732 lines
22 KiB
C
732 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
|
/*
|
|
*
|
|
* (C) COPYRIGHT 2016-2023 ARM Limited. All rights reserved.
|
|
*
|
|
* This program is free software and is provided to you under the terms of the
|
|
* GNU General Public License version 2 as published by the Free Software
|
|
* Foundation, and any use by you of this program is subject to the terms
|
|
* of such GNU license.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you can access it online at
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
|
*
|
|
*/
|
|
|
|
#include <linux/thermal.h>
|
|
#include <linux/devfreq_cooling.h>
|
|
#include <linux/of.h>
|
|
#include "mali_kbase.h"
|
|
#include "mali_kbase_ipa.h"
|
|
#include "mali_kbase_ipa_debugfs.h"
|
|
#include "mali_kbase_ipa_simple.h"
|
|
#include "backend/gpu/mali_kbase_pm_internal.h"
|
|
#include "backend/gpu/mali_kbase_devfreq.h"
|
|
#include <linux/pm_opp.h>
|
|
|
|
#define KBASE_IPA_FALLBACK_MODEL_NAME "mali-simple-power-model"
|
|
|
|
/* Polling by thermal governor starts when the temperature exceeds the certain
|
|
* trip point. In order to have meaningful value for the counters, when the
|
|
* polling starts and first call to kbase_get_real_power() is made, it is
|
|
* required to reset the counter values every now and then.
|
|
* It is reasonable to do the reset every second if no polling is being done,
|
|
* the counter model implementation also assumes max sampling interval of 1 sec.
|
|
*/
|
|
#define RESET_INTERVAL_MS ((s64)1000)
|
|
|
|
int kbase_ipa_model_recalculate(struct kbase_ipa_model *model)
|
|
{
|
|
int err = 0;
|
|
|
|
lockdep_assert_held(&model->kbdev->ipa.lock);
|
|
|
|
if (model->ops->recalculate) {
|
|
err = model->ops->recalculate(model);
|
|
if (err) {
|
|
dev_err(model->kbdev->dev,
|
|
"recalculation of power model %s returned error %d\n",
|
|
model->ops->name, err);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
const struct kbase_ipa_model_ops *kbase_ipa_model_ops_find(struct kbase_device *kbdev,
|
|
const char *name)
|
|
{
|
|
if (!strcmp(name, kbase_simple_ipa_model_ops.name))
|
|
return &kbase_simple_ipa_model_ops;
|
|
|
|
return kbase_ipa_counter_model_ops_find(kbdev, name);
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_model_ops_find);
|
|
|
|
const char *kbase_ipa_model_name_from_id(struct kbase_gpu_id_props *gpu_id)
|
|
{
|
|
const char *model_name = kbase_ipa_counter_model_name_from_id(gpu_id);
|
|
|
|
if (!model_name)
|
|
return KBASE_IPA_FALLBACK_MODEL_NAME;
|
|
else
|
|
return model_name;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_model_name_from_id);
|
|
|
|
static struct device_node *get_model_dt_node(struct kbase_ipa_model *model, bool dt_required)
|
|
{
|
|
struct device_node *model_dt_node = NULL;
|
|
char compat_string[64];
|
|
|
|
if (unlikely(!scnprintf(compat_string, sizeof(compat_string), "arm,%s", model->ops->name)))
|
|
return NULL;
|
|
|
|
/* of_find_compatible_node() will call of_node_put() on the root node,
|
|
* so take a reference on it first.
|
|
*/
|
|
of_node_get(model->kbdev->dev->of_node);
|
|
model_dt_node = of_find_compatible_node(model->kbdev->dev->of_node, NULL, compat_string);
|
|
if (!model_dt_node && !model->missing_dt_node_warning) {
|
|
if (dt_required)
|
|
dev_warn(model->kbdev->dev,
|
|
"Couldn't find power_model DT node matching \'%s\'\n",
|
|
compat_string);
|
|
model->missing_dt_node_warning = true;
|
|
}
|
|
|
|
return model_dt_node;
|
|
}
|
|
|
|
int kbase_ipa_model_add_param_s32(struct kbase_ipa_model *model, const char *name, s32 *addr,
|
|
size_t num_elems, bool dt_required)
|
|
{
|
|
int err = -EINVAL;
|
|
size_t i;
|
|
struct device_node *model_dt_node = get_model_dt_node(model, dt_required);
|
|
char *origin;
|
|
|
|
err = of_property_read_u32_array(model_dt_node, name, (u32 *)addr, num_elems);
|
|
/* We're done with model_dt_node now, so drop the reference taken in
|
|
* get_model_dt_node()/of_find_compatible_node().
