Create a VM pool
|
|
* @pfile: File.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_pool_create(struct panthor_file *pfile)
|
|
{
|
|
pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
|
|
if (!pfile->vms)
|
|
return -ENOMEM;
|
|
|
|
xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
|
|
return 0;
|
|
}
|
|
|
|
/* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
|
|
static void mmu_tlb_flush_all(void *cookie)
|
|
{
|
|
}
|
|
|
|
static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
|
|
{
|
|
}
|
|
|
|
static const struct iommu_flush_ops mmu_tlb_ops = {
|
|
.tlb_flush_all = mmu_tlb_flush_all,
|
|
.tlb_flush_walk = mmu_tlb_flush_walk,
|
|
};
|
|
|
|
static const char *access_type_name(struct panthor_device *ptdev,
|
|
u32 fault_status)
|
|
{
|
|
switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
|
|
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
|
|
return "ATOMIC";
|
|
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
|
|
return "READ";
|
|
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
|
|
return "WRITE";
|
|
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
|
|
return "EXECUTE";
|
|
default:
|
|
drm_WARN_ON(&ptdev->base, 1);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
|
|
{
|
|
bool has_unhandled_faults = false;
|
|
|
|
status = panthor_mmu_fault_mask(ptdev, status);
|
|
while (status) {
|
|
u32 as = ffs(status | (status >> 16)) - 1;
|
|
u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
|
|
u32 new_int_mask;
|
|
u64 addr;
|
|
u32 fault_status;
|
|
u32 exception_type;
|
|
u32 access_type;
|
|
u32 source_id;
|
|
|
|
fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
|
|
addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
|
|
addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
|
|
|
|
/* decode the fault status */
|
|
exception_type = fault_status & 0xFF;
|
|
access_type = (fault_status >> 8) & 0x3;
|
|
source_id = (fault_status >> 16);
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
|
|
ptdev->mmu->as.faulty_mask |= mask;
|
|
new_int_mask =
|
|
panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
|
|
|
|
/* terminal fault, print info about the fault */
|
|
drm_err(&ptdev->base,
|
|
"Unhandled Page fault in AS%d at VA 0x%016llX\n"
|
|
"raw fault status: 0x%X\n"
|
|
"decoded fault status: %s\n"
|
|
"exception type 0x%X: %s\n"
|
|
"access type 0x%X: %s\n"
|
|
"source id 0x%X\n",
|
|
as, addr,
|
|
fault_status,
|
|
(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
|
|
exception_type, panthor_exception_name(ptdev, exception_type),
|
|
access_type, access_type_name(ptdev, fault_status),
|
|
source_id);
|
|
|
|
/* Ignore MMU interrupts on this AS until it's been
|
|
* re-enabled.
|
|
*/
|
|
ptdev->mmu->irq.mask = new_int_mask;
|
|
gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
|
|
|
|
if (ptdev->mmu->as.slots[as].vm)
|
|
ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
|
|
|
|
/* Disable the MMU to kill jobs on this AS. */
|
|
panthor_mmu_as_disable(ptdev, as);
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
status &= ~mask;
|
|
has_unhandled_faults = true;
|
|
}
|
|
|
|
if (has_unhandled_faults)
|
|
panthor_sched_report_mmu_fault(ptdev);
|
|
}
|
|
PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
|
|
|
|
/**
|
|
* panthor_mmu_suspend() - Suspend the MMU logic
|
|
* @ptdev: Device.
|
|
*
|
|
* All we do here is de-assign the AS slots on all active VMs, so things
|
|
* get flushed to the main memory, and no further access to these VMs are
|
|
* possible.
|
|
*
|
|
* We also suspend the MMU IRQ.
|
|
*/
|
|
void panthor_mmu_suspend(struct panthor_device *ptdev)
|
|
{
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
|
|
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
|
|
|
|
if (vm) {
|
|
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
|
|
panthor_vm_release_as_locked(vm);
|
|
}
|
|
}
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_resume() - Resume the MMU logic
|
|
* @ptdev: Device.
|
|
*
|
|
* Resume the IRQ.
