2658 lines
69 KiB
C
2658 lines
69 KiB
C
/*
|
|
*
|
|
* (C) COPYRIGHT 2010-2017 ARM Limited. All rights reserved.
|
|
*
|
|
* This program is free software and is provided to you under the terms of the
|
|
* GNU General Public License version 2 as published by the Free Software
|
|
* Foundation, and any use by you of this program is subject to the terms
|
|
* of such GNU licence.
|
|
*
|
|
* A copy of the licence is included with the program, and can also be obtained
|
|
* from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* @file mali_kbase_mem.c
|
|
* Base kernel memory APIs
|
|
*/
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
#include <linux/dma-buf.h>
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
#ifdef CONFIG_UMP
|
|
#include <linux/ump.h>
|
|
#endif /* CONFIG_UMP */
|
|
#include <linux/kernel.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/version.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include <mali_kbase_config.h>
|
|
#include <mali_kbase.h>
|
|
#include <mali_midg_regmap.h>
|
|
#include <mali_kbase_cache_policy.h>
|
|
#include <mali_kbase_hw.h>
|
|
#include <mali_kbase_hwaccess_time.h>
|
|
#include <mali_kbase_tlstream.h>
|
|
|
|
/* This function finds out which RB tree the given GPU VA region belongs to
|
|
* based on the region zone */
|
|
static struct rb_root *kbase_reg_flags_to_rbtree(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg)
|
|
{
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
switch (reg->flags & KBASE_REG_ZONE_MASK) {
|
|
case KBASE_REG_ZONE_CUSTOM_VA:
|
|
rbtree = &kctx->reg_rbtree_custom;
|
|
break;
|
|
case KBASE_REG_ZONE_EXEC:
|
|
rbtree = &kctx->reg_rbtree_exec;
|
|
break;
|
|
case KBASE_REG_ZONE_SAME_VA:
|
|
rbtree = &kctx->reg_rbtree_same;
|
|
fallthrough;
|
|
default:
|
|
rbtree = &kctx->reg_rbtree_same;
|
|
break;
|
|
}
|
|
|
|
return rbtree;
|
|
}
|
|
|
|
/* This function finds out which RB tree the given pfn from the GPU VA belongs
|
|
* to based on the memory zone the pfn refers to */
|
|
static struct rb_root *kbase_gpu_va_to_rbtree(struct kbase_context *kctx,
|
|
u64 gpu_pfn)
|
|
{
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
#endif /* CONFIG_64BIT */
|
|
if (gpu_pfn >= KBASE_REG_ZONE_CUSTOM_VA_BASE)
|
|
rbtree = &kctx->reg_rbtree_custom;
|
|
else if (gpu_pfn >= KBASE_REG_ZONE_EXEC_BASE)
|
|
rbtree = &kctx->reg_rbtree_exec;
|
|
else
|
|
rbtree = &kctx->reg_rbtree_same;
|
|
#ifdef CONFIG_64BIT
|
|
} else {
|
|
if (gpu_pfn >= kctx->same_va_end)
|
|
rbtree = &kctx->reg_rbtree_custom;
|
|
else
|
|
rbtree = &kctx->reg_rbtree_same;
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
return rbtree;
|
|
}
|
|
|
|
/* This function inserts a region into the tree. */
|
|
static void kbase_region_tracker_insert(struct kbase_context *kctx,
|
|
struct kbase_va_region *new_reg)
|
|
{
|
|
u64 start_pfn = new_reg->start_pfn;
|
|
struct rb_node **link = NULL;
|
|
struct rb_node *parent = NULL;
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
rbtree = kbase_reg_flags_to_rbtree(kctx, new_reg);
|
|
|
|
link = &(rbtree->rb_node);
|
|
/* Find the right place in the tree using tree search */
|
|
while (*link) {
|
|
struct kbase_va_region *old_reg;
|
|
|
|
parent = *link;
|
|
old_reg = rb_entry(parent, struct kbase_va_region, rblink);
|
|
|
|
/* RBTree requires no duplicate entries. */
|
|
KBASE_DEBUG_ASSERT(old_reg->start_pfn != start_pfn);
|
|
|
|
if (old_reg->start_pfn > start_pfn)
|
|
link = &(*link)->rb_left;
|
|
else
|
|
link = &(*link)->rb_right;
|
|
}
|
|
|
|
/* Put the new node there, and rebalance tree */
|
|
rb_link_node(&(new_reg->rblink), parent, link);
|
|
|
|
rb_insert_color(&(new_reg->rblink), rbtree);
|
|
}
|
|
|
|
/* Find allocated region enclosing free range. */
|
|
static struct kbase_va_region *kbase_region_tracker_find_region_enclosing_range_free(
|
|
struct kbase_context *kctx, u64 start_pfn, size_t nr_pages)
|
|
{
|
|
struct rb_node *rbnode = NULL;
|
|
struct kbase_va_region *reg = NULL;
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
u64 end_pfn = start_pfn + nr_pages;
|
|
|
|
rbtree = kbase_gpu_va_to_rbtree(kctx, start_pfn);
|
|
|
|
rbnode = rbtree->rb_node;
|
|
|
|
while (rbnode) {
|
|
u64 tmp_start_pfn, tmp_end_pfn;
|
|
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
|
tmp_start_pfn = reg->start_pfn;
|
|
tmp_end_pfn = reg->start_pfn + reg->nr_pages;
|
|
|
|
/* If start is lower than this, go left. */
|
|
if (start_pfn < tmp_start_pfn)
|
|
rbnode = rbnode->rb_left;
|
|
/* If end is higher than this, then go right. */
|
|
else if (end_pfn > tmp_end_pfn)
|
|
rbnode = rbnode->rb_right;
|
|
else /* Enclosing */
|
|
return reg;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find region enclosing given address. */
|
|
struct kbase_va_region *kbase_region_tracker_find_region_enclosing_address(struct kbase_context *kctx, u64 gpu_addr)
|
|
{
|
|
struct rb_node *rbnode;
|
|
struct kbase_va_region *reg;
|
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
KBASE_DEBUG_ASSERT(NULL != kctx);
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
rbtree = kbase_gpu_va_to_rbtree(kctx, gpu_pfn);
|
|
|
|
rbnode = rbtree->rb_node;
|
|
|
|
while (rbnode) {
|
|
u64 tmp_start_pfn, tmp_end_pfn;
|
|
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
|
tmp_start_pfn = reg->start_pfn;
|
|
tmp_end_pfn = reg->start_pfn + reg->nr_pages;
|
|
|
|
/* If start is lower than this, go left. */
|
|
if (gpu_pfn < tmp_start_pfn)
|
|
rbnode = rbnode->rb_left;
|
|
/* If end is higher than this, then go right. */
|
|
else if (gpu_pfn >= tmp_end_pfn)
|
|
rbnode = rbnode->rb_right;
|
|
else /* Enclosing */
|
|
return reg;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_region_tracker_find_region_enclosing_address);
|
|
|
|
/* Find region with given base address */
|
|
struct kbase_va_region *kbase_region_tracker_find_region_base_address(struct kbase_context *kctx, u64 gpu_addr)
|
|
{
|
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
|
struct rb_node *rbnode = NULL;
|
|
struct kbase_va_region *reg = NULL;
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
KBASE_DEBUG_ASSERT(NULL != kctx);
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
rbtree = kbase_gpu_va_to_rbtree(kctx, gpu_pfn);
|
|
|
|
rbnode = rbtree->rb_node;
|
|
|
|
while (rbnode) {
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
|
if (reg->start_pfn > gpu_pfn)
|
|
rbnode = rbnode->rb_left;
|
|
else if (reg->start_pfn < gpu_pfn)
|
|
rbnode = rbnode->rb_right;
|
|
else
|
|
return reg;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_region_tracker_find_region_base_address);
|
|
|
|
/* Find region meeting given requirements */
|
|
static struct kbase_va_region *kbase_region_tracker_find_region_meeting_reqs(struct kbase_context *kctx, struct kbase_va_region *reg_reqs, size_t nr_pages, size_t align)
|
|
{
|
|
struct rb_node *rbnode = NULL;
|
|
struct kbase_va_region *reg = NULL;
|
|
struct rb_root *rbtree = NULL;
|
|
|
|
/* Note that this search is a linear search, as we do not have a target
|
|
address in mind, so does not benefit from the rbtree search */
|
|
|
|
rbtree = kbase_reg_flags_to_rbtree(kctx, reg_reqs);
|
|
|
|
rbnode = rb_first(rbtree);
|
|
|
|
while (rbnode) {
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
|
if ((reg->nr_pages >= nr_pages) &&
|
|
(reg->flags & KBASE_REG_FREE)) {
|
|
/* Check alignment */
|
|
u64 start_pfn = (reg->start_pfn + align - 1) & ~(align - 1);
|
|
|
|
if ((start_pfn >= reg->start_pfn) &&
|
|
(start_pfn <= (reg->start_pfn + reg->nr_pages - 1)) &&
|
|
((start_pfn + nr_pages - 1) <= (reg->start_pfn + reg->nr_pages - 1)))
|
|
return reg;
|
|
}
|
|
rbnode = rb_next(rbnode);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* @brief Remove a region object from the global list.
|
|
*
|
|
* The region reg is removed, possibly by merging with other free and
|
|
* compatible adjacent regions. It must be called with the context
|
|
* region lock held. The associated memory is not released (see
|
|
* kbase_free_alloced_region). Internal use only.
|
|
*/
|
|
static int kbase_remove_va_region(struct kbase_context *kctx, struct kbase_va_region *reg)
|
|
{
|
|
struct rb_node *rbprev;
|
|
struct kbase_va_region *prev = NULL;
|
|
struct rb_node *rbnext;
|
|
struct kbase_va_region *next = NULL;
|
|
struct rb_root *reg_rbtree = NULL;
|
|
|
|
int merged_front = 0;
|
|
int merged_back = 0;
|
|
int err = 0;
|
|
|
|
reg_rbtree = kbase_reg_flags_to_rbtree(kctx, reg);
|
|
|
|
/* Try to merge with the previous block first */
|
|
rbprev = rb_prev(&(reg->rblink));
|
|
if (rbprev) {
|
|
prev = rb_entry(rbprev, struct kbase_va_region, rblink);
|
|
if (prev->flags & KBASE_REG_FREE) {
|
|
/* We're compatible with the previous VMA,
|
|
* merge with it */
|
|
WARN_ON((prev->flags & KBASE_REG_ZONE_MASK) !=
|
|
(reg->flags & KBASE_REG_ZONE_MASK));
|
|
prev->nr_pages += reg->nr_pages;
|
|
rb_erase(&(reg->rblink), reg_rbtree);
|
|
reg = prev;
|
|
merged_front = 1;
|
|
}
|
|
}
|
|
|
|
/* Try to merge with the next block second */
|
|
/* Note we do the lookup here as the tree may have been rebalanced. */
|
|
rbnext = rb_next(&(reg->rblink));
|
|
if (rbnext) {
|
|
/* We're compatible with the next VMA, merge with it */
|
|
next = rb_entry(rbnext, struct kbase_va_region, rblink);
|
|
if (next->flags & KBASE_REG_FREE) {
|
|
WARN_ON((next->flags & KBASE_REG_ZONE_MASK) !=
|
|
(reg->flags & KBASE_REG_ZONE_MASK));
|
|
next->start_pfn = reg->start_pfn;
|
|
next->nr_pages += reg->nr_pages;
|
|
rb_erase(&(reg->rblink), reg_rbtree);
|
|
merged_back = 1;
|
|
if (merged_front) {
|
|
/* We already merged with prev, free it */
|
|
kbase_free_alloced_region(reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we failed to merge then we need to add a new block */
|
|
if (!(merged_front || merged_back)) {
|
|
/*
|
|
* We didn't merge anything. Add a new free
|
|
* placeholder and remove the original one.