|
|
*/
|
|
of_node_put(model_dt_node);
|
|
|
|
if (err && dt_required) {
|
|
memset(addr, 0, sizeof(s32) * num_elems);
|
|
dev_warn(model->kbdev->dev, "Error %d, no DT entry: %s.%s = %zu*[0]\n", err,
|
|
model->ops->name, name, num_elems);
|
|
origin = "zero";
|
|
} else if (err && !dt_required) {
|
|
origin = "default";
|
|
} else /* !err */ {
|
|
origin = "DT";
|
|
}
|
|
|
|
/* Create a unique debugfs entry for each element */
|
|
for (i = 0; i < num_elems; ++i) {
|
|
char elem_name[32];
|
|
|
|
if (num_elems == 1) {
|
|
if (unlikely(!scnprintf(elem_name, sizeof(elem_name), "%s", name))) {
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
} else {
|
|
if (unlikely(!scnprintf(elem_name, sizeof(elem_name), "%s.%d", name,
|
|
(uint32_t)i))) {
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
dev_dbg(model->kbdev->dev, "%s.%s = %d (%s)\n", model->ops->name, elem_name,
|
|
addr[i], origin);
|
|
|
|
err = kbase_ipa_model_param_add(model, elem_name, &addr[i], sizeof(s32),
|
|
PARAM_TYPE_S32);
|
|
if (err)
|
|
goto exit;
|
|
}
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
int kbase_ipa_model_add_param_string(struct kbase_ipa_model *model, const char *name, char *addr,
|
|
size_t size, bool dt_required)
|
|
{
|
|
int err;
|
|
struct device_node *model_dt_node = get_model_dt_node(model, dt_required);
|
|
const char *string_prop_value = "";
|
|
char *origin;
|
|
|
|
err = of_property_read_string(model_dt_node, name, &string_prop_value);
|
|
|
|
/* We're done with model_dt_node now, so drop the reference taken in
|
|
* get_model_dt_node()/of_find_compatible_node().
|
|
*/
|
|
of_node_put(model_dt_node);
|
|
|
|
if (err && dt_required) {
|
|
strscpy(addr, "", size);
|
|
dev_warn(model->kbdev->dev, "Error %d, no DT entry: %s.%s = \'%s\'\n", err,
|
|
model->ops->name, name, addr);
|
|
err = 0;
|
|
origin = "zero";
|
|
} else if (err && !dt_required) {
|
|
origin = "default";
|
|
} else /* !err */ {
|
|
strscpy(addr, string_prop_value, size);
|
|
origin = "DT";
|
|
}
|
|
|
|
addr[size - 1] = '\0';
|
|
|
|
dev_dbg(model->kbdev->dev, "%s.%s = \'%s\' (%s)\n", model->ops->name, name,
|
|
string_prop_value, origin);
|
|
|
|
err = kbase_ipa_model_param_add(model, name, addr, size, PARAM_TYPE_STRING);
|
|
return err;
|
|
}
|
|
|
|
void kbase_ipa_term_model(struct kbase_ipa_model *model)
|
|
{
|
|
if (!model)
|
|
return;
|
|
|
|
lockdep_assert_held(&model->kbdev->ipa.lock);
|
|
|
|
if (model->ops->term)
|
|
model->ops->term(model);
|
|
|
|
kbase_ipa_model_param_free_all(model);
|
|
|
|
kfree(model);
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_term_model);
|
|
|
|
struct kbase_ipa_model *kbase_ipa_init_model(struct kbase_device *kbdev,
|
|
const struct kbase_ipa_model_ops *ops)
|
|
{
|
|
struct kbase_ipa_model *model;
|
|
int err;
|
|
|
|
lockdep_assert_held(&kbdev->ipa.lock);
|
|
|
|
if (!ops || !ops->name)
|
|
return NULL;
|
|
|
|
model = kzalloc(sizeof(struct kbase_ipa_model), GFP_KERNEL);
|
|
if (!model)
|
|
return NULL;
|
|
|
|
model->kbdev = kbdev;
|
|
model->ops = ops;
|
|
INIT_LIST_HEAD(&model->params);
|
|
|
|
err = model->ops->init(model);
|
|
if (err) {
|
|
dev_err(kbdev->dev, "init of power model \'%s\' returned error %d\n", ops->name,
|
|
err);
|
|
kfree(model);
|
|