|
|
*
|
|
* We don't re-enable previously active VMs. We assume other parts of the
|
|
* driver will call panthor_vm_active() on the VMs they intend to use.
|
|
*/
|
|
void panthor_mmu_resume(struct panthor_device *ptdev)
|
|
{
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
ptdev->mmu->as.alloc_mask = 0;
|
|
ptdev->mmu->as.faulty_mask = 0;
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_pre_reset() - Prepare for a reset
|
|
* @ptdev: Device.
|
|
*
|
|
* Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
|
|
* don't get asked to do a VM operation while the GPU is down.
|
|
*
|
|
* We don't cleanly shutdown the AS slots here, because the reset might
|
|
* come from an AS_ACTIVE_BIT stuck situation.
|
|
*/
|
|
void panthor_mmu_pre_reset(struct panthor_device *ptdev)
|
|
{
|
|
struct panthor_vm *vm;
|
|
|
|
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
|
|
|
|
mutex_lock(&ptdev->mmu->vm.lock);
|
|
ptdev->mmu->vm.reset_in_progress = true;
|
|
list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
|
|
panthor_vm_stop(vm);
|
|
mutex_unlock(&ptdev->mmu->vm.lock);
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_post_reset() - Restore things after a reset
|
|
* @ptdev: Device.
|
|
*
|
|
* Put the MMU logic back in action after a reset. That implies resuming the
|
|
* IRQ and re-enabling the VM_BIND queues.
|
|
*/
|
|
void panthor_mmu_post_reset(struct panthor_device *ptdev)
|
|
{
|
|
struct panthor_vm *vm;
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
|
|
/* Now that the reset is effective, we can assume that none of the
|
|
* AS slots are setup, and clear the faulty flags too.
|
|
*/
|
|
ptdev->mmu->as.alloc_mask = 0;
|
|
ptdev->mmu->as.faulty_mask = 0;
|
|
|
|
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
|
|
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
|
|
|
|
if (vm)
|
|
panthor_vm_release_as_locked(vm);
|
|
}
|
|
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
|
|
|
|
/* Restart the VM_BIND queues. */
|
|
mutex_lock(&ptdev->mmu->vm.lock);
|
|
list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
|
|
panthor_vm_start(vm);
|
|
}
|
|
ptdev->mmu->vm.reset_in_progress = false;
|
|
mutex_unlock(&ptdev->mmu->vm.lock);
|
|
}
|
|
|
|
static void panthor_vm_free(struct drm_gpuvm *gpuvm)
|
|
{
|
|
struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
|
|
struct panthor_device *ptdev = vm->ptdev;
|
|
|
|
mutex_lock(&vm->heaps.lock);
|
|
if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
|
|
panthor_heap_pool_destroy(vm->heaps.pool);
|
|
mutex_unlock(&vm->heaps.lock);
|
|
mutex_destroy(&vm->heaps.lock);
|
|
|
|
mutex_lock(&ptdev->mmu->vm.lock);
|
|
list_del(&vm->node);
|
|
/* Restore the scheduler state so we can call drm_sched_entity_destroy()
|
|
* and drm_sched_fini(). If get there, that means we have no job left
|
|
* and no new jobs can be queued, so we can start the scheduler without
|
|
* risking interfering with the reset.
|
|
*/
|
|
if (ptdev->mmu->vm.reset_in_progress)
|
|
panthor_vm_start(vm);
|
|
mutex_unlock(&ptdev->mmu->vm.lock);
|
|
|
|
drm_sched_entity_destroy(&vm->entity);
|
|
drm_sched_fini(&vm->sched);
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
if (vm->as.id >= 0) {
|
|
int cookie;
|
|
|
|
if (drm_dev_enter(&ptdev->base, &cookie)) {
|
|
panthor_mmu_as_disable(ptdev, vm->as.id);
|
|
drm_dev_exit(cookie);
|
|
}
|
|
|
|
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
|
|
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
|
|
list_del(&vm->as.lru_node);
|
|
}
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
|
|
free_io_pgtable_ops(vm->pgtbl_ops);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
kfree(vm);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_put() - Release a reference on a VM
|
|
* @vm: VM to release the reference on. Can be NULL.
