617 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DMABUF CMA heap exporter
*
* Copyright (C) 2012, 2019, 2020 Linaro Ltd.
* Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
*
* Also utilizing parts of Andrew Davis' SRAM heap:
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*
* Copyright (C) 2021, 2022 Rockchip Electronics Co., Ltd.
*/
#include <linux/cma.h>
#include <linux/dma-buf.h>
#include <linux/dma-heap.h>
#include <linux/dma-map-ops.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <uapi/linux/dma-heap.h>
struct cma_heap {
struct dma_heap *heap;
struct cma *cma;
};
struct cma_heap_buffer {
struct cma_heap *heap;
struct list_head attachments;
struct mutex lock;
unsigned long len;
struct page *cma_pages;
struct page **pages;
pgoff_t pagecount;
int vmap_cnt;
void *vaddr;
bool uncached;
};
struct dma_heap_attachment {
struct device *dev;
struct sg_table table;
struct list_head list;
bool mapped;
bool uncached;
};
static int cma_heap_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
int ret;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
buffer->pagecount, 0,
buffer->pagecount << PAGE_SHIFT,
GFP_KERNEL);
if (ret) {
kfree(a);
return ret;
}
a->dev = attachment->dev;
INIT_LIST_HEAD(&a->list);
a->mapped = false;
a->uncached = buffer->uncached;
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->list, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void cma_heap_detach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a = attachment->priv;
mutex_lock(&buffer->lock);
list_del(&a->list);
mutex_unlock(&buffer->lock);
sg_free_table(&a->table);
kfree(a);
}
static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
struct sg_table *table = &a->table;
int attrs = attachment->dma_map_attrs;
int ret;
if (a->uncached)
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
ret = dma_map_sgtable(attachment->dev, table, direction, attrs);
if (ret)
return ERR_PTR(-ENOMEM);
a->mapped = true;
return table;
}
static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
int attrs = attachment->dma_map_attrs;
a->mapped = false;
if (a->uncached)
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
dma_unmap_sgtable(attachment->dev, table, direction, attrs);
}
static int __maybe_unused
cma_heap_dma_buf_begin_cpu_access_partial(struct dma_buf *dmabuf,
enum dma_data_direction direction,
unsigned int offset,
unsigned int len)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
phys_addr_t phys = page_to_phys(buffer->cma_pages);
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
if (buffer->uncached)
return 0;
mutex_lock(&buffer->lock);
dma_sync_single_for_cpu(dma_heap_get_dev(buffer->heap->heap),
phys + offset,
len,
direction);
mutex_unlock(&buffer->lock);
return 0;
}
static int __maybe_unused
cma_heap_dma_buf_end_cpu_access_partial(struct dma_buf *dmabuf,
enum dma_data_direction direction,
unsigned int offset,
unsigned int len)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
phys_addr_t phys = page_to_phys(buffer->cma_pages);
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
if (buffer->uncached)
return 0;
mutex_lock(&buffer->lock);
dma_sync_single_for_device(dma_heap_get_dev(buffer->heap->heap),
phys + offset,
len,
direction);
mutex_unlock(&buffer->lock);
return 0;
}
static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
mutex_lock(&buffer->lock);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
mutex_lock(&buffer->lock);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_device(a->dev, &a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct cma_heap_buffer *buffer = vma->vm_private_data;
if (vmf->pgoff > buffer->pagecount)
return VM_FAULT_SIGBUS;
vmf->page = buffer->pages[vmf->pgoff];
get_page(vmf->page);
return 0;
}
static const struct vm_operations_struct dma_heap_vm_ops = {
.fault = cma_heap_vm_fault,
};
static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