return NULL;
|
|
}
|
|
|
|
err = kbase_ipa_model_recalculate(model);
|
|
if (err) {
|
|
kbase_ipa_term_model(model);
|
|
return NULL;
|
|
}
|
|
|
|
return model;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_init_model);
|
|
|
|
static void kbase_ipa_term_locked(struct kbase_device *kbdev)
|
|
{
|
|
lockdep_assert_held(&kbdev->ipa.lock);
|
|
|
|
/* Clean up the models */
|
|
if (kbdev->ipa.configured_model != kbdev->ipa.fallback_model)
|
|
kbase_ipa_term_model(kbdev->ipa.configured_model);
|
|
kbase_ipa_term_model(kbdev->ipa.fallback_model);
|
|
|
|
kbdev->ipa.configured_model = NULL;
|
|
kbdev->ipa.fallback_model = NULL;
|
|
}
|
|
|
|
int kbase_ipa_init(struct kbase_device *kbdev)
|
|
{
|
|
const char *model_name;
|
|
const struct kbase_ipa_model_ops *ops;
|
|
struct kbase_ipa_model *default_model = NULL;
|
|
int err;
|
|
|
|
mutex_init(&kbdev->ipa.lock);
|
|
/*
|
|
* Lock during init to avoid warnings from lockdep_assert_held (there
|
|
* shouldn't be any concurrent access yet).
|
|
*/
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
|
|
/* The simple IPA model must *always* be present.*/
|
|
ops = kbase_ipa_model_ops_find(kbdev, KBASE_IPA_FALLBACK_MODEL_NAME);
|
|
|
|
default_model = kbase_ipa_init_model(kbdev, ops);
|
|
if (!default_model) {
|
|
err = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
kbdev->ipa.fallback_model = default_model;
|
|
err = of_property_read_string(kbdev->dev->of_node, "ipa-model", &model_name);
|
|
if (err) {
|
|
/* Attempt to load a match from GPU-ID */
|
|
model_name = kbase_ipa_model_name_from_id(&kbdev->gpu_props.gpu_id);
|
|
dev_dbg(kbdev->dev, "Inferring model from GPU Product ID 0x%x: \'%s\'\n",
|
|
kbdev->gpu_props.gpu_id.product_id, model_name);
|
|
err = 0;
|
|
} else {
|
|
dev_dbg(kbdev->dev, "Using ipa-model parameter from DT: \'%s\'\n", model_name);
|
|
}
|
|
|
|
if (strcmp(KBASE_IPA_FALLBACK_MODEL_NAME, model_name) != 0) {
|
|
ops = kbase_ipa_model_ops_find(kbdev, model_name);
|
|
kbdev->ipa.configured_model = kbase_ipa_init_model(kbdev, ops);
|
|
if (!kbdev->ipa.configured_model) {
|
|
dev_warn(kbdev->dev,
|
|
"Failed to initialize ipa-model: \'%s\'\n"
|
|
"Falling back on default model\n",
|
|
model_name);
|
|
kbdev->ipa.configured_model = default_model;
|
|
}
|
|
} else {
|
|
kbdev->ipa.configured_model = default_model;
|
|
}
|
|
|
|
kbdev->ipa.last_sample_time = ktime_get_raw();
|
|
|
|
end:
|
|
if (err)
|
|
kbase_ipa_term_locked(kbdev);
|
|
else
|
|
dev_info(kbdev->dev, "Using configured power model %s, and fallback %s\n",
|
|
kbdev->ipa.configured_model->ops->name,
|
|
kbdev->ipa.fallback_model->ops->name);
|
|
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
return err;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_init);
|
|
|
|
void kbase_ipa_term(struct kbase_device *kbdev)
|
|
{
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
kbase_ipa_term_locked(kbdev);
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
|
|
mutex_destroy(&kbdev->ipa.lock);
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_term);
|
|
|
|
/**
|
|
* kbase_scale_dynamic_power() - Scale a dynamic power coefficient to an OPP
|
|
* @c: Dynamic model coefficient, in pW/(Hz V^2). Should be in range
|
|
* 0 < c < 2^26 to prevent overflow.