|
|
*/
|
|
void panthor_vm_put(struct panthor_vm *vm)
|
|
{
|
|
drm_gpuvm_put(vm ? &vm->base : NULL);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_get() - Get a VM reference
|
|
* @vm: VM to get the reference on. Can be NULL.
|
|
*
|
|
* Return: @vm value.
|
|
*/
|
|
struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
|
|
{
|
|
if (vm)
|
|
drm_gpuvm_get(&vm->base);
|
|
|
|
return vm;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
|
|
* @vm: VM to query the heap pool on.
|
|
* @create: True if the heap pool should be created when it doesn't exist.
|
|
*
|
|
* Heap pools are per-VM. This function allows one to retrieve the heap pool
|
|
* attached to a VM.
|
|
*
|
|
* If no heap pool exists yet, and @create is true, we create one.
|
|
*
|
|
* The returned panthor_heap_pool should be released with panthor_heap_pool_put().
|
|
*
|
|
* Return: A valid pointer on success, an ERR_PTR() otherwise.
|
|
*/
|
|
struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
|
|
{
|
|
struct panthor_heap_pool *pool;
|
|
|
|
mutex_lock(&vm->heaps.lock);
|
|
if (!vm->heaps.pool && create) {
|
|
if (vm->destroyed)
|
|
pool = ERR_PTR(-EINVAL);
|
|
else
|
|
pool = panthor_heap_pool_create(vm->ptdev, vm);
|
|
|
|
if (!IS_ERR(pool))
|
|
vm->heaps.pool = panthor_heap_pool_get(pool);
|
|
} else {
|
|
pool = panthor_heap_pool_get(vm->heaps.pool);
|
|
if (!pool)
|
|
pool = ERR_PTR(-ENOENT);
|
|
}
|
|
mutex_unlock(&vm->heaps.lock);
|
|
|
|
return pool;
|
|
}
|
|
|
|
static u64 mair_to_memattr(u64 mair, bool coherent)
|
|
{
|
|
u64 memattr = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
u8 in_attr = mair >> (8 * i), out_attr;
|
|
u8 outer = in_attr >> 4, inner = in_attr & 0xf;
|
|
|
|
/* For caching to be enabled, inner and outer caching policy
|
|
* have to be both write-back, if one of them is write-through
|
|
* or non-cacheable, we just choose non-cacheable. Device
|
|
* memory is also translated to non-cacheable.
|
|
*/
|
|
if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
|
|
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
|
|
AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
|
|
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
|
|
} else {
|
|
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
|
|
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
|
|
/* Use SH_MIDGARD_INNER mode when device isn't coherent,
|
|
* so SH_IS, which is used when IOMMU_CACHE is set, maps
|
|
* to Mali's internal-shareable mode. As per the Mali
|
|
* Spec, inner and outer-shareable modes aren't allowed
|
|
* for WB memory when coherency is disabled.
|
|
* Use SH_CPU_INNER mode when coherency is enabled, so
|
|
* that SH_IS actually maps to the standard definition of
|
|
* inner-shareable.
|
|
*/
|
|
if (!coherent)
|
|
out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
|
|
else
|
|
out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
|
|
}
|
|
|
|
memattr |= (u64)out_attr << (8 * i);
|
|
}
|
|
|
|
return memattr;
|
|
}
|
|
|
|
static void panthor_vma_link(struct panthor_vm *vm,
|
|
struct panthor_vma *vma,
|
|
struct drm_gpuvm_bo *vm_bo)
|
|
{
|
|
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
|
|
|
|
mutex_lock(&bo->gpuva_list_lock);
|
|
drm_gpuva_link(&vma->base, vm_bo);
|
|
drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
|
|
mutex_unlock(&bo->gpuva_list_lock);
|
|
}
|
|
|
|
static void panthor_vma_unlink(struct panthor_vm *vm,
|
|
struct panthor_vma *vma)
|
|
{
|
|
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
|
|
struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
|
|
|
|
mutex_lock(&bo->gpuva_list_lock);
|
|
drm_gpuva_unlink(&vma->base);
|
|
mutex_unlock(&bo->gpuva_list_lock);
|
|
|
|
/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
|
|
* when entering this function, so we can implement deferred VMA
|
|
* destruction. Re-assign it here.