|
|
*/
|
|
struct kbase_va_region *free_reg;
|
|
|
|
free_reg = kbase_alloc_free_region(kctx, reg->start_pfn, reg->nr_pages, reg->flags & KBASE_REG_ZONE_MASK);
|
|
if (!free_reg) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
rb_replace_node(&(reg->rblink), &(free_reg->rblink), reg_rbtree);
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_remove_va_region);
|
|
|
|
/**
|
|
* @brief Insert a VA region to the list, replacing the current at_reg.
|
|
*/
|
|
static int kbase_insert_va_region_nolock(struct kbase_context *kctx, struct kbase_va_region *new_reg, struct kbase_va_region *at_reg, u64 start_pfn, size_t nr_pages)
|
|
{
|
|
struct rb_root *reg_rbtree = NULL;
|
|
int err = 0;
|
|
|
|
reg_rbtree = kbase_reg_flags_to_rbtree(kctx, at_reg);
|
|
|
|
/* Must be a free region */
|
|
KBASE_DEBUG_ASSERT((at_reg->flags & KBASE_REG_FREE) != 0);
|
|
/* start_pfn should be contained within at_reg */
|
|
KBASE_DEBUG_ASSERT((start_pfn >= at_reg->start_pfn) && (start_pfn < at_reg->start_pfn + at_reg->nr_pages));
|
|
/* at least nr_pages from start_pfn should be contained within at_reg */
|
|
KBASE_DEBUG_ASSERT(start_pfn + nr_pages <= at_reg->start_pfn + at_reg->nr_pages);
|
|
|
|
new_reg->start_pfn = start_pfn;
|
|
new_reg->nr_pages = nr_pages;
|
|
|
|
/* Regions are a whole use, so swap and delete old one. */
|
|
if (at_reg->start_pfn == start_pfn && at_reg->nr_pages == nr_pages) {
|
|
rb_replace_node(&(at_reg->rblink), &(new_reg->rblink),
|
|
reg_rbtree);
|
|
kbase_free_alloced_region(at_reg);
|
|
}
|
|
/* New region replaces the start of the old one, so insert before. */
|
|
else if (at_reg->start_pfn == start_pfn) {
|
|
at_reg->start_pfn += nr_pages;
|
|
KBASE_DEBUG_ASSERT(at_reg->nr_pages >= nr_pages);
|
|
at_reg->nr_pages -= nr_pages;
|
|
|
|
kbase_region_tracker_insert(kctx, new_reg);
|
|
}
|
|
/* New region replaces the end of the old one, so insert after. */
|
|
else if ((at_reg->start_pfn + at_reg->nr_pages) == (start_pfn + nr_pages)) {
|
|
at_reg->nr_pages -= nr_pages;
|
|
|
|
kbase_region_tracker_insert(kctx, new_reg);
|
|
}
|
|
/* New region splits the old one, so insert and create new */
|
|
else {
|
|
struct kbase_va_region *new_front_reg;
|
|
|
|
new_front_reg = kbase_alloc_free_region(kctx,
|
|
at_reg->start_pfn,
|
|
start_pfn - at_reg->start_pfn,
|
|
at_reg->flags & KBASE_REG_ZONE_MASK);
|
|
|
|
if (new_front_reg) {
|
|
at_reg->nr_pages -= nr_pages + new_front_reg->nr_pages;
|
|
at_reg->start_pfn = start_pfn + nr_pages;
|
|
|
|
kbase_region_tracker_insert(kctx, new_front_reg);
|
|
kbase_region_tracker_insert(kctx, new_reg);
|
|
} else {
|
|
err = -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* @brief Add a VA region to the list.
|
|
*/
|
|
int kbase_add_va_region(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg, u64 addr,
|
|
size_t nr_pages, size_t align)
|
|
{
|
|
struct kbase_va_region *tmp;
|
|
u64 gpu_pfn = addr >> PAGE_SHIFT;
|
|
int err = 0;
|
|
|
|
KBASE_DEBUG_ASSERT(NULL != kctx);
|
|
KBASE_DEBUG_ASSERT(NULL != reg);
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
if (!align)
|
|
align = 1;
|
|
|
|
/* must be a power of 2 */
|
|
KBASE_DEBUG_ASSERT((align & (align - 1)) == 0);
|
|
KBASE_DEBUG_ASSERT(nr_pages > 0);
|
|
|
|
/* Path 1: Map a specific address. Find the enclosing region, which *must* be free. */
|
|
if (gpu_pfn) {
|
|
struct device *dev = kctx->kbdev->dev;
|
|
|
|
KBASE_DEBUG_ASSERT(!(gpu_pfn & (align - 1)));
|
|
|
|
tmp = kbase_region_tracker_find_region_enclosing_range_free(kctx, gpu_pfn, nr_pages);
|
|
if (!tmp) {
|
|
dev_warn(dev, "Enclosing region not found: 0x%08llx gpu_pfn, %zu nr_pages", gpu_pfn, nr_pages);
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
if (!(tmp->flags & KBASE_REG_FREE)) {
|
|
dev_warn(dev, "Zone mismatch: %lu != %lu", tmp->flags & KBASE_REG_ZONE_MASK, reg->flags & KBASE_REG_ZONE_MASK);
|
|
dev_warn(dev, "!(tmp->flags & KBASE_REG_FREE): tmp->start_pfn=0x%llx tmp->flags=0x%lx tmp->nr_pages=0x%zx gpu_pfn=0x%llx nr_pages=0x%zx\n", tmp->start_pfn, tmp->flags, tmp->nr_pages, gpu_pfn, nr_pages);
|
|
dev_warn(dev, "in function %s (%p, %p, 0x%llx, 0x%zx, 0x%zx)\n", __func__, kctx, reg, addr, nr_pages, align);
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
|
|
err = kbase_insert_va_region_nolock(kctx, reg, tmp, gpu_pfn, nr_pages);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to insert va region");
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
|
|
goto exit;
|
|
}
|
|
|
|
/* Path 2: Map any free address which meets the requirements. */
|
|
{
|
|
u64 start_pfn;
|
|
|
|
/*
|
|
* Depending on the zone the allocation request is for
|
|
* we might need to retry it.
|
|
*/
|
|
do {
|
|
tmp = kbase_region_tracker_find_region_meeting_reqs(
|
|
kctx, reg, nr_pages, align);
|
|
if (tmp) {
|
|
start_pfn = (tmp->start_pfn + align - 1) &
|
|
~(align - 1);
|
|
err = kbase_insert_va_region_nolock(kctx, reg,
|
|
tmp, start_pfn, nr_pages);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the allocation is not from the same zone as JIT
|
|
* then don't retry, we're out of VA and there is
|
|
* nothing which can be done about it.
|
|
*/
|
|
if ((reg->flags & KBASE_REG_ZONE_MASK) !=
|
|
KBASE_REG_ZONE_CUSTOM_VA)
|
|
break;
|
|
} while (kbase_jit_evict(kctx));
|
|
|
|
if (!tmp)
|
|
err = -ENOMEM;
|
|
}
|
|
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_add_va_region);
|
|
|
|
/**
|
|
* @brief Initialize the internal region tracker data structure.
|
|
*/
|
|
static void kbase_region_tracker_ds_init(struct kbase_context *kctx,
|
|
struct kbase_va_region *same_va_reg,
|
|
struct kbase_va_region *exec_reg,
|
|
struct kbase_va_region *custom_va_reg)
|
|
{
|
|
kctx->reg_rbtree_same = RB_ROOT;
|
|
kbase_region_tracker_insert(kctx, same_va_reg);
|
|
|
|
/* Although exec and custom_va_reg don't always exist,
|
|
* initialize unconditionally because of the mem_view debugfs
|
|
* implementation which relies on these being empty */
|
|
kctx->reg_rbtree_exec = RB_ROOT;
|
|
kctx->reg_rbtree_custom = RB_ROOT;
|
|
|
|
if (exec_reg)
|
|
kbase_region_tracker_insert(kctx, exec_reg);
|
|
if (custom_va_reg)
|
|
kbase_region_tracker_insert(kctx, custom_va_reg);
|
|
}
|
|
|
|
static void kbase_region_tracker_erase_rbtree(struct rb_root *rbtree)
|
|
{
|
|
struct rb_node *rbnode;
|
|
struct kbase_va_region *reg;
|
|
|
|
do {
|
|
rbnode = rb_first(rbtree);
|
|
if (rbnode) {
|
|
rb_erase(rbnode, rbtree);
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
|
kbase_free_alloced_region(reg);
|
|
}
|
|
} while (rbnode);
|
|
}
|
|
|
|
void kbase_region_tracker_term(struct kbase_context *kctx)
|
|
{
|
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_same);
|
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_exec);
|
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_custom);
|
|
}
|
|
|
|
/**
|
|
* Initialize the region tracker data structure.
|
|
*/
|
|
int kbase_region_tracker_init(struct kbase_context *kctx)
|
|
{
|
|
struct kbase_va_region *same_va_reg;
|
|
struct kbase_va_region *exec_reg = NULL;
|
|
struct kbase_va_region *custom_va_reg = NULL;
|
|
size_t same_va_bits = sizeof(void *) * BITS_PER_BYTE;
|
|
u64 custom_va_size = KBASE_REG_ZONE_CUSTOM_VA_SIZE;
|
|
u64 gpu_va_limit = (1ULL << kctx->kbdev->gpu_props.mmu.va_bits) >> PAGE_SHIFT;
|
|
u64 same_va_pages;
|
|
int err;
|
|
|
|
/* Take the lock as kbase_free_alloced_region requires it */
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
#if defined(CONFIG_ARM64)
|
|
same_va_bits = VA_BITS;
|
|
#elif defined(CONFIG_X86_64)
|
|
same_va_bits = 47;
|
|
#elif defined(CONFIG_64BIT)
|
|
#error Unsupported 64-bit architecture
|
|
#endif
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT))
|
|
same_va_bits = 32;
|
|
else if (kbase_hw_has_feature(kctx->kbdev, BASE_HW_FEATURE_33BIT_VA))
|
|
same_va_bits = 33;
|
|
#endif
|
|
|
|
if (kctx->kbdev->gpu_props.mmu.va_bits < same_va_bits) {
|
|
err = -EINVAL;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
same_va_pages = (1ULL << (same_va_bits - PAGE_SHIFT)) - 1;
|
|
/* all have SAME_VA */
|
|
same_va_reg = kbase_alloc_free_region(kctx, 1,
|
|
same_va_pages,
|
|
KBASE_REG_ZONE_SAME_VA);
|
|
|
|
if (!same_va_reg) {
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* 32-bit clients have exec and custom VA zones */
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
#endif
|
|
if (gpu_va_limit <= KBASE_REG_ZONE_CUSTOM_VA_BASE) {
|
|
err = -EINVAL;
|
|
goto fail_free_same_va;
|
|
}
|
|
/* If the current size of TMEM is out of range of the
|
|
* virtual address space addressable by the MMU then
|
|
* we should shrink it to fit
|
|
*/
|
|
if ((KBASE_REG_ZONE_CUSTOM_VA_BASE + KBASE_REG_ZONE_CUSTOM_VA_SIZE) >= gpu_va_limit)
|
|
custom_va_size = gpu_va_limit - KBASE_REG_ZONE_CUSTOM_VA_BASE;
|
|
|
|
exec_reg = kbase_alloc_free_region(kctx,
|
|
KBASE_REG_ZONE_EXEC_BASE,
|
|
KBASE_REG_ZONE_EXEC_SIZE,
|
|
KBASE_REG_ZONE_EXEC);
|
|
|
|
if (!exec_reg) {
|
|
err = -ENOMEM;
|
|
goto fail_free_same_va;
|
|
}
|
|
|
|
custom_va_reg = kbase_alloc_free_region(kctx,
|
|
KBASE_REG_ZONE_CUSTOM_VA_BASE,
|
|
custom_va_size, KBASE_REG_ZONE_CUSTOM_VA);
|
|
|
|
if (!custom_va_reg) {
|
|
err = -ENOMEM;
|
|
goto fail_free_exec;
|
|
}
|
|
#ifdef CONFIG_64BIT
|
|
}
|
|
#endif
|
|
|
|
kbase_region_tracker_ds_init(kctx, same_va_reg, exec_reg, custom_va_reg);
|
|
|
|
kctx->same_va_end = same_va_pages + 1;
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return 0;
|
|
|
|
fail_free_exec:
|
|
kbase_free_alloced_region(exec_reg);
|
|
fail_free_same_va:
|
|
kbase_free_alloced_region(same_va_reg);
|
|
fail_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return err;
|
|
}
|
|
|
|
int kbase_region_tracker_init_jit(struct kbase_context *kctx, u64 jit_va_pages)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
struct kbase_va_region *same_va;
|
|
struct kbase_va_region *custom_va_reg;
|
|
u64 same_va_bits;
|
|
u64 total_va_size;
|
|
int err;
|
|
|
|
/*
|
|
* Nothing to do for 32-bit clients, JIT uses the existing
|
|
* custom VA zone.