return -EINVAL;
if (buffer->uncached)
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
vma->vm_ops = &dma_heap_vm_ops;
vma->vm_private_data = buffer;
return 0;
}
static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
{
void *vaddr;
pgprot_t pgprot = PAGE_KERNEL;
if (buffer->uncached)
pgprot = pgprot_writecombine(PAGE_KERNEL);
vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, pgprot);
if (!vaddr)
return ERR_PTR(-ENOMEM);
return vaddr;
}
static void *cma_heap_vmap(struct dma_buf *dmabuf)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
void *vaddr;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt) {
buffer->vmap_cnt++;
vaddr = buffer->vaddr;
goto out;
}
vaddr = cma_heap_do_vmap(buffer);
if (IS_ERR(vaddr))
goto out;
buffer->vaddr = vaddr;
buffer->vmap_cnt++;
out:
mutex_unlock(&buffer->lock);
return vaddr;
}
static void cma_heap_vunmap(struct dma_buf *dmabuf, void *vaddr)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
if (!--buffer->vmap_cnt) {
vunmap(buffer->vaddr);
buffer->vaddr = NULL;
}
mutex_unlock(&buffer->lock);
}
static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
{
struct cma_heap_buffer *buffer = dmabuf->priv;
struct cma_heap *cma_heap = buffer->heap;
if (buffer->vmap_cnt > 0) {
WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
vunmap(buffer->vaddr);
}
/* free page list */
kfree(buffer->pages);
/* release memory */
cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
kfree(buffer);
}
static const struct dma_buf_ops cma_heap_buf_ops = {
.attach = cma_heap_attach,
.detach = cma_heap_detach,
.map_dma_buf = cma_heap_map_dma_buf,
.unmap_dma_buf = cma_heap_unmap_dma_buf,
.begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
.end_cpu_access = cma_heap_dma_buf_end_cpu_access,
#ifdef CONFIG_DMABUF_PARTIAL
.begin_cpu_access_partial = cma_heap_dma_buf_begin_cpu_access_partial,
.end_cpu_access_partial = cma_heap_dma_buf_end_cpu_access_partial,
#endif
.mmap = cma_heap_mmap,
.vmap = cma_heap_vmap,
.vunmap = cma_heap_vunmap,
.release = cma_heap_dma_buf_release,
};
static struct dma_buf *cma_heap_do_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags, bool uncached)
{
struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
struct cma_heap_buffer *buffer;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
size_t size = PAGE_ALIGN(len);
pgoff_t pagecount = size >> PAGE_SHIFT;
unsigned long align = get_order(size);
struct page *cma_pages;
struct dma_buf *dmabuf;
int ret = -ENOMEM;
pgoff_t pg;
dma_addr_t dma;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
buffer->uncached = uncached;
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
buffer->len = size;
if (align > CONFIG_CMA_ALIGNMENT)
align = CONFIG_CMA_ALIGNMENT;
cma_pages = cma_alloc(cma_heap->cma, pagecount, align, GFP_KERNEL);
if (!cma_pages)
goto free_buffer;
/* Clear the cma pages */
if (PageHighMem(cma_pages)) {
unsigned long nr_clear_pages = pagecount;
struct page *page = cma_pages;
while (nr_clear_pages > 0) {
void *vaddr = kmap_atomic(page);
memset(vaddr, 0, PAGE_SIZE);
kunmap_atomic(vaddr);
/*
* Avoid wasting time zeroing memory if the process
* has been killed by by SIGKILL
*/
if (fatal_signal_pending(current))
goto free_cma;
page++;
nr_clear_pages--;
}
} else {
memset(page_address(cma_pages), 0, size);
}
buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
if (!buffer->pages) {
ret = -ENOMEM;
goto free_cma;
}
for (pg = 0; pg < pagecount; pg++)
buffer->pages[pg] = &cma_pages[pg];
buffer->cma_pages = cma_pages;
buffer->heap = cma_heap;
buffer->pagecount = pagecount;
/* create the dmabuf */
exp_info.exp_name = dma_heap_get_name(heap);
exp_info.ops = &cma_heap_buf_ops;
exp_info.size = buffer->len;
exp_info.flags = fd_flags;
exp_info.priv = buffer;
dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
goto free_pages;
}
if (buffer->uncached) {