|
|
*/
|
|
vma->base.vm_bo = vm_bo;
|
|
list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
|
|
}
|
|
|
|
static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
|
|
{
|
|
INIT_LIST_HEAD(&vma->node);
|
|
vma->flags = flags;
|
|
}
|
|
|
|
#define PANTHOR_VM_MAP_FLAGS \
|
|
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
|
|
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
|
|
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
|
|
|
|
static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
|
|
{
|
|
struct panthor_vm *vm = priv;
|
|
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
|
|
struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
|
|
int ret;
|
|
|
|
if (!vma)
|
|
return -EINVAL;
|
|
|
|
panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
|
|
|
|
ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
|
|
op_ctx->map.sgt, op->map.gem.offset,
|
|
op->map.va.range);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ref owned by the mapping now, clear the obj field so we don't release the
|
|
* pinning/obj ref behind GPUVA's back.
|
|
*/
|
|
drm_gpuva_map(&vm->base, &vma->base, &op->map);
|
|
panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
|
|
op_ctx->map.vm_bo = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
|
|
void *priv)
|
|
{
|
|
struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
|
|
struct panthor_vm *vm = priv;
|
|
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
|
|
struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
|
|
u64 unmap_start, unmap_range;
|
|
int ret;
|
|
|
|
drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
|
|
ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (op->remap.prev) {
|
|
prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
|
|
panthor_vma_init(prev_vma, unmap_vma->flags);
|
|
}
|
|
|
|
if (op->remap.next) {
|
|
next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
|
|
panthor_vma_init(next_vma, unmap_vma->flags);
|
|
}
|
|
|
|
drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
|
|
next_vma ? &next_vma->base : NULL,
|
|
&op->remap);
|
|
|
|
if (prev_vma) {
|
|
/* panthor_vma_link() transfers the vm_bo ownership to
|
|
* the VMA object. Since the vm_bo we're passing is still
|
|
* owned by the old mapping which will be released when this
|
|
* mapping is destroyed, we need to grab a ref here.
|
|
*/
|
|
panthor_vma_link(vm, prev_vma,
|
|
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
|
|
}
|
|
|
|
if (next_vma) {
|
|
panthor_vma_link(vm, next_vma,
|
|
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
|
|
}
|
|
|
|
panthor_vma_unlink(vm, unmap_vma);
|
|
return 0;
|
|
}
|
|
|
|
static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
|
|
void *priv)
|
|
{
|
|
struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
|
|
struct panthor_vm *vm = priv;
|
|
int ret;
|
|
|
|
ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
|
|
unmap_vma->base.va.range);
|
|
if (drm_WARN_ON(&vm->ptdev->base, ret))
|
|
return ret;
|
|
|
|
drm_gpuva_unmap(&op->unmap);
|
|
panthor_vma_unlink(vm, unmap_vma);
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
|
|
.vm_free = panthor_vm_free,
|
|
.sm_step_map = panthor_gpuva_sm_step_map,
|
|
.sm_step_remap = panthor_gpuva_sm_step_remap,
|
|
.sm_step_unmap = panthor_gpuva_sm_step_unmap,
|
|
};
|
|
|
|
/**
|
|
* panthor_vm_resv() - Get the dma_resv object attached to a VM.
|
|
* @vm: VM to get the dma_resv of.
|
|
*
|
|
* Return: A dma_resv object.