|
|
*/
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT))
|
|
return 0;
|
|
|
|
#if defined(CONFIG_ARM64)
|
|
same_va_bits = VA_BITS;
|
|
#elif defined(CONFIG_X86_64)
|
|
same_va_bits = 47;
|
|
#elif defined(CONFIG_64BIT)
|
|
#error Unsupported 64-bit architecture
|
|
#endif
|
|
|
|
if (kbase_hw_has_feature(kctx->kbdev, BASE_HW_FEATURE_33BIT_VA))
|
|
same_va_bits = 33;
|
|
|
|
total_va_size = (1ULL << (same_va_bits - PAGE_SHIFT)) - 1;
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/*
|
|
* Modify the same VA free region after creation. Be careful to ensure
|
|
* that allocations haven't been made as they could cause an overlap
|
|
* to happen with existing same VA allocations and the custom VA zone.
|
|
*/
|
|
same_va = kbase_region_tracker_find_region_base_address(kctx,
|
|
PAGE_SIZE);
|
|
if (!same_va) {
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
/* The region flag or region size has changed since creation so bail. */
|
|
if ((!(same_va->flags & KBASE_REG_FREE)) ||
|
|
(same_va->nr_pages != total_va_size)) {
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
if (same_va->nr_pages < jit_va_pages ||
|
|
kctx->same_va_end < jit_va_pages) {
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
/* It's safe to adjust the same VA zone now */
|
|
same_va->nr_pages -= jit_va_pages;
|
|
kctx->same_va_end -= jit_va_pages;
|
|
|
|
/*
|
|
* Create a custom VA zone at the end of the VA for allocations which
|
|
* JIT can use so it doesn't have to allocate VA from the kernel.
|
|
*/
|
|
custom_va_reg = kbase_alloc_free_region(kctx,
|
|
kctx->same_va_end,
|
|
jit_va_pages,
|
|
KBASE_REG_ZONE_CUSTOM_VA);
|
|
|
|
if (!custom_va_reg) {
|
|
/*
|
|
* The context will be destroyed if we fail here so no point
|
|
* reverting the change we made to same_va.
|
|
*/
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
kbase_region_tracker_insert(kctx, custom_va_reg);
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return 0;
|
|
|
|
fail_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return err;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int kbase_mem_init(struct kbase_device *kbdev)
|
|
{
|
|
struct kbasep_mem_device *memdev;
|
|
|
|
KBASE_DEBUG_ASSERT(kbdev);
|
|
|
|
memdev = &kbdev->memdev;
|
|
kbdev->mem_pool_max_size_default = KBASE_MEM_POOL_MAX_SIZE_KCTX;
|
|
|
|
/* Initialize memory usage */
|
|
atomic_set(&memdev->used_pages, 0);
|
|
|
|
return kbase_mem_pool_init(&kbdev->mem_pool,
|
|
KBASE_MEM_POOL_MAX_SIZE_KBDEV, kbdev, NULL);
|
|
}
|
|
|
|
void kbase_mem_halt(struct kbase_device *kbdev)
|
|
{
|
|
CSTD_UNUSED(kbdev);
|
|
}
|
|
|
|
void kbase_mem_term(struct kbase_device *kbdev)
|
|
{
|
|
struct kbasep_mem_device *memdev;
|
|
int pages;
|
|
|
|
KBASE_DEBUG_ASSERT(kbdev);
|
|
|
|
memdev = &kbdev->memdev;
|
|
|
|
pages = atomic_read(&memdev->used_pages);
|
|
if (pages != 0)
|
|
dev_warn(kbdev->dev, "%s: %d pages in use!\n", __func__, pages);
|
|
|
|
kbase_mem_pool_term(&kbdev->mem_pool);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_mem_term);
|
|
|
|
|
|
|
|
|
|
/**
|
|
* @brief Allocate a free region object.
|
|
*
|
|
* The allocated object is not part of any list yet, and is flagged as
|
|
* KBASE_REG_FREE. No mapping is allocated yet.
|
|
*
|
|
* zone is KBASE_REG_ZONE_CUSTOM_VA, KBASE_REG_ZONE_SAME_VA, or KBASE_REG_ZONE_EXEC
|
|
*
|
|
*/
|
|
struct kbase_va_region *kbase_alloc_free_region(struct kbase_context *kctx, u64 start_pfn, size_t nr_pages, int zone)
|
|
{
|
|
struct kbase_va_region *new_reg;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
|
|
/* zone argument should only contain zone related region flags */
|
|
KBASE_DEBUG_ASSERT((zone & ~KBASE_REG_ZONE_MASK) == 0);
|
|
KBASE_DEBUG_ASSERT(nr_pages > 0);
|
|
/* 64-bit address range is the max */
|
|
KBASE_DEBUG_ASSERT(start_pfn + nr_pages <= (U64_MAX / PAGE_SIZE));
|
|
|
|
new_reg = kzalloc(sizeof(*new_reg), GFP_KERNEL);
|
|
|
|
if (!new_reg)
|
|
return NULL;
|
|
|
|
new_reg->cpu_alloc = NULL; /* no alloc bound yet */
|
|
new_reg->gpu_alloc = NULL; /* no alloc bound yet */
|
|
new_reg->kctx = kctx;
|
|
new_reg->flags = zone | KBASE_REG_FREE;
|
|
|
|
new_reg->flags |= KBASE_REG_GROWABLE;
|
|
|
|
new_reg->start_pfn = start_pfn;
|
|
new_reg->nr_pages = nr_pages;
|
|
|
|
return new_reg;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_alloc_free_region);
|
|
|
|
/**
|
|
* @brief Free a region object.
|
|
*
|
|
* The described region must be freed of any mapping.
|
|
*
|
|
* If the region is not flagged as KBASE_REG_FREE, the region's
|
|
* alloc object will be released.
|
|
* It is a bug if no alloc object exists for non-free regions.
|
|
*
|
|
*/
|
|
void kbase_free_alloced_region(struct kbase_va_region *reg)
|
|
{
|
|
if (!(reg->flags & KBASE_REG_FREE)) {
|
|
/*
|
|
* The physical allocation should have been removed from the
|
|
* eviction list before this function is called. However, in the
|
|
* case of abnormal process termination or the app leaking the
|
|
* memory kbase_mem_free_region is not called so it can still be
|
|
* on the list at termination time of the region tracker.
|
|
*/
|
|
if (!list_empty(®->gpu_alloc->evict_node)) {
|
|
/*
|
|
* Unlink the physical allocation before unmaking it
|
|
* evictable so that the allocation isn't grown back to
|
|
* its last backed size as we're going to unmap it
|
|
* anyway.
|
|
*/
|
|
reg->cpu_alloc->reg = NULL;
|
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
|
reg->gpu_alloc->reg = NULL;
|
|
|
|
/*
|
|
* If a region has been made evictable then we must
|
|
* unmake it before trying to free it.
|
|
* If the memory hasn't been reclaimed it will be
|
|
* unmapped and freed below, if it has been reclaimed
|
|
* then the operations below are no-ops.
|
|
*/
|
|
if (reg->flags & KBASE_REG_DONT_NEED) {
|
|
KBASE_DEBUG_ASSERT(reg->cpu_alloc->type ==
|
|
KBASE_MEM_TYPE_NATIVE);
|
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the region from the sticky resource metadata
|
|
* list should it be there.