|
|
* @freq: Frequency, in Hz. Range: 2^23 < freq < 2^30 (~8MHz to ~1GHz)
|
|
* @voltage: Voltage, in mV. Range: 2^9 < voltage < 2^13 (~0.5V to ~8V)
|
|
*
|
|
* Keep a record of the approximate range of each value at every stage of the
|
|
* calculation, to ensure we don't overflow. This makes heavy use of the
|
|
* approximations 1000 = 2^10 and 1000000 = 2^20, but does the actual
|
|
* calculations in decimal for increased accuracy.
|
|
*
|
|
* Return: Power consumption, in mW. Range: 0 < p < 2^13 (0W to ~8W)
|
|
*/
|
|
static u32 kbase_scale_dynamic_power(const u32 c, const u32 freq, const u32 voltage)
|
|
{
|
|
/* Range: 2^8 < v2 < 2^16 m(V^2) */
|
|
const u32 v2 = (voltage * voltage) / 1000;
|
|
|
|
/* Range: 2^3 < f_MHz < 2^10 MHz */
|
|
const u32 f_MHz = freq / 1000000;
|
|
|
|
/* Range: 2^11 < v2f_big < 2^26 kHz V^2 */
|
|
const u32 v2f_big = v2 * f_MHz;
|
|
|
|
/* Range: 2^1 < v2f < 2^16 MHz V^2 */
|
|
const u32 v2f = v2f_big / 1000;
|
|
|
|
/* Range (working backwards from next line): 0 < v2fc < 2^23 uW.
|
|
* Must be < 2^42 to avoid overflowing the return value.
|
|
*/
|
|
const u64 v2fc = (u64)c * (u64)v2f;
|
|
|
|
/* Range: 0 < v2fc / 1000 < 2^13 mW */
|
|
return div_u64(v2fc, 1000);
|
|
}
|
|
|
|
/**
|
|
* kbase_scale_static_power() - Scale a static power coefficient to an OPP
|
|
* @c: Static model coefficient, in uW/V^3. Should be in range
|
|
* 0 < c < 2^32 to prevent overflow.
|
|
* @voltage: Voltage, in mV. Range: 2^9 < voltage < 2^13 (~0.5V to ~8V)
|
|
*
|
|
* Return: Power consumption, in mW. Range: 0 < p < 2^13 (0W to ~8W)
|
|
*/
|
|
static u32 kbase_scale_static_power(const u32 c, const u32 voltage)
|
|
{
|
|
/* Range: 2^8 < v2 < 2^16 m(V^2) */
|
|
const u32 v2 = (voltage * voltage) / 1000;
|
|
|
|
/* Range: 2^17 < v3_big < 2^29 m(V^2) mV */
|
|
const u32 v3_big = v2 * voltage;
|
|
|
|
/* Range: 2^7 < v3 < 2^19 m(V^3) */
|
|
const u32 v3 = v3_big / 1000;
|
|
|
|
/*
|
|
* Range (working backwards from next line): 0 < v3c_big < 2^33 nW.
|
|
* The result should be < 2^52 to avoid overflowing the return value.
|
|
*/
|
|
const u64 v3c_big = (u64)c * (u64)v3;
|
|
|
|
/* Range: 0 < v3c_big / 1000000 < 2^13 mW */
|
|
return div_u64(v3c_big, 1000000);
|
|
}
|
|
|
|
void kbase_ipa_protection_mode_switch_event(struct kbase_device *kbdev)
|
|
{
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
|
|
/* Record the event of GPU entering protected mode. */
|
|
kbdev->ipa_protection_mode_switched = true;
|
|
}
|
|
|
|
static struct kbase_ipa_model *get_current_model(struct kbase_device *kbdev)
|
|
{
|
|
struct kbase_ipa_model *model;
|
|
unsigned long flags;
|
|
|
|
lockdep_assert_held(&kbdev->ipa.lock);
|
|
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
|
|
|
if (kbdev->ipa_protection_mode_switched || kbdev->ipa.force_fallback_model)
|
|
model = kbdev->ipa.fallback_model;
|
|
else
|
|
model = kbdev->ipa.configured_model;
|
|
|
|
/*
|
|
* Having taken cognizance of the fact that whether GPU earlier
|
|
* protected mode or not, the event can be now reset (if GPU is not
|
|
* currently in protected mode) so that configured model is used
|
|
* for the next sample.