|
|
*/
|
|
struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
|
|
{
|
|
return drm_gpuvm_resv(&vm->base);
|
|
}
|
|
|
|
struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
|
|
{
|
|
if (!vm)
|
|
return NULL;
|
|
|
|
return vm->base.r_obj;
|
|
}
|
|
|
|
static int
|
|
panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
|
|
bool flag_vm_unusable_on_failure)
|
|
{
|
|
u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
|
|
int ret;
|
|
|
|
if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
|
|
return 0;
|
|
|
|
mutex_lock(&vm->op_lock);
|
|
vm->op_ctx = op;
|
|
switch (op_type) {
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
|
|
if (vm->unusable) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
|
|
op->map.vm_bo->obj, op->map.bo_offset);
|
|
break;
|
|
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
|
|
ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (ret && flag_vm_unusable_on_failure)
|
|
vm->unusable = true;
|
|
|
|
vm->op_ctx = NULL;
|
|
mutex_unlock(&vm->op_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct dma_fence *
|
|
panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
|
|
{
|
|
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
|
|
bool cookie;
|
|
int ret;
|
|
|
|
/* Not only we report an error whose result is propagated to the
|
|
* drm_sched finished fence, but we also flag the VM as unusable, because
|
|
* a failure in the async VM_BIND results in an inconsistent state. VM needs
|
|
* to be destroyed and recreated.
|
|
*/
|
|
cookie = dma_fence_begin_signalling();
|
|
ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
|
|
dma_fence_end_signalling(cookie);
|
|
|
|
return ret ? ERR_PTR(ret) : NULL;
|
|
}
|
|
|
|
static void panthor_vm_bind_job_release(struct kref *kref)
|
|
{
|
|
struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
|
|
|
|
if (job->base.s_fence)
|
|
drm_sched_job_cleanup(&job->base);
|
|
|
|
panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
|
|
panthor_vm_put(job->vm);
|
|
kfree(job);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_bind_job_put() - Release a VM_BIND job reference
|
|
* @sched_job: Job to release the reference on.
|
|
*/
|
|
void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
|
|
{
|
|
struct panthor_vm_bind_job *job =
|
|
container_of(sched_job, struct panthor_vm_bind_job, base);
|
|
|
|
if (sched_job)
|
|
kref_put(&job->refcount, panthor_vm_bind_job_release);
|
|
}
|
|
|
|
static void
|
|
panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
|
|
{
|
|
struct panthor_vm_bind_job *job =
|
|
container_of(sched_job, struct panthor_vm_bind_job, base);
|
|
|
|
drm_sched_job_cleanup(sched_job);
|
|
|
|
/* Do the heavy cleanups asynchronously, so we're out of the
|
|
* dma-signaling path and can acquire dma-resv locks safely.
|
|
*/
|
|
queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
|
|
}
|
|
|
|
static enum drm_gpu_sched_stat
|
|
panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
|
|
{
|
|
WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
|
|
return DRM_GPU_SCHED_STAT_NOMINAL;
|
|
}
|
|
|
|
static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
|
|
.run_job = panthor_vm_bind_run_job,
|
|
.free_job = panthor_vm_bind_free_job,
|
|
.timedout_job = panthor_vm_bind_timedout_job,
|
|
};
|
|
|
|
/**
|
|
* panthor_vm_create() - Create a VM
|
|
* @ptdev: Device.
|
|
* @for_mcu: True if this is the FW MCU VM.
|
|
* @kernel_va_start: Start of the range reserved for kernel BO mapping.
|
|
* @kernel_va_size: Size of the range reserved for kernel BO mapping.
|
|
* @auto_kernel_va_start: Start of the auto-VA kernel range.
|
|
* @auto_kernel_va_size: Size of the auto-VA kernel range.
|
|
*
|
|
* Return: A valid pointer on success, an ERR_PTR() otherwise.