|
|
*/
|
|
kbase_sticky_resource_release(reg->kctx, NULL,
|
|
reg->start_pfn << PAGE_SHIFT);
|
|
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
/* To detect use-after-free in debug builds */
|
|
KBASE_DEBUG_CODE(reg->flags |= KBASE_REG_FREE);
|
|
}
|
|
kfree(reg);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_free_alloced_region);
|
|
|
|
int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr, size_t nr_pages, size_t align)
|
|
{
|
|
int err;
|
|
size_t i = 0;
|
|
unsigned long attr;
|
|
unsigned long mask = ~KBASE_REG_MEMATTR_MASK;
|
|
|
|
if ((kctx->kbdev->system_coherency == COHERENCY_ACE) &&
|
|
(reg->flags & KBASE_REG_SHARE_BOTH))
|
|
attr = KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_OUTER_WA);
|
|
else
|
|
attr = KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_WRITE_ALLOC);
|
|
|
|
KBASE_DEBUG_ASSERT(NULL != kctx);
|
|
KBASE_DEBUG_ASSERT(NULL != reg);
|
|
|
|
err = kbase_add_va_region(kctx, reg, addr, nr_pages, align);
|
|
if (err)
|
|
return err;
|
|
|
|
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
|
|
u64 stride;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
|
|
alloc = reg->gpu_alloc;
|
|
stride = alloc->imported.alias.stride;
|
|
KBASE_DEBUG_ASSERT(alloc->imported.alias.aliased);
|
|
for (i = 0; i < alloc->imported.alias.nents; i++) {
|
|
if (alloc->imported.alias.aliased[i].alloc) {
|
|
err = kbase_mmu_insert_pages(kctx,
|
|
reg->start_pfn + (i * stride),
|
|
alloc->imported.alias.aliased[i].alloc->pages + alloc->imported.alias.aliased[i].offset,
|
|
alloc->imported.alias.aliased[i].length,
|
|
reg->flags);
|
|
if (err)
|
|
goto bad_insert;
|
|
|
|
kbase_mem_phy_alloc_gpu_mapped(alloc->imported.alias.aliased[i].alloc);
|
|
} else {
|
|
err = kbase_mmu_insert_single_page(kctx,
|
|
reg->start_pfn + i * stride,
|
|
page_to_phys(kctx->aliasing_sink_page),
|
|
alloc->imported.alias.aliased[i].length,
|
|
(reg->flags & mask) | attr);
|
|
|
|
if (err)
|
|
goto bad_insert;
|
|
}
|
|
}
|
|
} else {
|
|
err = kbase_mmu_insert_pages(kctx, reg->start_pfn,
|
|
kbase_get_gpu_phy_pages(reg),
|
|
kbase_reg_current_backed_size(reg),
|
|
reg->flags);
|
|
if (err)
|
|
goto bad_insert;
|
|
kbase_mem_phy_alloc_gpu_mapped(reg->gpu_alloc);
|
|
}
|
|
|
|
return err;
|
|
|
|
bad_insert:
|
|
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
|
|
u64 stride;
|
|
|
|
stride = reg->gpu_alloc->imported.alias.stride;
|
|
KBASE_DEBUG_ASSERT(reg->gpu_alloc->imported.alias.aliased);
|
|
while (i--)
|
|
if (reg->gpu_alloc->imported.alias.aliased[i].alloc) {
|
|
kbase_mmu_teardown_pages(kctx, reg->start_pfn + (i * stride), reg->gpu_alloc->imported.alias.aliased[i].length);
|
|
kbase_mem_phy_alloc_gpu_unmapped(reg->gpu_alloc->imported.alias.aliased[i].alloc);
|
|
}
|
|
}
|
|
|
|
kbase_remove_va_region(kctx, reg);
|
|
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_mmap);
|
|
|
|
static void kbase_jd_user_buf_unmap(struct kbase_context *kctx,
|
|
struct kbase_mem_phy_alloc *alloc, bool writeable);
|
|
|
|
int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg)
|
|
{
|
|
int err;
|
|
|
|
if (reg->start_pfn == 0)
|
|
return 0;
|
|
|
|
if (reg->gpu_alloc && reg->gpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
|
|
size_t i;
|
|
|
|
err = kbase_mmu_teardown_pages(kctx, reg->start_pfn, reg->nr_pages);
|
|
KBASE_DEBUG_ASSERT(reg->gpu_alloc->imported.alias.aliased);
|
|
for (i = 0; i < reg->gpu_alloc->imported.alias.nents; i++)
|
|
if (reg->gpu_alloc->imported.alias.aliased[i].alloc)
|
|
kbase_mem_phy_alloc_gpu_unmapped(reg->gpu_alloc->imported.alias.aliased[i].alloc);
|
|
} else {
|
|
err = kbase_mmu_teardown_pages(kctx, reg->start_pfn, kbase_reg_current_backed_size(reg));
|
|
kbase_mem_phy_alloc_gpu_unmapped(reg->gpu_alloc);
|
|
}
|
|
|
|
if (reg->gpu_alloc && reg->gpu_alloc->type ==
|
|
KBASE_MEM_TYPE_IMPORTED_USER_BUF) {
|
|
struct kbase_alloc_import_user_buf *user_buf =
|
|
®->gpu_alloc->imported.user_buf;
|
|
|
|
if (user_buf->current_mapping_usage_count & PINNED_ON_IMPORT) {
|
|
user_buf->current_mapping_usage_count &=
|
|
~PINNED_ON_IMPORT;
|
|
|
|
kbase_jd_user_buf_unmap(kctx, reg->gpu_alloc,
|
|
(reg->flags & KBASE_REG_GPU_WR));
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
err = kbase_remove_va_region(kctx, reg);
|
|
return err;
|
|
}
|
|
|
|
static struct kbase_cpu_mapping *kbasep_find_enclosing_cpu_mapping(
|
|
struct kbase_context *kctx,
|
|
unsigned long uaddr, size_t size, u64 *offset)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct kbase_cpu_mapping *map;
|
|
unsigned long vm_pgoff_in_region;
|
|
unsigned long vm_off_in_region;
|
|
unsigned long map_start;
|
|
size_t map_size;
|
|
|
|
lockdep_assert_held(¤t->mm->mmap_lock);
|
|
|
|
if ((uintptr_t) uaddr + size < (uintptr_t) uaddr) /* overflow check */
|
|
return NULL;
|
|
|
|
vma = find_vma_intersection(current->mm, uaddr, uaddr+size);
|
|
|
|
if (!vma || vma->vm_start > uaddr)
|
|
return NULL;
|
|
if (vma->vm_ops != &kbase_vm_ops)
|
|
/* Not ours! */
|
|
return NULL;
|
|
|
|
map = vma->vm_private_data;
|
|
|
|
if (map->kctx != kctx)
|
|
/* Not from this context! */
|
|
return NULL;
|
|
|
|
vm_pgoff_in_region = vma->vm_pgoff - map->region->start_pfn;
|
|
vm_off_in_region = vm_pgoff_in_region << PAGE_SHIFT;
|
|
map_start = vma->vm_start - vm_off_in_region;
|
|
map_size = map->region->nr_pages << PAGE_SHIFT;
|
|
|
|
if ((uaddr + size) > (map_start + map_size))
|
|
/* Not within the CPU mapping */
|
|
return NULL;
|
|
|
|
*offset = (uaddr - vma->vm_start) + vm_off_in_region;
|
|
|
|
return map;
|
|
}
|
|
|
|
int kbasep_find_enclosing_cpu_mapping_offset(
|
|
struct kbase_context *kctx,
|
|
unsigned long uaddr, size_t size, u64 *offset)
|
|
{
|
|
struct kbase_cpu_mapping *map;
|
|
|
|
kbase_os_mem_map_lock(kctx);
|
|
|
|
map = kbasep_find_enclosing_cpu_mapping(kctx, uaddr, size, offset);
|
|
|
|
kbase_os_mem_map_unlock(kctx);
|
|
|
|
if (!map)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbasep_find_enclosing_cpu_mapping_offset);
|
|
|
|
void kbase_sync_single(struct kbase_context *kctx,
|
|
phys_addr_t cpu_pa, phys_addr_t gpu_pa,
|
|
off_t offset, size_t size, enum kbase_sync_type sync_fn)
|
|
{
|
|
struct page *cpu_page;
|
|
|
|
cpu_page = pfn_to_page(PFN_DOWN(cpu_pa));
|
|
|
|
if (likely(cpu_pa == gpu_pa)) {
|
|
dma_addr_t dma_addr;
|
|
|
|
BUG_ON(!cpu_page);
|
|
BUG_ON(offset + size > PAGE_SIZE);
|
|
|
|
dma_addr = kbase_dma_addr(cpu_page) + offset;
|
|
if (sync_fn == KBASE_SYNC_TO_CPU)
|
|
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr,
|
|
size, DMA_BIDIRECTIONAL);
|
|
else if (sync_fn == KBASE_SYNC_TO_DEVICE)
|
|
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr,
|
|
size, DMA_BIDIRECTIONAL);
|
|
} else {
|
|
void *src = NULL;
|
|
void *dst = NULL;
|
|
struct page *gpu_page;
|
|
|
|
if (WARN(!gpu_pa, "No GPU PA found for infinite cache op"))
|
|
return;
|
|
|
|
gpu_page = pfn_to_page(PFN_DOWN(gpu_pa));
|
|
|
|
if (sync_fn == KBASE_SYNC_TO_DEVICE) {
|
|
src = ((unsigned char *)kmap(cpu_page)) + offset;
|
|
dst = ((unsigned char *)kmap(gpu_page)) + offset;
|
|
} else if (sync_fn == KBASE_SYNC_TO_CPU) {
|
|
dma_sync_single_for_cpu(kctx->kbdev->dev,
|
|
kbase_dma_addr(gpu_page) + offset,
|
|
size, DMA_BIDIRECTIONAL);
|
|
src = ((unsigned char *)kmap(gpu_page)) + offset;
|
|
dst = ((unsigned char *)kmap(cpu_page)) + offset;
|
|
}
|
|
memcpy(dst, src, size);
|
|
kunmap(gpu_page);
|
|
kunmap(cpu_page);
|
|
if (sync_fn == KBASE_SYNC_TO_DEVICE)
|
|
dma_sync_single_for_device(kctx->kbdev->dev,
|
|
kbase_dma_addr(gpu_page) + offset,
|
|
size, DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
static int kbase_do_syncset(struct kbase_context *kctx,
|
|
struct basep_syncset *sset, enum kbase_sync_type sync_fn)
|
|
{
|
|
int err = 0;
|
|
struct kbase_va_region *reg;
|
|
struct kbase_cpu_mapping *map;
|
|
unsigned long start;
|
|
size_t size;
|
|
phys_addr_t *cpu_pa;
|
|
phys_addr_t *gpu_pa;
|
|
u64 page_off, page_count;
|
|
u64 i;
|
|
u64 offset;
|
|
|
|
kbase_os_mem_map_lock(kctx);
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* find the region where the virtual address is contained */
|
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
|
|
sset->mem_handle.basep.handle);
|
|
if (!reg) {
|
|
dev_warn(kctx->kbdev->dev, "Can't find region at VA 0x%016llX",
|
|
sset->mem_handle.basep.handle);
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!(reg->flags & KBASE_REG_CPU_CACHED))
|
|
goto out_unlock;
|
|
|
|
start = (uintptr_t)sset->user_addr;
|
|
size = (size_t)sset->size;
|
|
|
|
map = kbasep_find_enclosing_cpu_mapping(kctx, start, size, &offset);
|
|
if (!map) {
|
|
dev_warn(kctx->kbdev->dev, "Can't find CPU mapping 0x%016lX for VA 0x%016llX",
|
|
start, sset->mem_handle.basep.handle);
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
page_off = offset >> PAGE_SHIFT;
|
|
offset &= ~PAGE_MASK;
|
|
page_count = (size + offset + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
|
|
cpu_pa = kbase_get_cpu_phy_pages(reg);
|
|
gpu_pa = kbase_get_gpu_phy_pages(reg);
|
|
|
|
if (page_off > reg->nr_pages ||
|
|
page_off + page_count > reg->nr_pages) {
|
|
/* Sync overflows the region */
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Sync first page */
|
|
if (cpu_pa[page_off]) {
|
|
size_t sz = MIN(((size_t) PAGE_SIZE - offset), size);
|
|
|
|
kbase_sync_single(kctx, cpu_pa[page_off], gpu_pa[page_off],
|
|
offset, sz, sync_fn);
|
|
}
|
|
|
|
/* Sync middle pages (if any) */
|
|
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
|
|
/* we grow upwards, so bail on first non-present page */
|
|
if (!cpu_pa[page_off + i])
|
|
break;
|
|
|
|
kbase_sync_single(kctx, cpu_pa[page_off + i],
|
|
gpu_pa[page_off + i], 0, PAGE_SIZE, sync_fn);
|
|
}
|
|
|
|
/* Sync last page (if any) */
|
|
if (page_count > 1 && cpu_pa[page_off + page_count - 1]) {
|
|
size_t sz = ((start + size - 1) & ~PAGE_MASK) + 1;
|
|
|
|
kbase_sync_single(kctx, cpu_pa[page_off + page_count - 1],
|
|
gpu_pa[page_off + page_count - 1], 0, sz,
|
|
sync_fn);
|
|
}
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
kbase_os_mem_map_unlock(kctx);
|
|
return err;
|
|
}
|
|
|
|
int kbase_sync_now(struct kbase_context *kctx, struct basep_syncset *sset)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
KBASE_DEBUG_ASSERT(sset != NULL);
|
|
|
|
if (sset->mem_handle.basep.handle & ~PAGE_MASK) {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"mem_handle: passed parameter is invalid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (sset->type) {
|
|
case BASE_SYNCSET_OP_MSYNC:
|
|
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_DEVICE);
|
|
break;
|
|
|
|
case BASE_SYNCSET_OP_CSYNC:
|
|
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_CPU);
|
|
break;
|
|
|
|
default:
|
|
dev_warn(kctx->kbdev->dev, "Unknown msync op %d\n", sset->type);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_sync_now);
|
|
|
|
/* vm lock must be held */
|
|
int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg)
|
|
{
|
|
int err;
|
|
|
|
KBASE_DEBUG_ASSERT(NULL != kctx);
|
|
KBASE_DEBUG_ASSERT(NULL != reg);
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/*
|
|
* Unlink the physical allocation before unmaking it evictable so
|
|
* that the allocation isn't grown back to its last backed size
|
|
* as we're going to unmap it anyway.
|
|
*/
|
|
reg->cpu_alloc->reg = NULL;
|
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
|
reg->gpu_alloc->reg = NULL;
|
|
|
|
/*
|
|
* If a region has been made evictable then we must unmake it
|
|
* before trying to free it.
|
|
* If the memory hasn't been reclaimed it will be unmapped and freed
|
|
* below, if it has been reclaimed then the operations below are no-ops.