dma = dma_map_page(dma_heap_get_dev(heap), buffer->cma_pages, 0,
buffer->pagecount * PAGE_SIZE, DMA_FROM_DEVICE);
dma_unmap_page(dma_heap_get_dev(heap), dma,
buffer->pagecount * PAGE_SIZE, DMA_FROM_DEVICE);
}
return dmabuf;
free_pages:
kfree(buffer->pages);
free_cma:
cma_release(cma_heap->cma, cma_pages, pagecount);
free_buffer:
kfree(buffer);
return ERR_PTR(ret);
}
static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return cma_heap_do_allocate(heap, len, fd_flags, heap_flags, false);
}
#if IS_ENABLED(CONFIG_NO_GKI)
static int cma_heap_get_phys(struct dma_heap *heap,
struct dma_heap_phys_data *phys)
{
struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
struct cma_heap_buffer *buffer;
struct dma_buf *dmabuf;
phys->paddr = (__u64)-1;
if (IS_ERR_OR_NULL(phys))
return -EINVAL;
dmabuf = dma_buf_get(phys->fd);
if (IS_ERR_OR_NULL(dmabuf))
return -EBADFD;
buffer = dmabuf->priv;
if (IS_ERR_OR_NULL(buffer))
goto err;
if (buffer->heap != cma_heap)
goto err;
phys->paddr = page_to_phys(buffer->cma_pages);
err:
dma_buf_put(dmabuf);
return (phys->paddr == (__u64)-1) ? -EINVAL : 0;
}
#endif
static const struct dma_heap_ops cma_heap_ops = {
.allocate = cma_heap_allocate,
#if IS_ENABLED(CONFIG_NO_GKI)
.get_phys = cma_heap_get_phys,
#endif
};
static struct dma_buf *cma_uncached_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return cma_heap_do_allocate(heap, len, fd_flags, heap_flags, true);
}
static struct dma_buf *cma_uncached_heap_not_initialized(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
pr_info("heap %s not initialized\n", dma_heap_get_name(heap));
return ERR_PTR(-EBUSY);
}
static struct dma_heap_ops cma_uncached_heap_ops = {
.allocate = cma_uncached_heap_not_initialized,
};
static int set_heap_dev_dma(struct device *heap_dev)
{
int err = 0;
if (!heap_dev)
return -EINVAL;
dma_coerce_mask_and_coherent(heap_dev, DMA_BIT_MASK(64));
if (!heap_dev->dma_parms) {
heap_dev->dma_parms = devm_kzalloc(heap_dev,
sizeof(*heap_dev->dma_parms),
GFP_KERNEL);
if (!heap_dev->dma_parms)
return -ENOMEM;
err = dma_set_max_seg_size(heap_dev, (unsigned int)DMA_BIT_MASK(64));
if (err) {
devm_kfree(heap_dev, heap_dev->dma_parms);
dev_err(heap_dev, "Failed to set DMA segment size, err:%d\n", err);
return err;
}
}
return 0;
}
static int __add_cma_heap(struct cma *cma, void *data)
{
struct cma_heap *cma_heap, *cma_uncached_heap;
struct dma_heap_export_info exp_info;
int ret;
cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
if (!cma_heap)
return -ENOMEM;
cma_heap->cma = cma;
exp_info.name = "cma";
exp_info.ops = &cma_heap_ops;
exp_info.priv = cma_heap;
cma_heap->heap = dma_heap_add(&exp_info);
if (IS_ERR(cma_heap->heap)) {
ret = PTR_ERR(cma_heap->heap);
goto free_cma_heap;
}
cma_uncached_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
if (!cma_uncached_heap) {
ret = -ENOMEM;
goto put_cma_heap;
}
cma_uncached_heap->cma = cma;
exp_info.name = "cma-uncached";
exp_info.ops = &cma_uncached_heap_ops;
exp_info.priv = cma_uncached_heap;
cma_uncached_heap->heap = dma_heap_add(&exp_info);
if (IS_ERR(cma_uncached_heap->heap)) {
ret = PTR_ERR(cma_uncached_heap->heap);
goto free_uncached_cma_heap;
}
ret = set_heap_dev_dma(dma_heap_get_dev(cma_uncached_heap->heap));
if (ret)
goto put_uncached_cma_heap;
mb(); /* make sure we only set allocate after dma_mask is set */
cma_uncached_heap_ops.allocate = cma_uncached_heap_allocate;
return 0;
put_uncached_cma_heap:
dma_heap_put(cma_uncached_heap->heap);
free_uncached_cma_heap:
kfree(cma_uncached_heap);
put_cma_heap:
dma_heap_put(cma_heap->heap);
free_cma_heap:
kfree(cma_heap);
return ret;
}
static int add_default_cma_heap(void)
{
struct cma *default_cma = dev_get_cma_area(NULL);
int ret = 0;
if (default_cma)
ret = __add_cma_heap(default_cma, NULL);
return ret;
}
module_init(add_default_cma_heap);
MODULE_DESCRIPTION("DMA-BUF CMA Heap");
MODULE_LICENSE("GPL");