|
|
*/
|
|
struct panthor_vm *
|
|
panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
|
|
u64 kernel_va_start, u64 kernel_va_size,
|
|
u64 auto_kernel_va_start, u64 auto_kernel_va_size)
|
|
{
|
|
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
|
|
u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
|
|
u64 full_va_range = 1ull << va_bits;
|
|
struct drm_gem_object *dummy_gem;
|
|
struct drm_gpu_scheduler *sched;
|
|
struct io_pgtable_cfg pgtbl_cfg;
|
|
u64 mair, min_va, va_range;
|
|
struct panthor_vm *vm;
|
|
int ret;
|
|
|
|
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
|
|
if (!vm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* We allocate a dummy GEM for the VM. */
|
|
dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
|
|
if (!dummy_gem) {
|
|
ret = -ENOMEM;
|
|
goto err_free_vm;
|
|
}
|
|
|
|
mutex_init(&vm->heaps.lock);
|
|
vm->for_mcu = for_mcu;
|
|
vm->ptdev = ptdev;
|
|
mutex_init(&vm->op_lock);
|
|
|
|
if (for_mcu) {
|
|
/* CSF MCU is a cortex M7, and can only address 4G */
|
|
min_va = 0;
|
|
va_range = SZ_4G;
|
|
} else {
|
|
min_va = 0;
|
|
va_range = full_va_range;
|
|
}
|
|
|
|
mutex_init(&vm->mm_lock);
|
|
drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
|
|
vm->kernel_auto_va.start = auto_kernel_va_start;
|
|
vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
|
|
|
|
INIT_LIST_HEAD(&vm->node);
|
|
INIT_LIST_HEAD(&vm->as.lru_node);
|
|
vm->as.id = -1;
|
|
refcount_set(&vm->as.active_cnt, 0);
|
|
|
|
pgtbl_cfg = (struct io_pgtable_cfg) {
|
|
.pgsize_bitmap = SZ_4K | SZ_2M,
|
|
.ias = va_bits,
|
|
.oas = pa_bits,
|
|
.coherent_walk = ptdev->coherent,
|
|
.tlb = &mmu_tlb_ops,
|
|
.iommu_dev = ptdev->base.dev,
|
|
.alloc = alloc_pt,
|
|
.free = free_pt,
|
|
};
|
|
|
|
vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
|
|
if (!vm->pgtbl_ops) {
|
|
ret = -EINVAL;
|
|
goto err_mm_takedown;
|
|
}
|
|
|
|
/* Bind operations are synchronous for now, no timeout needed. */
|
|
ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
|
|
1, 1, 0,
|
|
MAX_SCHEDULE_TIMEOUT, NULL, NULL,
|
|
"panthor-vm-bind", ptdev->base.dev);
|
|
if (ret)
|
|
goto err_free_io_pgtable;
|
|
|
|
sched = &vm->sched;
|
|
ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
|
|
if (ret)
|
|
goto err_sched_fini;
|
|
|
|
mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
|
|
vm->memattr = mair_to_memattr(mair, ptdev->coherent);
|
|
|
|
mutex_lock(&ptdev->mmu->vm.lock);
|
|
list_add_tail(&vm->node, &ptdev->mmu->vm.list);
|
|
|
|
/* If a reset is in progress, stop the scheduler. */
|
|
if (ptdev->mmu->vm.reset_in_progress)
|
|
panthor_vm_stop(vm);
|
|
mutex_unlock(&ptdev->mmu->vm.lock);
|
|
|
|
/* We intentionally leave the reserved range to zero, because we want kernel VMAs
|
|
* to be handled the same way user VMAs are.
|
|
*/
|
|
drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
|
|
DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
|
|
min_va, va_range, 0, 0, &panthor_gpuvm_ops);
|
|
drm_gem_object_put(dummy_gem);
|
|
return vm;
|
|
|
|
err_sched_fini:
|
|
drm_sched_fini(&vm->sched);
|
|
|
|
err_free_io_pgtable:
|
|
free_io_pgtable_ops(vm->pgtbl_ops);
|
|
|
|
err_mm_takedown:
|
|
drm_mm_takedown(&vm->mm);
|
|
drm_gem_object_put(dummy_gem);
|
|
|
|
err_free_vm:
|
|
kfree(vm);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int
|
|
panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
|
|
struct panthor_vm *vm,
|
|
const struct drm_panthor_vm_bind_op *op,
|
|
struct panthor_vm_op_ctx *op_ctx)
|
|
{
|
|
ssize_t vm_pgsz = panthor_vm_page_size(vm);
|
|
struct drm_gem_object *gem;
|
|
int ret;
|
|
|
|
/* Aligned on page size. */
|
|
if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
|
|
return -EINVAL;
|
|
|
|
switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
|
|
gem = drm_gem_object_lookup(file, op->bo_handle);
|
|
ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
|
|
gem ? to_panthor_bo(gem) : NULL,
|
|
op->bo_offset,
|
|
op->size,
|
|
op->va,
|
|
op->flags);
|
|
drm_gem_object_put(gem);
|
|
return ret;
|
|
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
|
|
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (op->bo_handle || op->bo_offset)
|
|
return -EINVAL;
|
|
|
|
return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
|
|
|
|
case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
|
|
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (op->bo_handle || op->bo_offset)
|
|
return -EINVAL;
|
|
|
|
if (op->va || op->size)
|
|
return -EINVAL;
|
|
|
|
if (!op->syncs.count)
|
|
return -EINVAL;
|
|
|
|
panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
|
|
return 0;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
|
|
{
|
|
struct panthor_vm_bind_job *job =
|
|
container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
|
|
|
|
panthor_vm_bind_job_put(&job->base);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_bind_job_create() - Create a VM_BIND job
|
|
* @file: File.