|
|
*/
|
|
if (reg->flags & KBASE_REG_DONT_NEED) {
|
|
KBASE_DEBUG_ASSERT(reg->cpu_alloc->type ==
|
|
KBASE_MEM_TYPE_NATIVE);
|
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
|
}
|
|
|
|
err = kbase_gpu_munmap(kctx, reg);
|
|
if (err) {
|
|
dev_warn(reg->kctx->kbdev->dev, "Could not unmap from the GPU...\n");
|
|
goto out;
|
|
}
|
|
|
|
/* This will also free the physical pages */
|
|
kbase_free_alloced_region(reg);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_mem_free_region);
|
|
|
|
/**
|
|
* @brief Free the region from the GPU and unregister it.
|
|
*
|
|
* This function implements the free operation on a memory segment.
|
|
* It will loudly fail if called with outstanding mappings.
|
|
*/
|
|
int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr)
|
|
{
|
|
int err = 0;
|
|
struct kbase_va_region *reg;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
|
|
if ((gpu_addr & ~PAGE_MASK) && (gpu_addr >= PAGE_SIZE)) {
|
|
dev_warn(kctx->kbdev->dev, "kbase_mem_free: gpu_addr parameter is invalid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (0 == gpu_addr) {
|
|
dev_warn(kctx->kbdev->dev, "gpu_addr 0 is reserved for the ringbuffer and it's an error to try to free it using kbase_mem_free\n");
|
|
return -EINVAL;
|
|
}
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
if (gpu_addr >= BASE_MEM_COOKIE_BASE &&
|
|
gpu_addr < BASE_MEM_FIRST_FREE_ADDRESS) {
|
|
int cookie = PFN_DOWN(gpu_addr - BASE_MEM_COOKIE_BASE);
|
|
|
|
reg = kctx->pending_regions[cookie];
|
|
if (!reg) {
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* ask to unlink the cookie as we'll free it */
|
|
|
|
kctx->pending_regions[cookie] = NULL;
|
|
kctx->cookies |= (1UL << cookie);
|
|
|
|
kbase_free_alloced_region(reg);
|
|
} else {
|
|
/* A real GPU va */
|
|
/* Validate the region */
|
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
|
if (!reg || (reg->flags & KBASE_REG_FREE)) {
|
|
dev_warn(kctx->kbdev->dev, "kbase_mem_free called with nonexistent gpu_addr 0x%llX",
|
|
gpu_addr);
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if ((reg->flags & KBASE_REG_ZONE_MASK) == KBASE_REG_ZONE_SAME_VA) {
|
|
/* SAME_VA must be freed through munmap */
|
|
dev_warn(kctx->kbdev->dev, "%s called on SAME_VA memory 0x%llX", __func__,
|
|
gpu_addr);
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
err = kbase_mem_free_region(kctx, reg);
|
|
}
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_mem_free);
|
|
|
|
int kbase_update_region_flags(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg, unsigned long flags)
|
|
{
|
|
KBASE_DEBUG_ASSERT(NULL != reg);
|
|
KBASE_DEBUG_ASSERT((flags & ~((1ul << BASE_MEM_FLAGS_NR_BITS) - 1)) == 0);
|
|
|
|
reg->flags |= kbase_cache_enabled(flags, reg->nr_pages);
|
|
/* all memory is now growable */
|
|
reg->flags |= KBASE_REG_GROWABLE;
|
|
|
|
if (flags & BASE_MEM_GROW_ON_GPF)
|
|
reg->flags |= KBASE_REG_PF_GROW;
|
|
|
|
if (flags & BASE_MEM_PROT_CPU_WR)
|
|
reg->flags |= KBASE_REG_CPU_WR;
|
|
|
|
if (flags & BASE_MEM_PROT_CPU_RD)
|
|
reg->flags |= KBASE_REG_CPU_RD;
|
|
|
|
if (flags & BASE_MEM_PROT_GPU_WR)
|
|
reg->flags |= KBASE_REG_GPU_WR;
|
|
|
|
if (flags & BASE_MEM_PROT_GPU_RD)
|
|
reg->flags |= KBASE_REG_GPU_RD;
|
|
|
|
if (0 == (flags & BASE_MEM_PROT_GPU_EX))
|
|
reg->flags |= KBASE_REG_GPU_NX;
|
|
|
|
if (!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
|
if (flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED)
|
|
return -EINVAL;
|
|
} else if (flags & (BASE_MEM_COHERENT_SYSTEM |
|
|
BASE_MEM_COHERENT_SYSTEM_REQUIRED)) {
|
|
reg->flags |= KBASE_REG_SHARE_BOTH;
|
|
}
|
|
|
|
if (!(reg->flags & KBASE_REG_SHARE_BOTH) &&
|
|
flags & BASE_MEM_COHERENT_LOCAL) {
|
|
reg->flags |= KBASE_REG_SHARE_IN;
|
|
}
|
|
|
|
/* Set up default MEMATTR usage */
|
|
if (kctx->kbdev->system_coherency == COHERENCY_ACE &&
|
|
(reg->flags & KBASE_REG_SHARE_BOTH)) {
|
|
reg->flags |=
|
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
|
|
} else {
|
|
reg->flags |=
|
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kbase_alloc_phy_pages_helper(
|
|
struct kbase_mem_phy_alloc *alloc,
|
|
size_t nr_pages_requested)
|
|
{
|
|
int new_page_count __maybe_unused;
|
|
size_t old_page_count = alloc->nents;
|
|
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
|
|
KBASE_DEBUG_ASSERT(alloc->imported.kctx);
|
|
|
|
if (nr_pages_requested == 0)
|
|
goto done; /*nothing to do*/
|
|
|
|
new_page_count = kbase_atomic_add_pages(
|
|
nr_pages_requested, &alloc->imported.kctx->used_pages);
|
|
kbase_atomic_add_pages(nr_pages_requested, &alloc->imported.kctx->kbdev->memdev.used_pages);
|
|
|
|
/* Increase mm counters before we allocate pages so that this
|
|
* allocation is visible to the OOM killer */
|
|
kbase_process_page_usage_inc(alloc->imported.kctx, nr_pages_requested);
|
|
|
|
if (kbase_mem_pool_alloc_pages(&alloc->imported.kctx->mem_pool,
|
|
nr_pages_requested, alloc->pages + old_page_count) != 0)
|
|
goto no_alloc;
|
|
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
|
(u32)alloc->imported.kctx->id,
|
|
(u64)new_page_count);
|
|
|
|
alloc->nents += nr_pages_requested;
|
|
done:
|
|
return 0;
|
|
|
|
no_alloc:
|
|
kbase_process_page_usage_dec(alloc->imported.kctx, nr_pages_requested);
|
|
kbase_atomic_sub_pages(nr_pages_requested, &alloc->imported.kctx->used_pages);
|
|
kbase_atomic_sub_pages(nr_pages_requested, &alloc->imported.kctx->kbdev->memdev.used_pages);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int kbase_free_phy_pages_helper(
|
|
struct kbase_mem_phy_alloc *alloc,
|
|
size_t nr_pages_to_free)
|
|
{
|
|
struct kbase_context *kctx = alloc->imported.kctx;
|
|
bool syncback;
|
|
bool reclaimed = (alloc->evicted != 0);
|
|
phys_addr_t *start_free;
|
|
int new_page_count __maybe_unused;
|
|
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
|
|
KBASE_DEBUG_ASSERT(alloc->imported.kctx);
|
|
KBASE_DEBUG_ASSERT(alloc->nents >= nr_pages_to_free);
|
|
|
|
/* early out if nothing to do */
|
|
if (0 == nr_pages_to_free)
|
|
return 0;
|
|
|
|
start_free = alloc->pages + alloc->nents - nr_pages_to_free;
|
|
|
|
syncback = alloc->properties & KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
|
|
|
|
kbase_mem_pool_free_pages(&kctx->mem_pool,
|
|
nr_pages_to_free,
|
|
start_free,
|
|
syncback,
|
|
reclaimed);
|
|
|
|
alloc->nents -= nr_pages_to_free;
|
|
|
|
/*
|
|
* If the allocation was not evicted (i.e. evicted == 0) then
|
|
* the page accounting needs to be done.
|
|
*/
|
|
if (!reclaimed) {
|
|
kbase_process_page_usage_dec(kctx, nr_pages_to_free);
|
|
new_page_count = kbase_atomic_sub_pages(nr_pages_to_free,
|
|
&kctx->used_pages);
|
|
kbase_atomic_sub_pages(nr_pages_to_free,
|
|
&kctx->kbdev->memdev.used_pages);
|
|
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
|
(u32)kctx->id,
|
|
(u64)new_page_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kbase_mem_kref_free(struct kref *kref)
|
|
{
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
|
|
alloc = container_of(kref, struct kbase_mem_phy_alloc, kref);
|
|
|
|
switch (alloc->type) {
|
|
case KBASE_MEM_TYPE_NATIVE: {
|
|
WARN_ON(!alloc->imported.kctx);
|
|
/*
|
|
* The physical allocation must have been removed from the
|
|
* eviction list before trying to free it.
|
|
*/
|
|
WARN_ON(!list_empty(&alloc->evict_node));
|
|
kbase_free_phy_pages_helper(alloc, alloc->nents);
|
|
break;
|
|
}
|
|
case KBASE_MEM_TYPE_ALIAS: {
|
|
/* just call put on the underlying phy allocs */
|
|
size_t i;
|
|
struct kbase_aliased *aliased;
|
|
|
|
aliased = alloc->imported.alias.aliased;
|
|
if (aliased) {
|
|
for (i = 0; i < alloc->imported.alias.nents; i++)
|
|
if (aliased[i].alloc)
|
|
kbase_mem_phy_alloc_put(aliased[i].alloc);
|
|
vfree(aliased);
|
|
}
|
|
break;
|
|
}
|
|
case KBASE_MEM_TYPE_RAW:
|
|
/* raw pages, external cleanup */
|
|
break;
|
|
#ifdef CONFIG_UMP
|
|
case KBASE_MEM_TYPE_IMPORTED_UMP:
|
|
ump_dd_release(alloc->imported.ump_handle);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
case KBASE_MEM_TYPE_IMPORTED_UMM:
|
|
dma_buf_detach(alloc->imported.umm.dma_buf,
|
|
alloc->imported.umm.dma_attachment);
|
|
dma_buf_put(alloc->imported.umm.dma_buf);
|
|
break;
|
|
#endif
|
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF:
|
|
if (alloc->imported.user_buf.mm)
|
|
mmdrop(alloc->imported.user_buf.mm);
|
|
kfree(alloc->imported.user_buf.pages);
|
|
break;
|
|
case KBASE_MEM_TYPE_TB:{
|
|
void *tb;
|
|
|
|
tb = alloc->imported.kctx->jctx.tb;
|
|
kbase_device_trace_buffer_uninstall(alloc->imported.kctx);
|
|
vfree(tb);
|
|
break;
|
|
}
|
|
default:
|
|
WARN(1, "Unexecpted free of type %d\n", alloc->type);
|
|
break;
|
|
}
|
|
|
|
/* Free based on allocation type */
|
|
if (alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
|
|
vfree(alloc);
|
|
else
|
|
kfree(alloc);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_mem_kref_free);
|
|
|
|
int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size)
|
|
{
|
|
KBASE_DEBUG_ASSERT(NULL != reg);
|
|
KBASE_DEBUG_ASSERT(vsize > 0);
|
|
|
|
/* validate user provided arguments */
|
|
if (size > vsize || vsize > reg->nr_pages)
|
|
goto out_term;
|
|
|
|
/* Prevent vsize*sizeof from wrapping around.
|
|
* For instance, if vsize is 2**29+1, we'll allocate 1 byte and the alloc won't fail.
