2079 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ALSA SoC Audio Layer - Rockchip SAI Controller driver
*
* Copyright (c) 2022 Rockchip Electronics Co., Ltd.
*/
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/delay.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/clk/rockchip.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <sound/pcm_params.h>
#include <sound/dmaengine_pcm.h>
#include <sound/tlv.h>
#include "rockchip_sai.h"
#include "rockchip_dlp_pcm.h"
#include "rockchip_utils.h"
#define DRV_NAME "rockchip-sai"
#define CLK_PPM_MIN (-1000)
#define CLK_PPM_MAX (1000)
#define CLK_SHIFT_RATE_HZ_MAX 5
#define FW_RATIO_MAX 8
#define FW_RATIO_MIN 1
#define MAXBURST_PER_FIFO 8
#define DEFAULT_FS 48000
#define TIMEOUT_US 1000
#define WAIT_TIME_MS_MAX 10000
#define QUIRK_ALWAYS_ON BIT(0)
#define MAX_LANES 4
enum fpw_mode {
FPW_ONE_BCLK_WIDTH,
FPW_ONE_SLOT_WIDTH,
FPW_HALF_FRAME_WIDTH,
};
struct rk_sai_dev {
struct device *dev;
struct clk *hclk;
struct clk *mclk;
struct clk *mclk_root;
struct regmap *regmap;
struct reset_control *rst_h;
struct reset_control *rst_m;
struct snd_dmaengine_dai_dma_data capture_dma_data;
struct snd_dmaengine_dai_dma_data playback_dma_data;
struct snd_pcm_substream *substreams[SNDRV_PCM_STREAM_LAST + 1];
unsigned int wait_time[SNDRV_PCM_STREAM_LAST + 1];
unsigned int tx_lanes;
unsigned int rx_lanes;
unsigned int sdi[MAX_LANES];
unsigned int sdo[MAX_LANES];
unsigned int quirks;
unsigned int mclk_root_rate;
unsigned int mclk_root_initial_rate;
unsigned int version;
enum fpw_mode fpw;
int fw_ratio;
int clk_ppm;
bool has_capture;
bool has_playback;
bool is_master_mode;
bool is_tdm;
bool is_clk_auto;
bool is_mclk_calibrate;
bool is_tx_auto_gate; /* auto gate clk when TX FIFO empty */
};
static const struct sai_of_quirks {
char *quirk;
int id;
} of_quirks[] = {
{
.quirk = "rockchip,always-on",
.id = QUIRK_ALWAYS_ON,
},
};
static bool rockchip_sai_stream_valid(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
if (!substream)
return false;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
sai->has_playback)
return true;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE &&
sai->has_capture)
return true;
return false;
}
static int rockchip_sai_fsync_lost_threshold_cfg(struct rk_sai_dev *sai,
unsigned int sample_rate)
{
unsigned int div, cnt, mclk_rate;
if (sai->is_master_mode || sai->version < SAI_VER_2311)
return 0;
regmap_read(sai->regmap, SAI_CKR, &div);
div = SAI_CKR_MDIV_V(div);
mclk_rate = clk_get_rate(sai->mclk) / div;
cnt = (mclk_rate + sample_rate - 1) / sample_rate;
cnt = cnt << 1; /* two fsync lost */
/* the cnt is cycles of SCLK from cru, not external SCLK */
regmap_update_bits(sai->regmap, SAI_FS_TIMEOUT,
SAI_FS_TIMEOUT_VAL_MASK,
SAI_FS_TIMEOUT_VAL(cnt));
return 0;
}
static int rockchip_sai_fsync_lost_detect(struct rk_sai_dev *sai, bool en)
{
if (sai->is_master_mode || sai->version < SAI_VER_2311)
return 0;
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSLOSTC, SAI_INTCR_FSLOSTC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSLOST_MASK,
SAI_INTCR_FSLOST(en));
regmap_update_bits(sai->regmap, SAI_FS_TIMEOUT,
SAI_FS_TIMEOUT_EN_MASK,
SAI_FS_TIMEOUT_EN(en));
return 0;
}
static int rockchip_sai_fsync_err_detect(struct rk_sai_dev *sai,
bool en)
{
if (sai->is_master_mode || sai->version < SAI_VER_2311)
return 0;
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSERRC, SAI_INTCR_FSERRC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSERR_MASK,
SAI_INTCR_FSERR(en));
return 0;
}
static int rockchip_sai_poll_clk_idle(struct rk_sai_dev *sai)
{
unsigned int reg, idle, val;
int ret;
if (sai->version >= SAI_VER_2307) {
reg = SAI_STATUS;
idle = SAI_STATUS_FS_IDLE;