|
|
*/
|
|
if (!kbdev->protected_mode)
|
|
kbdev->ipa_protection_mode_switched = false;
|
|
|
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
|
|
return model;
|
|
}
|
|
|
|
static u32 get_static_power_locked(struct kbase_device *kbdev, struct kbase_ipa_model *model,
|
|
unsigned long voltage)
|
|
{
|
|
u32 power = 0;
|
|
int err;
|
|
u32 power_coeff;
|
|
|
|
lockdep_assert_held(&model->kbdev->ipa.lock);
|
|
|
|
if (!model->ops->get_static_coeff)
|
|
model = kbdev->ipa.fallback_model;
|
|
|
|
if (model->ops->get_static_coeff) {
|
|
err = model->ops->get_static_coeff(model, &power_coeff);
|
|
if (!err)
|
|
power = kbase_scale_static_power(power_coeff, (u32)voltage);
|
|
}
|
|
|
|
return power;
|
|
}
|
|
|
|
#if KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE
|
|
#if defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE
|
|
static unsigned long kbase_get_static_power(struct devfreq *df, unsigned long voltage)
|
|
#else
|
|
static unsigned long kbase_get_static_power(unsigned long voltage)
|
|
#endif
|
|
{
|
|
struct kbase_ipa_model *model;
|
|
u32 power = 0;
|
|
#if defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE
|
|
struct kbase_device *kbdev = dev_get_drvdata(&df->dev);
|
|
#else
|
|
struct kbase_device *kbdev = kbase_find_device(-1);
|
|
#endif
|
|
|
|
if (!kbdev)
|
|
return 0ul;
|
|
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
|
|
model = get_current_model(kbdev);
|
|
power = get_static_power_locked(kbdev, model, voltage);
|
|
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
|
|
#if !(defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE)
|
|
kbase_release_device(kbdev);
|
|
#endif
|
|
|
|
return power;
|
|
}
|
|
#endif /* KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE */
|
|
|
|
/**
|
|
* opp_translate_freq_voltage() - Translate nominal OPP frequency from
|
|
* devicetree into the real frequency for
|
|
* top-level and shader cores.
|
|
* @kbdev: Device pointer
|
|
* @nominal_freq: Nominal frequency in Hz.
|
|
* @nominal_voltage: Nominal voltage, in mV.
|
|
* @freqs: Pointer to array of real frequency values.
|
|
* @volts: Pointer to array of voltages.
|
|
*
|
|
* If there are 2 clock domains, then top-level and shader cores can operate
|
|
* at different frequency and voltage level. The nominal frequency ("opp-hz")
|
|
* used by devfreq from the devicetree may not be same as the real frequency
|
|
* at which top-level and shader cores are operating, so a translation is
|
|
* needed.
|
|
* Nominal voltage shall always be same as the real voltage for top-level.
|
|
*/
|
|
static void opp_translate_freq_voltage(struct kbase_device *kbdev, unsigned long nominal_freq,
|
|
unsigned long nominal_voltage, unsigned long *freqs,
|
|
unsigned long *volts)
|
|
{
|
|
#if IS_ENABLED(CONFIG_MALI_BIFROST_NO_MALI)
|
|
/* An arbitrary voltage and frequency value can be chosen for testing
|
|
* in no mali configuration which may not match with any OPP level.