|
|
*/
|
|
if ((size_t) vsize > ((size_t) -1 / sizeof(*reg->cpu_alloc->pages)))
|
|
goto out_term;
|
|
|
|
KBASE_DEBUG_ASSERT(0 != vsize);
|
|
|
|
if (kbase_alloc_phy_pages_helper(reg->cpu_alloc, size) != 0)
|
|
goto out_term;
|
|
|
|
reg->cpu_alloc->reg = reg;
|
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
|
if (kbase_alloc_phy_pages_helper(reg->gpu_alloc, size) != 0)
|
|
goto out_rollback;
|
|
reg->gpu_alloc->reg = reg;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_rollback:
|
|
kbase_free_phy_pages_helper(reg->cpu_alloc, size);
|
|
out_term:
|
|
return -1;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_alloc_phy_pages);
|
|
|
|
bool kbase_check_alloc_flags(unsigned long flags)
|
|
{
|
|
/* Only known input flags should be set. */
|
|
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
|
|
return false;
|
|
|
|
/* At least one flag should be set */
|
|
if (flags == 0)
|
|
return false;
|
|
|
|
/* Either the GPU or CPU must be reading from the allocated memory */
|
|
if ((flags & (BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_GPU_RD)) == 0)
|
|
return false;
|
|
|
|
/* Either the GPU or CPU must be writing to the allocated memory */
|
|
if ((flags & (BASE_MEM_PROT_CPU_WR | BASE_MEM_PROT_GPU_WR)) == 0)
|
|
return false;
|
|
|
|
/* GPU cannot be writing to GPU executable memory and cannot grow the memory on page fault. */
|
|
if ((flags & BASE_MEM_PROT_GPU_EX) && (flags & (BASE_MEM_PROT_GPU_WR | BASE_MEM_GROW_ON_GPF)))
|
|
return false;
|
|
|
|
/* GPU should have at least read or write access otherwise there is no
|
|
reason for allocating. */
|
|
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
|
|
return false;
|
|
|
|
/* BASE_MEM_IMPORT_SHARED is only valid for imported memory */
|
|
if ((flags & BASE_MEM_IMPORT_SHARED) == BASE_MEM_IMPORT_SHARED)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool kbase_check_import_flags(unsigned long flags)
|
|
{
|
|
/* Only known input flags should be set. */
|
|
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
|
|
return false;
|
|
|
|
/* At least one flag should be set */
|
|
if (flags == 0)
|
|
return false;
|
|
|
|
/* Imported memory cannot be GPU executable */
|
|
if (flags & BASE_MEM_PROT_GPU_EX)
|
|
return false;
|
|
|
|
/* Imported memory cannot grow on page fault */
|
|
if (flags & BASE_MEM_GROW_ON_GPF)
|
|
return false;
|
|
|
|
/* GPU should have at least read or write access otherwise there is no
|
|
reason for importing. */
|
|
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
|
|
return false;
|
|
|
|
/* Secure memory cannot be read by the CPU */
|
|
if ((flags & BASE_MEM_SECURE) && (flags & BASE_MEM_PROT_CPU_RD))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Acquire the per-context region list lock
|
|
*/
|
|
void kbase_gpu_vm_lock(struct kbase_context *kctx)
|
|
{
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
mutex_lock(&kctx->reg_lock);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_vm_lock);
|
|
|
|
/**
|
|
* @brief Release the per-context region list lock
|
|
*/
|
|
void kbase_gpu_vm_unlock(struct kbase_context *kctx)
|
|
{
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
mutex_unlock(&kctx->reg_lock);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_vm_unlock);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct kbase_jit_debugfs_data {
|
|
int (*func)(struct kbase_jit_debugfs_data *);
|
|
struct mutex lock;
|
|
struct kbase_context *kctx;
|
|
u64 active_value;
|
|
u64 pool_value;
|
|
u64 destroy_value;
|
|
char buffer[50];
|
|
};
|
|
|
|
static int kbase_jit_debugfs_common_open(struct inode *inode,
|
|
struct file *file, int (*func)(struct kbase_jit_debugfs_data *))
|
|
{
|
|
struct kbase_jit_debugfs_data *data;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->func = func;
|
|
mutex_init(&data->lock);
|
|
data->kctx = (struct kbase_context *) inode->i_private;
|
|
|
|
file->private_data = data;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static ssize_t kbase_jit_debugfs_common_read(struct file *file,
|
|
char __user *buf, size_t len, loff_t *ppos)
|
|
{
|
|
struct kbase_jit_debugfs_data *data;
|
|
size_t size;
|
|
int ret;
|
|
|
|
data = (struct kbase_jit_debugfs_data *) file->private_data;
|
|
mutex_lock(&data->lock);
|
|
|
|
if (*ppos) {
|
|
size = strnlen(data->buffer, sizeof(data->buffer));
|
|
} else {
|
|
if (!data->func) {
|
|
ret = -EACCES;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (data->func(data)) {
|
|
ret = -EACCES;
|
|
goto out_unlock;
|
|
}
|
|
|
|
size = scnprintf(data->buffer, sizeof(data->buffer),
|
|
"%llu,%llu,%llu", data->active_value,
|
|
data->pool_value, data->destroy_value);
|
|
}
|
|
|
|
ret = simple_read_from_buffer(buf, len, ppos, data->buffer, size);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&data->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int kbase_jit_debugfs_common_release(struct inode *inode,
|
|
struct file *file)
|
|
{
|
|
kfree(file->private_data);
|
|
return 0;
|
|
}
|
|
|
|
#define KBASE_JIT_DEBUGFS_DECLARE(__fops, __func) \
|
|
static int __fops ## _open(struct inode *inode, struct file *file) \
|
|
{ \
|
|
return kbase_jit_debugfs_common_open(inode, file, __func); \
|
|
} \
|
|
static const struct file_operations __fops = { \
|
|
.owner = THIS_MODULE, \
|
|
.open = __fops ## _open, \
|
|
.release = kbase_jit_debugfs_common_release, \
|
|
.read = kbase_jit_debugfs_common_read, \
|
|
.write = NULL, \
|
|
.llseek = generic_file_llseek, \
|
|
}
|
|
|
|
static int kbase_jit_debugfs_count_get(struct kbase_jit_debugfs_data *data)
|
|
{
|
|
struct kbase_context *kctx = data->kctx;
|
|
struct list_head *tmp;
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_for_each(tmp, &kctx->jit_active_head) {
|
|
data->active_value++;
|
|
}
|
|
|
|
list_for_each(tmp, &kctx->jit_pool_head) {
|
|
data->pool_value++;
|
|
}
|
|
|
|
list_for_each(tmp, &kctx->jit_destroy_head) {
|
|
data->destroy_value++;
|
|
}
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
return 0;
|
|
}
|
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_count_fops,
|
|
kbase_jit_debugfs_count_get);
|
|
|
|
static int kbase_jit_debugfs_vm_get(struct kbase_jit_debugfs_data *data)
|
|
{
|
|
struct kbase_context *kctx = data->kctx;
|
|
struct kbase_va_region *reg;
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
|
data->active_value += reg->nr_pages;
|
|
}
|
|
|
|
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
|
|
data->pool_value += reg->nr_pages;
|
|
}
|
|
|
|
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
|
|
data->destroy_value += reg->nr_pages;
|
|
}
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
return 0;
|
|
}
|
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_vm_fops,
|
|
kbase_jit_debugfs_vm_get);
|
|
|
|
static int kbase_jit_debugfs_phys_get(struct kbase_jit_debugfs_data *data)
|
|
{
|
|
struct kbase_context *kctx = data->kctx;
|
|
struct kbase_va_region *reg;
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
|
data->active_value += reg->gpu_alloc->nents;
|
|
}
|
|
|
|
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
|
|
data->pool_value += reg->gpu_alloc->nents;
|
|
}
|
|
|
|
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
|
|
data->destroy_value += reg->gpu_alloc->nents;
|
|
}
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
return 0;
|
|
}
|
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_phys_fops,
|
|
kbase_jit_debugfs_phys_get);
|
|
|
|
void kbase_jit_debugfs_init(struct kbase_context *kctx)
|
|
{
|
|
/* Debugfs entry for getting the number of JIT allocations. */
|
|
debugfs_create_file("mem_jit_count", S_IRUGO, kctx->kctx_dentry,
|
|
kctx, &kbase_jit_debugfs_count_fops);
|
|
|
|
/*
|
|
* Debugfs entry for getting the total number of virtual pages
|
|
* used by JIT allocations.
|
|
*/
|
|
debugfs_create_file("mem_jit_vm", S_IRUGO, kctx->kctx_dentry,
|
|
kctx, &kbase_jit_debugfs_vm_fops);
|
|
|
|
/*
|
|
* Debugfs entry for getting the number of physical pages used
|
|
* by JIT allocations.
|
|
*/
|
|
debugfs_create_file("mem_jit_phys", S_IRUGO, kctx->kctx_dentry,
|
|
kctx, &kbase_jit_debugfs_phys_fops);
|
|
}
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
/**
|
|
* kbase_jit_destroy_worker - Deferred worker which frees JIT allocations
|
|
* @work: Work item
|
|
*
|
|
* This function does the work of freeing JIT allocations whose physical
|
|
* backing has been released.
|
|
*/
|
|
static void kbase_jit_destroy_worker(struct work_struct *work)
|
|
{
|
|
struct kbase_context *kctx;
|
|
struct kbase_va_region *reg;
|
|
|
|
kctx = container_of(work, struct kbase_context, jit_work);
|
|
do {
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
if (list_empty(&kctx->jit_destroy_head)) {
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
break;
|
|
}
|
|
|
|
reg = list_first_entry(&kctx->jit_destroy_head,
|
|
struct kbase_va_region, jit_node);
|
|
|
|
list_del(®->jit_node);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
kbase_mem_free_region(kctx, reg);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
} while (1);
|
|
}
|
|
|
|
int kbase_jit_init(struct kbase_context *kctx)
|
|
{
|
|
INIT_LIST_HEAD(&kctx->jit_active_head);
|
|
INIT_LIST_HEAD(&kctx->jit_pool_head);
|
|
INIT_LIST_HEAD(&kctx->jit_destroy_head);
|
|
INIT_WORK(&kctx->jit_work, kbase_jit_destroy_worker);
|
|
|
|
INIT_LIST_HEAD(&kctx->jit_pending_alloc);
|
|
INIT_LIST_HEAD(&kctx->jit_atoms_head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx,
|
|
struct base_jit_alloc_info *info)
|
|
{
|
|
struct kbase_va_region *reg = NULL;
|
|
struct kbase_va_region *walker;
|
|
struct kbase_va_region *temp;
|
|
size_t current_diff = SIZE_MAX;
|
|
|
|
int ret;
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
/*
|
|
* Scan the pool for an existing allocation which meets our
|
|
* requirements and remove it.
|
|
*/
|
|
list_for_each_entry_safe(walker, temp, &kctx->jit_pool_head, jit_node) {
|
|
|
|
if (walker->nr_pages >= info->va_pages) {
|
|
size_t min_size, max_size, diff;
|
|
|
|
/*
|
|
* The JIT allocations VA requirements have been
|
|
* meet, it's suitable but other allocations
|
|
* might be a better fit.
|
|
*/
|
|
min_size = min_t(size_t, walker->gpu_alloc->nents,
|
|
info->commit_pages);
|
|
max_size = max_t(size_t, walker->gpu_alloc->nents,
|
|
info->commit_pages);
|
|
diff = max_size - min_size;
|
|
|
|
if (current_diff > diff) {
|
|
current_diff = diff;
|
|
reg = walker;
|
|
}
|
|
|
|
/* The allocation is an exact match, stop looking */
|
|
if (current_diff == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reg) {
|
|
/*
|
|
* Remove the found region from the pool and add it to the
|
|
* active list.