idle = sai->version >= SAI_VER_2311 ? idle >> 1 : idle;
} else {
reg = SAI_XFER;
idle = SAI_XFER_FS_IDLE;
}
dev_dbg(sai->dev, "%s: ver: 0x%x\n", __func__, sai->version);
ret = regmap_read_poll_timeout_atomic(sai->regmap, reg, val,
(val & idle), 10, TIMEOUT_US);
if (ret < 0)
dev_warn(sai->dev, "Failed to idle FS\n");
return ret;
}
static int rockchip_sai_poll_stream_idle(struct rk_sai_dev *sai, int stream)
{
unsigned int reg, idle, val;
int ret;
if (sai->version >= SAI_VER_2307) {
reg = SAI_STATUS;
idle = stream ? SAI_STATUS_RX_IDLE : SAI_STATUS_TX_IDLE;
idle = sai->version >= SAI_VER_2311 ? idle >> 1 : idle;
} else {
reg = SAI_XFER;
idle = stream ? SAI_XFER_RX_IDLE : SAI_XFER_TX_IDLE;
}
ret = regmap_read_poll_timeout_atomic(sai->regmap, reg, val,
(val & idle), 10, TIMEOUT_US);
if (ret < 0)
dev_warn(sai->dev, "Failed to idle stream\n");
return ret;
}
static int rockchip_sai_runtime_suspend(struct device *dev)
{
struct rk_sai_dev *sai = dev_get_drvdata(dev);
rockchip_sai_fsync_lost_detect(sai, 0);
rockchip_sai_fsync_err_detect(sai, 0);
regmap_update_bits(sai->regmap, SAI_XFER,
SAI_XFER_CLK_MASK |
SAI_XFER_FSS_MASK,
SAI_XFER_CLK_DIS |
SAI_XFER_FSS_DIS);
rockchip_sai_poll_clk_idle(sai);
regcache_cache_only(sai->regmap, true);
/*
* After FS idle, should wait at least 2 BCLK cycle to make sure
* the CLK gate operation done, and then disable mclk.
*
* Otherwise, the BCLK is still ungated. once the mclk is enabled,
* there maybe a risk that a few BCLK cycle leak. especially for
* low speed situation, such as 8k samplerate.
*
* The best way is to use delay per samplerate, but, the max time
* is quite a tiny value, so, let's make it simple to use the max
* time.
*
* The max BCLK cycle time is: 31us @ 8K-8Bit (64K BCLK)
*/
udelay(40);
clk_disable_unprepare(sai->mclk);
clk_disable_unprepare(sai->hclk);
return 0;
}
static int rockchip_sai_runtime_resume(struct device *dev)
{
struct rk_sai_dev *sai = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(sai->hclk);
if (ret)
goto err_hclk;
ret = clk_prepare_enable(sai->mclk);
if (ret)
goto err_mclk;
regcache_cache_only(sai->regmap, false);
regcache_mark_dirty(sai->regmap);
ret = regcache_sync(sai->regmap);
if (ret)
goto err_regmap;
if (sai->quirks & QUIRK_ALWAYS_ON && sai->is_master_mode)
regmap_update_bits(sai->regmap, SAI_XFER,
SAI_XFER_CLK_MASK |
SAI_XFER_FSS_MASK,
SAI_XFER_CLK_EN |
SAI_XFER_FSS_EN);
return 0;
err_regmap:
clk_disable_unprepare(sai->mclk);
err_mclk:
clk_disable_unprepare(sai->hclk);
err_hclk:
return ret;
}
static void rockchip_sai_fifo_xrun_detect(struct rk_sai_dev *sai,
int stream, bool en)
{
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* clear irq status which was asserted before TXUIE enabled */
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_TXUIC, SAI_INTCR_TXUIC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_TXUIE_MASK,
SAI_INTCR_TXUIE(en));
} else {
/* clear irq status which was asserted before RXOIE enabled */
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_RXOIC, SAI_INTCR_RXOIC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_RXOIE_MASK,
SAI_INTCR_RXOIE(en));
}
}
static void rockchip_sai_dma_ctrl(struct rk_sai_dev *sai,
int stream, bool en)
{
if (!en)
rockchip_sai_fifo_xrun_detect(sai, stream, 0);
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
regmap_update_bits(sai->regmap, SAI_DMACR,
SAI_DMACR_TDE_MASK,
SAI_DMACR_TDE(en));
} else {
regmap_update_bits(sai->regmap, SAI_DMACR,
SAI_DMACR_RDE_MASK,
SAI_DMACR_RDE(en));
}
if (en)
rockchip_sai_fifo_xrun_detect(sai, stream, 1);
}
static void rockchip_sai_reset(struct rk_sai_dev *sai)
{
/*
* Suggest to do reset hclk domain and then do mclk
* domain, especially for SLAVE mode without CLK in.