|
|
* @vm: VM targeted by the VM_BIND job.
|
|
* @op: VM operation data.
|
|
*
|
|
* Return: A valid pointer on success, an ERR_PTR() otherwise.
|
|
*/
|
|
struct drm_sched_job *
|
|
panthor_vm_bind_job_create(struct drm_file *file,
|
|
struct panthor_vm *vm,
|
|
const struct drm_panthor_vm_bind_op *op)
|
|
{
|
|
struct panthor_vm_bind_job *job;
|
|
int ret;
|
|
|
|
if (!vm)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (vm->destroyed || vm->unusable)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
job = kzalloc(sizeof(*job), GFP_KERNEL);
|
|
if (!job)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
|
|
if (ret) {
|
|
kfree(job);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
|
|
kref_init(&job->refcount);
|
|
job->vm = panthor_vm_get(vm);
|
|
|
|
ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
|
|
if (ret)
|
|
goto err_put_job;
|
|
|
|
return &job->base;
|
|
|
|
err_put_job:
|
|
panthor_vm_bind_job_put(&job->base);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
|
|
* @exec: The locking/preparation context.
|
|
* @sched_job: The job to prepare resvs on.
|
|
*
|
|
* Locks and prepare the VM resv.
|
|
*
|
|
* If this is a map operation, locks and prepares the GEM resv.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
|
|
struct drm_sched_job *sched_job)
|
|
{
|
|
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
|
|
int ret;
|
|
|
|
/* Acquire the VM lock an reserve a slot for this VM bind job. */
|
|
ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (job->ctx.map.vm_bo) {
|
|
/* Lock/prepare the GEM being mapped. */
|
|
ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
|
|
* @exec: drm_exec context.
|
|
* @sched_job: Job to update the resvs on.
|
|
*/
|
|
void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
|
|
struct drm_sched_job *sched_job)
|
|
{
|
|
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
|
|
|
|
/* Explicit sync => we just register our job finished fence as bookkeep. */
|
|
drm_gpuvm_resv_add_fence(&job->vm->base, exec,
|
|
&sched_job->s_fence->finished,
|
|
DMA_RESV_USAGE_BOOKKEEP,
|
|
DMA_RESV_USAGE_BOOKKEEP);
|
|
}
|
|
|
|
void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
|
|
struct dma_fence *fence,
|
|
enum dma_resv_usage private_usage,
|
|
enum dma_resv_usage extobj_usage)
|
|
{
|
|
drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
|
|
* @file: File.
|
|
* @vm: VM targeted by the VM operation.
|
|
* @op: Data describing the VM operation.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_bind_exec_sync_op(struct drm_file *file,
|
|
struct panthor_vm *vm,
|
|
struct drm_panthor_vm_bind_op *op)
|
|
{
|
|
struct panthor_vm_op_ctx op_ctx;
|
|
int ret;
|
|
|
|
/* No sync objects allowed on synchronous operations. */
|
|
if (op->syncs.count)
|
|
return -EINVAL;
|
|
|
|
if (!op->size)
|
|
return 0;
|
|
|
|
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = panthor_vm_exec_op(vm, &op_ctx, false);
|
|
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_map_bo_range() - Map a GEM object range to a VM
|
|
* @vm: VM to map the GEM to.
|
|
* @bo: GEM object to map.