|
|
*/
|
|
list_move(®->jit_node, &kctx->jit_active_head);
|
|
|
|
/*
|
|
* Remove the allocation from the eviction list as it's no
|
|
* longer eligible for eviction. This must be done before
|
|
* dropping the jit_evict_lock
|
|
*/
|
|
list_del_init(®->gpu_alloc->evict_node);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* Make the physical backing no longer reclaimable */
|
|
if (!kbase_mem_evictable_unmake(reg->gpu_alloc))
|
|
goto update_failed;
|
|
|
|
/* Grow the backing if required */
|
|
if (reg->gpu_alloc->nents < info->commit_pages) {
|
|
size_t delta;
|
|
size_t old_size = reg->gpu_alloc->nents;
|
|
|
|
/* Allocate some more pages */
|
|
delta = info->commit_pages - reg->gpu_alloc->nents;
|
|
if (kbase_alloc_phy_pages_helper(reg->gpu_alloc, delta)
|
|
!= 0)
|
|
goto update_failed;
|
|
|
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
|
if (kbase_alloc_phy_pages_helper(
|
|
reg->cpu_alloc, delta) != 0) {
|
|
kbase_free_phy_pages_helper(
|
|
reg->gpu_alloc, delta);
|
|
goto update_failed;
|
|
}
|
|
}
|
|
|
|
ret = kbase_mem_grow_gpu_mapping(kctx, reg,
|
|
info->commit_pages, old_size);
|
|
/*
|
|
* The grow failed so put the allocation back in the
|
|
* pool and return failure.
|
|
*/
|
|
if (ret)
|
|
goto update_failed;
|
|
}
|
|
kbase_gpu_vm_unlock(kctx);
|
|
} else {
|
|
/* No suitable JIT allocation was found so create a new one */
|
|
u64 flags = BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_GPU_RD |
|
|
BASE_MEM_PROT_GPU_WR | BASE_MEM_GROW_ON_GPF |
|
|
BASE_MEM_COHERENT_LOCAL;
|
|
u64 gpu_addr;
|
|
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
reg = kbase_mem_alloc(kctx, info->va_pages, info->commit_pages,
|
|
info->extent, &flags, &gpu_addr);
|
|
if (!reg)
|
|
goto out_unlocked;
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_add(®->jit_node, &kctx->jit_active_head);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
}
|
|
|
|
return reg;
|
|
|
|
update_failed:
|
|
/*
|
|
* An update to an allocation from the pool failed, chances
|
|
* are slim a new allocation would fair any better so return
|
|
* the allocation to the pool and return the function with failure.
|
|
*/
|
|
kbase_gpu_vm_unlock(kctx);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_move(®->jit_node, &kctx->jit_pool_head);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
out_unlocked:
|
|
return NULL;
|
|
}
|
|
|
|
void kbase_jit_free(struct kbase_context *kctx, struct kbase_va_region *reg)
|
|
{
|
|
/* The physical backing of memory in the pool is always reclaimable */
|
|
kbase_gpu_vm_lock(kctx);
|
|
kbase_mem_evictable_make(reg->gpu_alloc);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_move(®->jit_node, &kctx->jit_pool_head);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
}
|
|
|
|
void kbase_jit_backing_lost(struct kbase_va_region *reg)
|
|
{
|
|
struct kbase_context *kctx = reg->kctx;
|
|
|
|
lockdep_assert_held(&kctx->jit_evict_lock);
|
|
|
|
/*
|
|
* JIT allocations will always be on a list, if the region
|
|
* is not on a list then it's not a JIT allocation.
|
|
*/
|
|
if (list_empty(®->jit_node))
|
|
return;
|
|
|
|
/*
|
|
* Freeing the allocation requires locks we might not be able
|
|
* to take now, so move the allocation to the free list and kick
|
|
* the worker which will do the freeing.
|
|
*/
|
|
list_move(®->jit_node, &kctx->jit_destroy_head);
|
|
|
|
schedule_work(&kctx->jit_work);
|
|
}
|
|
|
|
bool kbase_jit_evict(struct kbase_context *kctx)
|
|
{
|
|
struct kbase_va_region *reg = NULL;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/* Free the oldest allocation from the pool */
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
if (!list_empty(&kctx->jit_pool_head)) {
|
|
reg = list_entry(kctx->jit_pool_head.prev,
|
|
struct kbase_va_region, jit_node);
|
|
list_del(®->jit_node);
|
|
}
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
if (reg)
|
|
kbase_mem_free_region(kctx, reg);
|
|
|
|
return (reg != NULL);
|
|
}
|
|
|
|
void kbase_jit_term(struct kbase_context *kctx)
|
|
{
|
|
struct kbase_va_region *walker;
|
|
|
|
/* Free all allocations for this context */
|
|
|
|
/*
|
|
* Flush the freeing of allocations whose backing has been freed
|
|
* (i.e. everything in jit_destroy_head).
|
|
*/
|
|
cancel_work_sync(&kctx->jit_work);
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
/* Free all allocations from the pool */
|
|
while (!list_empty(&kctx->jit_pool_head)) {
|
|
walker = list_first_entry(&kctx->jit_pool_head,
|
|
struct kbase_va_region, jit_node);
|
|
list_del(&walker->jit_node);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kbase_mem_free_region(kctx, walker);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
}
|
|
|
|
/* Free all allocations from active list */
|
|
while (!list_empty(&kctx->jit_active_head)) {
|
|
walker = list_first_entry(&kctx->jit_active_head,
|
|
struct kbase_va_region, jit_node);
|
|
list_del(&walker->jit_node);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kbase_mem_free_region(kctx, walker);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
}
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
}
|
|
|
|
static int kbase_jd_user_buf_map(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg)
|
|
{
|
|
long pinned_pages;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
struct page **pages;
|
|
phys_addr_t *pa;
|
|
long i;
|
|
int err = -ENOMEM;
|
|
unsigned long address;
|
|
struct mm_struct *mm;
|
|
struct device *dev;
|
|
unsigned long offset;
|
|
unsigned long local_size;
|
|
|
|
alloc = reg->gpu_alloc;
|
|
pa = kbase_get_gpu_phy_pages(reg);
|
|
address = alloc->imported.user_buf.address;
|
|
mm = alloc->imported.user_buf.mm;
|
|
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_IMPORTED_USER_BUF);
|
|
|
|
pages = alloc->imported.user_buf.pages;
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)
|
|
pinned_pages = get_user_pages(NULL, mm,
|
|
address,
|
|
alloc->imported.user_buf.nr_pages,
|
|
reg->flags & KBASE_REG_GPU_WR,
|
|
0, pages, NULL);
|
|
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
|
|
pinned_pages = get_user_pages_remote(NULL, mm,
|
|
address,
|
|
alloc->imported.user_buf.nr_pages,
|
|
reg->flags & KBASE_REG_GPU_WR,
|
|
0, pages, NULL);
|
|
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
|
|
pinned_pages = get_user_pages_remote(NULL, mm,
|
|
address,
|
|
alloc->imported.user_buf.nr_pages,
|
|
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
|
|
pages, NULL);
|
|
#elif LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0)
|
|
pinned_pages = get_user_pages_remote(NULL, mm,
|
|
address,
|
|
alloc->imported.user_buf.nr_pages,
|
|
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
|
|
pages, NULL, NULL);
|
|
#else
|
|
pinned_pages = get_user_pages_remote(mm,
|
|
address,
|
|
alloc->imported.user_buf.nr_pages,
|
|
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
|
|
pages, NULL, NULL);
|
|
#endif
|
|
|
|
if (pinned_pages <= 0)
|
|
return pinned_pages;
|
|
|
|
if (pinned_pages != alloc->imported.user_buf.nr_pages) {
|
|
for (i = 0; i < pinned_pages; i++)
|
|
put_page(pages[i]);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev = kctx->kbdev->dev;
|
|
offset = address & ~PAGE_MASK;
|
|
local_size = alloc->imported.user_buf.size;
|
|
|
|
for (i = 0; i < pinned_pages; i++) {
|
|
dma_addr_t dma_addr;
|
|
unsigned long min;
|
|
|
|
min = MIN(PAGE_SIZE - offset, local_size);
|
|
dma_addr = dma_map_page(dev, pages[i],
|
|
offset, min,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, dma_addr))
|
|
goto unwind;
|
|
|
|
alloc->imported.user_buf.dma_addrs[i] = dma_addr;
|
|
pa[i] = page_to_phys(pages[i]);
|
|
|
|
local_size -= min;
|
|
offset = 0;
|
|
}
|
|
|
|
alloc->nents = pinned_pages;
|
|
|
|
err = kbase_mmu_insert_pages(kctx, reg->start_pfn, pa,
|
|
kbase_reg_current_backed_size(reg),
|
|
reg->flags);
|
|
if (err == 0)
|
|
return 0;
|
|
|
|
alloc->nents = 0;
|
|
/* fall down */
|
|
unwind:
|
|
while (i--) {
|
|
dma_unmap_page(kctx->kbdev->dev,
|
|
alloc->imported.user_buf.dma_addrs[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
put_page(pages[i]);
|
|
pages[i] = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void kbase_jd_user_buf_unmap(struct kbase_context *kctx,
|
|
struct kbase_mem_phy_alloc *alloc, bool writeable)
|
|
{
|
|
long i;
|
|
struct page **pages;
|
|
unsigned long size = alloc->imported.user_buf.size;
|
|
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_IMPORTED_USER_BUF);
|
|
pages = alloc->imported.user_buf.pages;
|
|
for (i = 0; i < alloc->imported.user_buf.nr_pages; i++) {
|
|
unsigned long local_size;
|
|
dma_addr_t dma_addr = alloc->imported.user_buf.dma_addrs[i];
|
|
|
|
local_size = MIN(size, PAGE_SIZE - (dma_addr & ~PAGE_MASK));
|
|
dma_unmap_page(kctx->kbdev->dev, dma_addr, local_size,
|
|
DMA_BIDIRECTIONAL);
|
|
if (writeable)
|
|
set_page_dirty_lock(pages[i]);
|
|
put_page(pages[i]);
|
|
pages[i] = NULL;
|
|
|
|
size -= local_size;
|
|
}
|
|
alloc->nents = 0;
|
|
}
|
|
|
|
|
|
/* to replace sg_dma_len. */
|
|
#define MALI_SG_DMA_LEN(sg) ((sg)->length)
|
|
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
static int kbase_jd_umm_map(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg)
|
|
{
|
|
struct sg_table *sgt;
|
|
struct scatterlist *s;
|
|
int i;
|
|
phys_addr_t *pa;
|
|
int err;
|
|
size_t count = 0;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
|
|
alloc = reg->gpu_alloc;
|
|
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM);
|
|
KBASE_DEBUG_ASSERT(NULL == alloc->imported.umm.sgt);
|
|
sgt = dma_buf_map_attachment(alloc->imported.umm.dma_attachment,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
if (IS_ERR_OR_NULL(sgt))
|
|
return -EINVAL;
|
|
|
|
/* save for later */
|
|
alloc->imported.umm.sgt = sgt;
|
|
|
|
pa = kbase_get_gpu_phy_pages(reg);
|
|