*
* It will be failed for mclk domain reset on SLAVE mode
* without CLK in, we workaround this by do hclk reset
* to bring controller back to master, and then do
* mclk domain reset, at last, recover regmap config.
*/
reset_control_assert(sai->rst_h);
/* delay for reset assert done */
udelay(10);
reset_control_deassert(sai->rst_h);
/* delay for reset assert done */
udelay(10);
reset_control_assert(sai->rst_m);
/* delay for reset deassert done */
udelay(10);
reset_control_deassert(sai->rst_m);
/* delay for reset deassert done */
udelay(10);
/* recover regmap config */
regcache_mark_dirty(sai->regmap);
regcache_sync(sai->regmap);
}
static int rockchip_sai_clear(struct rk_sai_dev *sai, unsigned int clr)
{
unsigned int val = 0;
int ret = 0;
regmap_update_bits(sai->regmap, SAI_CLR, clr, clr);
ret = regmap_read_poll_timeout_atomic(sai->regmap, SAI_CLR, val,
!(val & clr), 10, TIMEOUT_US);
if (ret < 0) {
dev_warn(sai->dev, "Failed to clear %u\n", clr);
goto reset;
}
return 0;
reset:
rockchip_sai_reset(sai);
return 0;
}
static void rockchip_sai_xfer_start(struct rk_sai_dev *sai, int stream)
{
unsigned int msk, val;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
msk = sai->is_tx_auto_gate ? SAI_XFER_TX_AUTO_MASK : SAI_XFER_TXS_MASK;
val = sai->is_tx_auto_gate ? SAI_XFER_TX_AUTO_EN : SAI_XFER_TXS_EN;
} else {
msk = SAI_XFER_RXS_MASK;
val = SAI_XFER_RXS_EN;
}
regmap_update_bits(sai->regmap, SAI_XFER, msk, val);
}
static void rockchip_sai_xfer_stop(struct rk_sai_dev *sai, int stream)
{
unsigned int msk, val, clr;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
msk = sai->is_tx_auto_gate ? SAI_XFER_TX_AUTO_MASK : SAI_XFER_TXS_MASK;
val = sai->is_tx_auto_gate ? SAI_XFER_TX_AUTO_DIS : SAI_XFER_TXS_DIS;
clr = SAI_CLR_TXC;
} else {
msk = SAI_XFER_RXS_MASK;
val = SAI_XFER_RXS_DIS;
clr = SAI_CLR_RXC;
}
regmap_update_bits(sai->regmap, SAI_XFER, msk, val);
rockchip_sai_poll_stream_idle(sai, stream);
rockchip_sai_clear(sai, clr);
}
static void rockchip_sai_start(struct rk_sai_dev *sai, int stream)
{
rockchip_sai_dma_ctrl(sai, stream, 1);
rockchip_sai_xfer_start(sai, stream);
}
static void rockchip_sai_stop(struct rk_sai_dev *sai, int stream)
{
rockchip_sai_dma_ctrl(sai, stream, 0);
rockchip_sai_xfer_stop(sai, stream);
}
static void rockchip_sai_fmt_create(struct rk_sai_dev *sai, unsigned int fmt)
{
unsigned int xcr_mask = 0, xcr_val = 0, xsft_mask = 0, xsft_val = 0;
unsigned int fscr_mask = 0, fscr_val = 0;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_RIGHT_J:
xcr_mask = SAI_XCR_VDJ_MASK | SAI_XCR_EDGE_SHIFT_MASK;
xcr_val = SAI_XCR_VDJ_R | SAI_XCR_EDGE_SHIFT_0;
xsft_mask = SAI_XSHIFT_RIGHT_MASK;
xsft_val = SAI_XSHIFT_RIGHT(0);
fscr_mask = SAI_FSCR_EDGE_MASK;
fscr_val = SAI_FSCR_EDGE_DUAL;
sai->fpw = FPW_HALF_FRAME_WIDTH;
break;
case SND_SOC_DAIFMT_LEFT_J:
xcr_mask = SAI_XCR_VDJ_MASK | SAI_XCR_EDGE_SHIFT_MASK;
xcr_val = SAI_XCR_VDJ_L | SAI_XCR_EDGE_SHIFT_0;
xsft_mask = SAI_XSHIFT_RIGHT_MASK;
xsft_val = SAI_XSHIFT_RIGHT(0);