|
|
*/
|
|
CSTD_UNUSED(kbdev);
|
|
|
|
freqs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL] = nominal_freq;
|
|
volts[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL] = nominal_voltage;
|
|
|
|
freqs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES] = nominal_freq;
|
|
volts[KBASE_IPA_BLOCK_TYPE_SHADER_CORES] = nominal_voltage;
|
|
#else
|
|
u64 core_mask;
|
|
unsigned int i;
|
|
|
|
CSTD_UNUSED(nominal_voltage);
|
|
|
|
kbase_devfreq_opp_translate(kbdev, nominal_freq, &core_mask, freqs, volts);
|
|
CSTD_UNUSED(core_mask);
|
|
|
|
/* Convert micro volts to milli volts */
|
|
for (i = 0; i < kbdev->nr_clocks; i++)
|
|
volts[i] /= 1000;
|
|
|
|
if (kbdev->nr_clocks == 1) {
|
|
freqs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES] = freqs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL];
|
|
volts[KBASE_IPA_BLOCK_TYPE_SHADER_CORES] = volts[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE
|
|
#if defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE
|
|
static unsigned long kbase_get_dynamic_power(struct devfreq *df, unsigned long freq,
|
|
unsigned long voltage)
|
|
#else
|
|
static unsigned long kbase_get_dynamic_power(unsigned long freq, unsigned long voltage)
|
|
#endif
|
|
{
|
|
struct kbase_ipa_model *model;
|
|
unsigned long freqs[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
unsigned long volts[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
u32 power_coeffs[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
u32 power = 0;
|
|
int err = 0;
|
|
#if defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE
|
|
struct kbase_device *kbdev = dev_get_drvdata(&df->dev);
|
|
#else
|
|
struct kbase_device *kbdev = kbase_find_device(-1);
|
|
#endif
|
|
|
|
if (!kbdev)
|
|
return 0ul;
|
|
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
|
|
model = kbdev->ipa.fallback_model;
|
|
|
|
err = model->ops->get_dynamic_coeff(model, power_coeffs);
|
|
|
|
if (!err) {
|
|
opp_translate_freq_voltage(kbdev, freq, voltage, freqs, volts);
|
|
|
|
power = kbase_scale_dynamic_power(power_coeffs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL],
|
|
freqs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL],
|
|
volts[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL]);
|
|
|
|
/* Here unlike kbase_get_real_power(), shader core frequency is
|
|
* used for the scaling as simple power model is used to obtain
|
|
* the value of dynamic coefficient (which is a fixed value
|
|
* retrieved from the device tree).
|
|
*/
|
|
power += kbase_scale_dynamic_power(power_coeffs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES],
|
|
freqs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES],
|
|
volts[KBASE_IPA_BLOCK_TYPE_SHADER_CORES]);
|
|
} else
|
|
dev_err_ratelimited(kbdev->dev, "Model %s returned error code %d\n",
|
|
model->ops->name, err);
|
|
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
|
|
#if !(defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE)
|
|
kbase_release_device(kbdev);
|
|
#endif
|
|
|
|
return power;
|
|
}
|
|
#endif /* KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE */
|
|
|
|
int kbase_get_real_power_locked(struct kbase_device *kbdev, u32 *power, unsigned long freq,
|
|
unsigned long voltage)
|
|
{
|
|
struct kbase_ipa_model *model;
|
|
unsigned long freqs[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
unsigned long volts[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
u32 power_coeffs[KBASE_IPA_BLOCK_TYPE_NUM] = { 0 };
|
|
struct kbasep_pm_metrics diff;
|
|
u64 total_time;
|
|
bool skip_utilization_scaling = false;
|
|
int err = 0;
|
|
|
|
lockdep_assert_held(&kbdev->ipa.lock);
|
|
|
|
kbase_pm_get_dvfs_metrics(kbdev, &kbdev->ipa.last_metrics, &diff);
|
|
|
|
model = get_current_model(kbdev);
|
|
|
|
err = model->ops->get_dynamic_coeff(model, power_coeffs);
|
|
|
|
/* If the counter model returns an error (e.g. switching back to
|
|
* protected mode and failing to read counters, or a counter sample
|
|
* with too few cycles), revert to the fallback model.
|
|
*/
|
|
if (err && model != kbdev->ipa.fallback_model) {
|
|
/* No meaningful scaling for GPU utilization can be done if
|
|
* the sampling interval was too long. This is equivalent to
|
|
* assuming GPU was busy throughout (similar to what is done
|
|
* during protected mode).