KBASE_DEBUG_ASSERT(pa);
|
|
|
|
for_each_sg(sgt->sgl, s, sgt->nents, i) {
|
|
int j;
|
|
size_t pages = PFN_UP(MALI_SG_DMA_LEN(s));
|
|
|
|
WARN_ONCE(MALI_SG_DMA_LEN(s) & (PAGE_SIZE-1),
|
|
"MALI_SG_DMA_LEN(s)=%u is not a multiple of PAGE_SIZE\n",
|
|
MALI_SG_DMA_LEN(s));
|
|
|
|
WARN_ONCE(sg_dma_address(s) & (PAGE_SIZE-1),
|
|
"sg_dma_address(s)=%llx is not aligned to PAGE_SIZE\n",
|
|
(unsigned long long) sg_dma_address(s));
|
|
|
|
for (j = 0; (j < pages) && (count < reg->nr_pages); j++,
|
|
count++)
|
|
*pa++ = sg_dma_address(s) + (j << PAGE_SHIFT);
|
|
WARN_ONCE(j < pages,
|
|
"sg list from dma_buf_map_attachment > dma_buf->size=%zu\n",
|
|
alloc->imported.umm.dma_buf->size);
|
|
}
|
|
|
|
if (!(reg->flags & KBASE_REG_IMPORT_PAD) &&
|
|
WARN_ONCE(count < reg->nr_pages,
|
|
"sg list from dma_buf_map_attachment < dma_buf->size=%zu\n",
|
|
alloc->imported.umm.dma_buf->size)) {
|
|
err = -EINVAL;
|
|
goto err_unmap_attachment;
|
|
}
|
|
|
|
/* Update nents as we now have pages to map */
|
|
alloc->nents = reg->nr_pages;
|
|
|
|
err = kbase_mmu_insert_pages(kctx, reg->start_pfn,
|
|
kbase_get_gpu_phy_pages(reg),
|
|
count,
|
|
reg->flags | KBASE_REG_GPU_WR | KBASE_REG_GPU_RD);
|
|
if (err)
|
|
goto err_unmap_attachment;
|
|
|
|
if (reg->flags & KBASE_REG_IMPORT_PAD) {
|
|
err = kbase_mmu_insert_single_page(kctx,
|
|
reg->start_pfn + count,
|
|
page_to_phys(kctx->aliasing_sink_page),
|
|
reg->nr_pages - count,
|
|
(reg->flags | KBASE_REG_GPU_RD) &
|
|
~KBASE_REG_GPU_WR);
|
|
if (err)
|
|
goto err_teardown_orig_pages;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_teardown_orig_pages:
|
|
kbase_mmu_teardown_pages(kctx, reg->start_pfn, count);
|
|
err_unmap_attachment:
|
|
dma_buf_unmap_attachment(alloc->imported.umm.dma_attachment,
|
|
alloc->imported.umm.sgt, DMA_BIDIRECTIONAL);
|
|
alloc->imported.umm.sgt = NULL;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void kbase_jd_umm_unmap(struct kbase_context *kctx,
|
|
struct kbase_mem_phy_alloc *alloc)
|
|
{
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(alloc);
|
|
KBASE_DEBUG_ASSERT(alloc->imported.umm.dma_attachment);
|
|
KBASE_DEBUG_ASSERT(alloc->imported.umm.sgt);
|
|
dma_buf_unmap_attachment(alloc->imported.umm.dma_attachment,
|
|
alloc->imported.umm.sgt, DMA_BIDIRECTIONAL);
|
|
alloc->imported.umm.sgt = NULL;
|
|
alloc->nents = 0;
|
|
}
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
|
|
#if (defined(CONFIG_KDS) && defined(CONFIG_UMP)) \
|
|
|| defined(CONFIG_DMA_SHARED_BUFFER_USES_KDS)
|
|
static void add_kds_resource(struct kds_resource *kds_res,
|
|
struct kds_resource **kds_resources, u32 *kds_res_count,
|
|
unsigned long *kds_access_bitmap, bool exclusive)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < *kds_res_count; i++) {
|
|
/* Duplicate resource, ignore */
|
|
if (kds_resources[i] == kds_res)
|
|
return;
|
|
}
|
|
|
|
kds_resources[*kds_res_count] = kds_res;
|
|
if (exclusive)
|
|
set_bit(*kds_res_count, kds_access_bitmap);
|
|
(*kds_res_count)++;
|
|
}
|
|
#endif
|
|
|
|
struct kbase_mem_phy_alloc *kbase_map_external_resource(
|
|
struct kbase_context *kctx, struct kbase_va_region *reg,
|
|
struct mm_struct *locked_mm
|
|
#ifdef CONFIG_KDS
|
|
, u32 *kds_res_count, struct kds_resource **kds_resources,
|
|
unsigned long *kds_access_bitmap, bool exclusive
|
|
#endif
|
|
)
|
|
{
|
|
int err;
|
|
|
|
/* decide what needs to happen for this resource */
|
|
switch (reg->gpu_alloc->type) {
|
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
|
if (reg->gpu_alloc->imported.user_buf.mm != locked_mm)
|
|
goto exit;
|
|
|
|
reg->gpu_alloc->imported.user_buf.current_mapping_usage_count++;
|
|
if (1 == reg->gpu_alloc->imported.user_buf.current_mapping_usage_count) {
|
|
err = kbase_jd_user_buf_map(kctx, reg);
|
|
if (err) {
|
|
reg->gpu_alloc->imported.user_buf.current_mapping_usage_count--;
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case KBASE_MEM_TYPE_IMPORTED_UMP: {
|
|
#if defined(CONFIG_KDS) && defined(CONFIG_UMP)
|
|
if (kds_res_count) {
|
|
struct kds_resource *kds_res;
|
|
|
|
kds_res = ump_dd_kds_resource_get(
|
|
reg->gpu_alloc->imported.ump_handle);
|
|
if (kds_res)
|
|
add_kds_resource(kds_res, kds_resources,
|
|
kds_res_count,
|
|
kds_access_bitmap, exclusive);
|
|
}
|
|
#endif /*defined(CONFIG_KDS) && defined(CONFIG_UMP) */
|
|
break;
|
|
}
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
case KBASE_MEM_TYPE_IMPORTED_UMM: {
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER_USES_KDS
|
|
if (kds_res_count) {
|
|
struct kds_resource *kds_res;
|
|
|
|
kds_res = get_dma_buf_kds_resource(
|
|
reg->gpu_alloc->imported.umm.dma_buf);
|
|
if (kds_res)
|
|
add_kds_resource(kds_res, kds_resources,
|
|
kds_res_count,
|
|
kds_access_bitmap, exclusive);
|
|
}
|
|
#endif
|
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count++;
|
|
if (1 == reg->gpu_alloc->imported.umm.current_mapping_usage_count) {
|
|
err = kbase_jd_umm_map(kctx, reg);
|
|
if (err) {
|
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count--;
|
|
goto exit;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
goto exit;
|
|
}
|
|
|
|
return kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
exit:
|
|
return NULL;
|
|
}
|
|
|
|
void kbase_unmap_external_resource(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg, struct kbase_mem_phy_alloc *alloc)
|
|
{
|
|
switch (alloc->type) {
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
case KBASE_MEM_TYPE_IMPORTED_UMM: {
|
|
alloc->imported.umm.current_mapping_usage_count--;
|
|
|
|
if (0 == alloc->imported.umm.current_mapping_usage_count) {
|
|
if (reg && reg->gpu_alloc == alloc) {
|
|
int err;
|
|
|
|
err = kbase_mmu_teardown_pages(
|
|
kctx,
|
|
reg->start_pfn,
|
|
alloc->nents);
|
|
WARN_ON(err);
|
|
}
|
|
|
|
kbase_jd_umm_unmap(kctx, alloc);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
|
alloc->imported.user_buf.current_mapping_usage_count--;
|
|
|
|
if (0 == alloc->imported.user_buf.current_mapping_usage_count) {
|
|
bool writeable = true;
|
|
|
|
if (reg && reg->gpu_alloc == alloc)
|
|
kbase_mmu_teardown_pages(
|
|
kctx,
|
|
reg->start_pfn,
|
|
kbase_reg_current_backed_size(reg));
|
|
|
|
if (reg && ((reg->flags & KBASE_REG_GPU_WR) == 0))
|
|
writeable = false;
|
|
|
|
kbase_jd_user_buf_unmap(kctx, alloc, writeable);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
kbase_mem_phy_alloc_put(alloc);
|
|
}
|
|
|
|
struct kbase_ctx_ext_res_meta *kbase_sticky_resource_acquire(
|
|
struct kbase_context *kctx, u64 gpu_addr)
|
|
{
|
|
struct kbase_ctx_ext_res_meta *meta = NULL;
|
|
struct kbase_ctx_ext_res_meta *walker;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/*
|
|
* Walk the per context external resource metadata list for the
|
|
* metadata which matches the region which is being acquired.
|
|
*/
|
|
list_for_each_entry(walker, &kctx->ext_res_meta_head, ext_res_node) {
|
|
if (walker->gpu_addr == gpu_addr) {
|
|
meta = walker;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* No metadata exists so create one. */
|
|
if (!meta) {
|
|
struct kbase_va_region *reg;
|
|
|
|
/* Find the region */
|
|
reg = kbase_region_tracker_find_region_enclosing_address(
|
|
kctx, gpu_addr);
|
|
if (NULL == reg || (reg->flags & KBASE_REG_FREE))
|
|
goto failed;
|
|
|
|
/* Allocate the metadata object */
|
|
meta = kzalloc(sizeof(*meta), GFP_KERNEL);
|
|
if (!meta)
|
|
goto failed;
|
|
|
|
/*
|
|
* Fill in the metadata object and acquire a reference
|
|
* for the physical resource.
|
|
*/
|
|
meta->alloc = kbase_map_external_resource(kctx, reg, NULL
|
|
#ifdef CONFIG_KDS
|
|
, NULL, NULL,
|
|
NULL, false
|
|
#endif
|
|
);
|
|
|
|
if (!meta->alloc)
|
|
goto fail_map;
|
|
|
|
meta->gpu_addr = reg->start_pfn << PAGE_SHIFT;
|
|
|
|
list_add(&meta->ext_res_node, &kctx->ext_res_meta_head);
|
|
}
|
|
|
|
return meta;
|
|
|
|
fail_map:
|
|
kfree(meta);
|
|
failed:
|
|
return NULL;
|
|
}
|
|
|
|
bool kbase_sticky_resource_release(struct kbase_context *kctx,
|
|
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr)
|
|
{
|
|
struct kbase_ctx_ext_res_meta *walker;
|
|
struct kbase_va_region *reg;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/* Search of the metadata if one isn't provided. */
|
|
if (!meta) {
|
|
/*
|
|
* Walk the per context external resource metadata list for the
|
|
* metadata which matches the region which is being released.
|
|
*/
|
|
list_for_each_entry(walker, &kctx->ext_res_meta_head,
|
|
ext_res_node) {
|
|
if (walker->gpu_addr == gpu_addr) {
|
|
meta = walker;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No metadata so just return. */
|
|
if (!meta)
|
|
return false;
|
|
|
|
/* Drop the physical memory reference and free the metadata. */
|
|
reg = kbase_region_tracker_find_region_enclosing_address(
|
|
kctx,
|
|
meta->gpu_addr);
|
|
|
|
kbase_unmap_external_resource(kctx, reg, meta->alloc);
|
|
list_del(&meta->ext_res_node);
|
|
kfree(meta);
|
|
|
|
return true;
|
|
}
|
|
|
|
int kbase_sticky_resource_init(struct kbase_context *kctx)
|
|
{
|
|
INIT_LIST_HEAD(&kctx->ext_res_meta_head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kbase_sticky_resource_term(struct kbase_context *kctx)
|
|
{
|
|
struct kbase_ctx_ext_res_meta *walker;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/*
|
|
* Free any sticky resources which haven't been unmapped.
|
|
*
|
|
* Note:
|
|
* We don't care about refcounts at this point as no future
|
|
* references to the meta data will be made.
|
|
* Region termination would find these if we didn't free them
|
|
* here, but it's more efficient if we do the clean up here.
|
|
*/
|
|
while (!list_empty(&kctx->ext_res_meta_head)) {
|
|
walker = list_first_entry(&kctx->ext_res_meta_head,
|
|
struct kbase_ctx_ext_res_meta, ext_res_node);
|
|
|
|
kbase_sticky_resource_release(kctx, walker, 0);
|
|
}
|
|
}
|