fscr_mask = SAI_FSCR_EDGE_MASK;
fscr_val = SAI_FSCR_EDGE_DUAL;
sai->fpw = FPW_HALF_FRAME_WIDTH;
break;
case SND_SOC_DAIFMT_I2S:
xcr_mask = SAI_XCR_VDJ_MASK | SAI_XCR_EDGE_SHIFT_MASK;
xcr_val = SAI_XCR_VDJ_L | SAI_XCR_EDGE_SHIFT_1;
xsft_mask = SAI_XSHIFT_RIGHT_MASK;
xsft_val = SAI_XSHIFT_RIGHT(2);
fscr_mask = SAI_FSCR_EDGE_MASK;
fscr_val = SAI_FSCR_EDGE_DUAL;
sai->fpw = FPW_HALF_FRAME_WIDTH;
break;
case SND_SOC_DAIFMT_DSP_A:
xcr_mask = SAI_XCR_VDJ_MASK | SAI_XCR_EDGE_SHIFT_MASK;
xcr_val = SAI_XCR_VDJ_L | SAI_XCR_EDGE_SHIFT_0;
xsft_mask = SAI_XSHIFT_RIGHT_MASK;
xsft_val = SAI_XSHIFT_RIGHT(2);
fscr_mask = SAI_FSCR_EDGE_MASK;
fscr_val = SAI_FSCR_EDGE_RISING;
sai->fpw = FPW_ONE_BCLK_WIDTH;
break;
case SND_SOC_DAIFMT_DSP_B:
xcr_mask = SAI_XCR_VDJ_MASK | SAI_XCR_EDGE_SHIFT_MASK;
xcr_val = SAI_XCR_VDJ_L | SAI_XCR_EDGE_SHIFT_0;
xsft_mask = SAI_XSHIFT_RIGHT_MASK;
xsft_val = SAI_XSHIFT_RIGHT(0);
fscr_mask = SAI_FSCR_EDGE_MASK;
fscr_val = SAI_FSCR_EDGE_RISING;
sai->fpw = FPW_ONE_BCLK_WIDTH;
break;
default:
dev_err(sai->dev, "Unsupported fmt %u\n", fmt);
break;
}
regmap_update_bits(sai->regmap, SAI_TXCR, xcr_mask, xcr_val);
regmap_update_bits(sai->regmap, SAI_RXCR, xcr_mask, xcr_val);
regmap_update_bits(sai->regmap, SAI_TX_SHIFT, xsft_mask, xsft_val);
regmap_update_bits(sai->regmap, SAI_RX_SHIFT, xsft_mask, xsft_val);
regmap_update_bits(sai->regmap, SAI_FSCR, fscr_mask, fscr_val);
}
static int rockchip_sai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
unsigned int mask = 0, val = 0;
int ret = 0;
pm_runtime_get_sync(dai->dev);
mask = SAI_CKR_MSS_MASK;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
val = SAI_CKR_MSS_MASTER;
sai->is_master_mode = true;
break;
case SND_SOC_DAIFMT_BC_FC:
val = SAI_CKR_MSS_SLAVE;
sai->is_master_mode = false;
break;
default:
ret = -EINVAL;
goto err_pm_put;
}
regmap_update_bits(sai->regmap, SAI_CKR, mask, val);
mask = SAI_CKR_CKP_MASK | SAI_CKR_FSP_MASK;
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
val = SAI_CKR_CKP_NORMAL | SAI_CKR_FSP_NORMAL;
break;
case SND_SOC_DAIFMT_NB_IF:
val = SAI_CKR_CKP_NORMAL | SAI_CKR_FSP_INVERTED;
break;
case SND_SOC_DAIFMT_IB_NF:
val = SAI_CKR_CKP_INVERTED | SAI_CKR_FSP_NORMAL;
break;
case SND_SOC_DAIFMT_IB_IF:
val = SAI_CKR_CKP_INVERTED | SAI_CKR_FSP_INVERTED;
break;
default:
ret = -EINVAL;
goto err_pm_put;
}
regmap_update_bits(sai->regmap, SAI_CKR, mask, val);
rockchip_sai_fmt_create(sai, fmt);
err_pm_put:
pm_runtime_put(dai->dev);
return ret;
}
static unsigned int rockchip_sai_lanes_auto(struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
unsigned int lanes = 1;
if (!sai->is_tdm)
lanes = DIV_ROUND_UP(params_channels(params), 2);
return lanes;
}
static int rockchip_sai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
struct snd_dmaengine_dai_dma_data *dma_data;
unsigned int mclk_rate, mclk_req_rate, bclk_rate, div_bclk;
unsigned int ch_per_lane, lanes, slot_width;
unsigned int val, fscr, reg, fifo;
if (!rockchip_sai_stream_valid(substream, dai))