|
|
* @offset: Offset in the GEM object.
|
|
* @size: Size to map.
|
|
* @va: Virtual address to map the object to.
|
|
* @flags: Combination of drm_panthor_vm_bind_op_flags flags.
|
|
* Only map-related flags are valid.
|
|
*
|
|
* Internal use only. For userspace requests, use
|
|
* panthor_vm_bind_exec_sync_op() instead.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
|
|
u64 offset, u64 size, u64 va, u32 flags)
|
|
{
|
|
struct panthor_vm_op_ctx op_ctx;
|
|
int ret;
|
|
|
|
ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = panthor_vm_exec_op(vm, &op_ctx, false);
|
|
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_unmap_range() - Unmap a portion of the VA space
|
|
* @vm: VM to unmap the region from.
|
|
* @va: Virtual address to unmap. Must be 4k aligned.
|
|
* @size: Size of the region to unmap. Must be 4k aligned.
|
|
*
|
|
* Internal use only. For userspace requests, use
|
|
* panthor_vm_bind_exec_sync_op() instead.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
|
|
{
|
|
struct panthor_vm_op_ctx op_ctx;
|
|
int ret;
|
|
|
|
ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = panthor_vm_exec_op(vm, &op_ctx, false);
|
|
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
|
|
* @exec: Locking/preparation context.
|
|
* @vm: VM targeted by the GPU job.
|
|
* @slot_count: Number of slots to reserve.
|
|
*
|
|
* GPU jobs assume all BOs bound to the VM at the time the job is submitted
|
|
* are available when the job is executed. In order to guarantee that, we
|
|
* need to reserve a slot on all BOs mapped to a VM and update this slot with
|
|
* the job fence after its submission.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
|
|
u32 slot_count)
|
|
{
|
|
int ret;
|
|
|
|
/* Acquire the VM lock and reserve a slot for this GPU job. */
|
|
ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_unplug() - Unplug the MMU logic
|
|
* @ptdev: Device.
|
|
*
|
|
* No access to the MMU regs should be done after this function is called.
|
|
* We suspend the IRQ and disable all VMs to guarantee that.
|
|
*/
|
|
void panthor_mmu_unplug(struct panthor_device *ptdev)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
|
|
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
|
|
|
|
mutex_lock(&ptdev->mmu->as.slots_lock);
|
|
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
|
|
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
|
|
|
|
if (vm) {
|
|
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
|
|
panthor_vm_release_as_locked(vm);
|
|
}
|
|
}
|
|
mutex_unlock(&ptdev->mmu->as.slots_lock);
|
|
}
|
|
|
|
static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
|
|
{
|
|
destroy_workqueue(res);
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_init() - Initialize the MMU logic.
|
|
* @ptdev: Device.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_mmu_init(struct panthor_device *ptdev)
|
|
{
|
|
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
|
|
struct panthor_mmu *mmu;
|
|
int ret, irq;
|
|
|
|
mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
|
|
if (!mmu)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&mmu->as.lru_list);
|
|
|
|
ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_LIST_HEAD(&mmu->vm.list);
|
|
ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ptdev->mmu = mmu;
|
|
|
|
irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
|
|
if (irq <= 0)
|
|
return -ENODEV;
|
|
|
|
ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
|
|
panthor_mmu_fault_mask(ptdev, ~0));
|
|
if (ret)
|
|
return ret;
|
|
|
|
mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
|
|
if (!mmu->vm.wq)
|
|
return -ENOMEM;
|
|
|
|
/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
|
|
* which passes iova as an unsigned long. Patch the mmu_features to reflect this
|
|
* limitation.
|
|
*/
|
|
if (va_bits > BITS_PER_LONG) {
|
|
ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
|
|
ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
|
|
}
|
|
|
|
return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_pt_cache_init() - Initialize the page table cache.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int panthor_mmu_pt_cache_init(void)
|
|
{
|
|
pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
|
|
if (!pt_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* panthor_mmu_pt_cache_fini() - Destroy the page table cache.
|
|
*/
|
|
void panthor_mmu_pt_cache_fini(void)
|
|
{
|
|
kmem_cache_destroy(pt_cache);
|
|
}
|