|
|
*/
|
|
if (err == -EOVERFLOW)
|
|
skip_utilization_scaling = true;
|
|
|
|
model = kbdev->ipa.fallback_model;
|
|
err = model->ops->get_dynamic_coeff(model, power_coeffs);
|
|
}
|
|
|
|
if (WARN_ON(err))
|
|
return err;
|
|
|
|
opp_translate_freq_voltage(kbdev, freq, voltage, freqs, volts);
|
|
|
|
*power = kbase_scale_dynamic_power(power_coeffs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL],
|
|
freqs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL],
|
|
volts[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL]);
|
|
|
|
if (power_coeffs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES]) {
|
|
unsigned long freq = freqs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES];
|
|
|
|
/* As per the HW team, the top-level frequency needs to be used
|
|
* for the scaling if the counter based model was used as
|
|
* counter values are normalized with the GPU_ACTIVE counter
|
|
* value, which increments at the rate of top-level frequency.
|
|
*/
|
|
if (model != kbdev->ipa.fallback_model)
|
|
freq = freqs[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL];
|
|
|
|
*power += kbase_scale_dynamic_power(power_coeffs[KBASE_IPA_BLOCK_TYPE_SHADER_CORES],
|
|
freq, volts[KBASE_IPA_BLOCK_TYPE_SHADER_CORES]);
|
|
}
|
|
|
|
if (!skip_utilization_scaling) {
|
|
/* time_busy / total_time cannot be >1, so assigning the 64-bit
|
|
* result of div_u64 to *power cannot overflow.
|
|
*/
|
|
total_time = diff.time_busy + (u64)diff.time_idle;
|
|
*power = div_u64(*power * (u64)diff.time_busy, max(total_time, 1ull));
|
|
}
|
|
|
|
*power += get_static_power_locked(kbdev, model, volts[KBASE_IPA_BLOCK_TYPE_TOP_LEVEL]);
|
|
|
|
return err;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_get_real_power_locked);
|
|
|
|
int kbase_get_real_power(struct devfreq *df, u32 *power, unsigned long freq, unsigned long voltage)
|
|
{
|
|
int ret;
|
|
struct kbase_device *kbdev = dev_get_drvdata(&df->dev);
|
|
|
|
if (!kbdev)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
ret = kbase_get_real_power_locked(kbdev, power, freq, voltage);
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
|
|
return ret;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_get_real_power);
|
|
|
|
struct devfreq_cooling_power kbase_ipa_power_model_ops = {
|
|
#if KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE
|
|
.get_static_power = &kbase_get_static_power,
|
|
.get_dynamic_power = &kbase_get_dynamic_power,
|
|
#endif /* KERNEL_VERSION(5, 10, 0) > LINUX_VERSION_CODE */
|
|
#if defined(CONFIG_MALI_PWRSOFT_765) || KERNEL_VERSION(4, 10, 0) <= LINUX_VERSION_CODE
|
|
.get_real_power = &kbase_get_real_power,
|
|
#endif
|
|
};
|
|
KBASE_EXPORT_TEST_API(kbase_ipa_power_model_ops);
|
|
|
|
void kbase_ipa_reset_data(struct kbase_device *kbdev)
|
|
{
|
|
ktime_t now, diff;
|
|
s64 elapsed_time;
|
|
|
|
mutex_lock(&kbdev->ipa.lock);
|
|
|
|
now = ktime_get_raw();
|
|
diff = ktime_sub(now, kbdev->ipa.last_sample_time);
|
|
elapsed_time = ktime_to_ms(diff);
|
|
|
|
if (elapsed_time > RESET_INTERVAL_MS) {
|
|
struct kbasep_pm_metrics diff;
|
|
struct kbase_ipa_model *model;
|
|
|
|
kbase_pm_get_dvfs_metrics(kbdev, &kbdev->ipa.last_metrics, &diff);
|
|
|
|
model = get_current_model(kbdev);
|
|
if (model != kbdev->ipa.fallback_model)
|
|
model->ops->reset_counter_data(model);
|
|
|
|
kbdev->ipa.last_sample_time = ktime_get_raw();
|
|
}
|
|
|
|
mutex_unlock(&kbdev->ipa.lock);
|
|
}
|