return 0;
dma_data = snd_soc_dai_get_dma_data(dai, substream);
dma_data->maxburst = MAXBURST_PER_FIFO * params_channels(params) / 2;
lanes = rockchip_sai_lanes_auto(params, dai);
regmap_read(sai->regmap, SAI_DMACR, &val);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
reg = SAI_TXCR;
if (sai->tx_lanes)
lanes = sai->tx_lanes;
fifo = SAI_DMACR_TDL_V(val) * lanes;
} else {
reg = SAI_RXCR;
if (sai->rx_lanes)
lanes = sai->rx_lanes;
fifo = SAI_DMACR_TDL_V(val) * lanes;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
case SNDRV_PCM_FORMAT_U8:
val = SAI_XCR_VDW(8);
break;
case SNDRV_PCM_FORMAT_S16_LE:
val = SAI_XCR_VDW(16);
break;
case SNDRV_PCM_FORMAT_S24_LE:
val = SAI_XCR_VDW(24);
break;
case SNDRV_PCM_FORMAT_S32_LE:
case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
val = SAI_XCR_VDW(32);
break;
default:
return -EINVAL;
}
val |= SAI_XCR_CSR(lanes);
regmap_update_bits(sai->regmap, reg, SAI_XCR_VDW_MASK | SAI_XCR_CSR_MASK, val);
regmap_read(sai->regmap, reg, &val);
slot_width = SAI_XCR_SBW_V(val);
ch_per_lane = params_channels(params) / lanes;
regmap_update_bits(sai->regmap, reg, SAI_XCR_SNB_MASK,
SAI_XCR_SNB(ch_per_lane));
fscr = SAI_FSCR_FW(sai->fw_ratio * slot_width * ch_per_lane);
switch (sai->fpw) {
case FPW_ONE_BCLK_WIDTH:
fscr |= SAI_FSCR_FPW(1);
break;
case FPW_ONE_SLOT_WIDTH:
fscr |= SAI_FSCR_FPW(slot_width);
break;
case FPW_HALF_FRAME_WIDTH:
fscr |= SAI_FSCR_FPW(sai->fw_ratio * slot_width * ch_per_lane / 2);
break;
default:
dev_err(sai->dev, "Invalid Frame Pulse Width %d\n", sai->fpw);
return -EINVAL;
}
regmap_update_bits(sai->regmap, SAI_FSCR,
SAI_FSCR_FW_MASK | SAI_FSCR_FPW_MASK, fscr);
if (sai->is_master_mode) {
bclk_rate = sai->fw_ratio * slot_width * ch_per_lane * params_rate(params);
if (sai->is_clk_auto)
clk_set_rate(sai->mclk, bclk_rate);
mclk_rate = clk_get_rate(sai->mclk);
if (mclk_rate < bclk_rate) {
dev_err(sai->dev, "Mismatch mclk: %u, at least %u\n",
mclk_rate, bclk_rate);
return -EINVAL;
}
div_bclk = DIV_ROUND_CLOSEST(mclk_rate, bclk_rate);
mclk_req_rate = bclk_rate * div_bclk;
if (mclk_rate < mclk_req_rate - CLK_SHIFT_RATE_HZ_MAX ||
mclk_rate > mclk_req_rate + CLK_SHIFT_RATE_HZ_MAX) {
dev_err(sai->dev, "Mismatch mclk: %u, expected %u (+/- %dHz)\n",
mclk_rate, mclk_req_rate, CLK_SHIFT_RATE_HZ_MAX);
return -EINVAL;
}
regmap_update_bits(sai->regmap, SAI_CKR, SAI_CKR_MDIV_MASK,
SAI_CKR_MDIV(div_bclk));
}
rockchip_sai_fsync_lost_threshold_cfg(sai, params_rate(params));
rockchip_utils_get_performance(substream, params, dai, fifo);
return 0;
}
static int rockchip_sai_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
if (!rockchip_sai_stream_valid(substream, dai))
return 0;
rockchip_utils_put_performance(substream, dai);
return 0;
}
static int rockchip_sai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
if (!rockchip_sai_stream_valid(substream, dai))
return 0;
/*
* Should wait for one BCLK ready after DIV and then ungate
* output clk to achieve the clean clk.
*
* The best way is to use delay per samplerate, but, the max time
* is quite a tiny value, so, let's make it simple to use the max
* time.
*
* The max BCLK cycle time is: 15.6us @ 8K-8Bit (64K BCLK)
*/
udelay(20);
regmap_update_bits(sai->regmap, SAI_XFER,
SAI_XFER_CLK_MASK |
SAI_XFER_FSS_MASK,
SAI_XFER_CLK_EN |
SAI_XFER_FSS_EN);
rockchip_sai_fsync_lost_detect(sai, 1);
rockchip_sai_fsync_err_detect(sai, 1);
return 0;
}
static int rockchip_sai_path_check(struct rk_sai_dev *sai,
int num, bool is_rx)
{
unsigned int *data;
int i;
data = is_rx ? sai->sdi : sai->sdo;
for (i = 0; i < num; i++) {
if (data[i] >= MAX_LANES) {
dev_err(sai->dev, "%s[%d]: %d, Should less than: %d\n",
is_rx ? "RX" : "TX", i, data[i], MAX_LANES);
return -EINVAL;
}
}
return 0;
}
static void rockchip_sai_path_config(struct rk_sai_dev *sai,
int num, bool is_rx)
{
int i;
if (is_rx)
for (i = 0; i < num; i++)
regmap_update_bits(sai->regmap, SAI_PATH_SEL,
SAI_RX_PATH_MASK(i),
SAI_RX_PATH(i, sai->sdi[i]));
else
for (i = 0; i < num; i++)
regmap_update_bits(sai->regmap, SAI_PATH_SEL,
SAI_TX_PATH_MASK(i),
SAI_TX_PATH(i, sai->sdo[i]));
}
static int rockchip_sai_path_prepare(struct rk_sai_dev *sai,
struct device_node *np,
bool is_rx)
{
char *path_prop;
unsigned int *data;
int num, ret;
if (is_rx) {
path_prop = "rockchip,sai-rx-route";
data = sai->sdi;
} else {
path_prop = "rockchip,sai-tx-route";
data = sai->sdo;
}
num = of_count_phandle_with_args(np, path_prop, NULL);
if (num == -ENOENT) {
return 0;
} else if (num != MAX_LANES) {
dev_err(sai->dev, "The property size should be: %d, ret: %d\n",
MAX_LANES, num);
return -EINVAL;
}
ret = device_property_read_u32_array(sai->dev, path_prop, data, num);
if (ret < 0) {
dev_err(sai->dev, "Failed to read '%s': %d\n",
path_prop, ret);
return ret;
}
ret = rockchip_sai_path_check(sai, num, is_rx);
if (ret)
return ret;
rockchip_sai_path_config(sai, num, is_rx);
return 0;
}
static int rockchip_sai_parse_paths(struct rk_sai_dev *sai,
struct device_node *np)
{
unsigned int val;
int ret;
if (!device_property_read_u32(sai->dev, "rockchip,tdm-tx-lanes", &val)) {
if ((val >= 1) && (val <= 4))
sai->tx_lanes = val;
}
if (!device_property_read_u32(sai->dev, "rockchip,tdm-rx-lanes", &val)) {
if ((val >= 1) && (val <= 4))
sai->rx_lanes = val;
}
ret = rockchip_sai_path_prepare(sai, np, 0);
if (ret < 0) {
dev_err(sai->dev, "Failed to prepare TX path: %d\n", ret);
return ret;
}
ret = rockchip_sai_path_prepare(sai, np, 1);
if (ret < 0) {
dev_err(sai->dev, "Failed to prepare RX path: %d\n", ret);
return ret;
}
return ret;
}
static int rockchip_sai_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
int ret = 0;
if (!rockchip_sai_stream_valid(substream, dai))
return 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
rockchip_sai_start(sai, substream->stream);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
rockchip_sai_stop(sai, substream->stream);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int rockchip_sai_set_mclk_root_ppm(struct rk_sai_dev *sai, int ppm)
{
unsigned long rate, rate_target;
int delta, ret;
if (ppm == sai->clk_ppm)
return 0;
rate = sai->mclk_root_rate;
ret = rockchip_pll_clk_compensation(sai->mclk_root, ppm);
if (ret != -ENOSYS)
goto out;
delta = (ppm < 0) ? -1 : 1;
delta *= (int)div64_u64((uint64_t)rate * (uint64_t)abs(ppm) + 500000, 1000000);
rate_target = rate + delta;
if (!rate_target)
return -EINVAL;
ret = clk_set_rate(sai->mclk_root, rate_target);
if (ret)
return ret;
out:
if (!ret)
sai->clk_ppm = ppm;
return ret;
}
static int rockchip_sai_init_mclk_root_rate(struct rk_sai_dev *sai,
unsigned int mclk_rate)
{
unsigned int mclk_root_rate, div, delta;
uint64_t ppm;
int ret;
if (!sai->is_mclk_calibrate)
return 0;
ret = rockchip_sai_set_mclk_root_ppm(sai, 0);
if (ret)
return ret;
mclk_root_rate = sai->mclk_root_rate;
delta = abs(mclk_root_rate % mclk_rate - mclk_rate);
ppm = div64_u64((uint64_t)delta * 1000000, (uint64_t)mclk_root_rate);
if (ppm) {
div = DIV_ROUND_CLOSEST(sai->mclk_root_initial_rate, mclk_rate);
if (!div)
return -EINVAL;
mclk_root_rate = mclk_rate * round_up(div, 2);
ret = clk_set_rate(sai->mclk_root, mclk_root_rate);
if (ret)
return ret;
sai->mclk_root_rate = clk_get_rate(sai->mclk_root);
}
return 0;
}
static int rockchip_sai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
int ret;
if (!freq || sai->is_clk_auto)
return 0;
ret = rockchip_sai_init_mclk_root_rate(sai, freq);
if (ret) {
dev_err(sai->dev, "Failed to init mclk_root rate %d\n", ret);
return ret;
}
ret = clk_set_rate(sai->mclk, freq);
if (ret)
dev_err(sai->dev, "Failed to set mclk %d\n", ret);
return ret;
}
static int rockchip_sai_clk_compensation_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = CLK_PPM_MIN;
uinfo->value.integer.max = CLK_PPM_MAX;
uinfo->value.integer.step = 1;
return 0;
}
static int rockchip_sai_clk_compensation_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(compnt);
ucontrol->value.integer.value[0] = sai->clk_ppm;
return 0;
}
static int rockchip_sai_clk_compensation_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(compnt);
int ppm = ucontrol->value.integer.value[0];
if ((ucontrol->value.integer.value[0] < CLK_PPM_MIN) ||
(ucontrol->value.integer.value[0] > CLK_PPM_MAX))
return -EINVAL;
return rockchip_sai_set_mclk_root_ppm(sai, ppm);
}
static struct snd_kcontrol_new rockchip_sai_compensation_control = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "PCM Clk Compensation In PPM",
.info = rockchip_sai_clk_compensation_info,
.get = rockchip_sai_clk_compensation_get,
.put = rockchip_sai_clk_compensation_put,
};
static int rockchip_sai_dai_probe(struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai,
sai->has_playback ? &sai->playback_dma_data : NULL,
sai->has_capture ? &sai->capture_dma_data : NULL);
if (sai->is_mclk_calibrate)
snd_soc_add_component_controls(dai->component,
&rockchip_sai_compensation_control,
1);
return 0;
}
static int rockchip_sai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
int stream = substream->stream;
if (!rockchip_sai_stream_valid(substream, dai))
return 0;
if (sai->substreams[stream])
return -EBUSY;
if (sai->wait_time[stream])
substream->wait_time = msecs_to_jiffies(sai->wait_time[stream]);
sai->substreams[stream] = substream;
return 0;
}
static void rockchip_sai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
if (!rockchip_sai_stream_valid(substream, dai))
return;
sai->substreams[substream->stream] = NULL;
}
static int rockchip_sai_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width)
{
struct rk_sai_dev *sai = snd_soc_dai_get_drvdata(dai);
pm_runtime_get_sync(dai->dev);
regmap_update_bits(sai->regmap, SAI_TXCR, SAI_XCR_SBW_MASK,
SAI_XCR_SBW(slot_width));
regmap_update_bits(sai->regmap, SAI_RXCR, SAI_XCR_SBW_MASK,
SAI_XCR_SBW(slot_width));
pm_runtime_put(dai->dev);
sai->is_tdm = true;
return 0;
}
static const struct snd_soc_dai_ops rockchip_sai_dai_ops = {
.startup = rockchip_sai_startup,
.shutdown = rockchip_sai_shutdown,
.hw_params = rockchip_sai_hw_params,
.hw_free = rockchip_sai_hw_free,
.set_sysclk = rockchip_sai_set_sysclk,
.set_fmt = rockchip_sai_set_fmt,
.prepare = rockchip_sai_prepare,
.trigger = rockchip_sai_trigger,
.set_tdm_slot = rockchip_sai_set_tdm_slot,
};
static struct snd_soc_dai_driver rockchip_sai_dai = {
.probe = rockchip_sai_dai_probe,
.ops = &rockchip_sai_dai_ops,
.symmetric_rate = 1,
};
static bool rockchip_sai_wr_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SAI_TXCR:
case SAI_FSCR:
case SAI_RXCR:
case SAI_MONO_CR:
case SAI_XFER:
case SAI_CLR:
case SAI_CKR:
case SAI_DMACR:
case SAI_INTCR:
case SAI_TXDR:
case SAI_PATH_SEL:
case SAI_TX_SLOT_MASK0:
case SAI_TX_SLOT_MASK1:
case SAI_TX_SLOT_MASK2:
case SAI_TX_SLOT_MASK3:
case SAI_RX_SLOT_MASK0:
case SAI_RX_SLOT_MASK1:
case SAI_RX_SLOT_MASK2:
case SAI_RX_SLOT_MASK3:
case SAI_TX_SHIFT:
case SAI_RX_SHIFT:
case SAI_FSXN:
case SAI_FS_TIMEOUT:
case SAI_LOOPBACK_LR:
return true;
default:
return false;
}
}
static bool rockchip_sai_rd_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SAI_TXCR:
case SAI_FSCR:
case SAI_RXCR:
case SAI_MONO_CR:
case SAI_XFER:
case SAI_CLR:
case SAI_CKR:
case SAI_TXFIFOLR:
case SAI_RXFIFOLR:
case SAI_DMACR:
case SAI_INTCR:
case SAI_INTSR:
case SAI_TXDR:
case SAI_RXDR:
case SAI_PATH_SEL:
case SAI_TX_SLOT_MASK0:
case SAI_TX_SLOT_MASK1:
case SAI_TX_SLOT_MASK2:
case SAI_TX_SLOT_MASK3:
case SAI_RX_SLOT_MASK0:
case SAI_RX_SLOT_MASK1:
case SAI_RX_SLOT_MASK2:
case SAI_RX_SLOT_MASK3:
case SAI_TX_DATA_CNT:
case SAI_RX_DATA_CNT:
case SAI_TX_SHIFT:
case SAI_RX_SHIFT:
case SAI_STATUS:
case SAI_VERSION:
case SAI_FSXN:
case SAI_FS_TIMEOUT:
case SAI_LOOPBACK_LR:
return true;
default:
return false;
}
}
static bool rockchip_sai_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SAI_XFER:
case SAI_INTCR:
case SAI_INTSR:
case SAI_CLR:
case SAI_TXFIFOLR:
case SAI_RXFIFOLR:
case SAI_TXDR:
case SAI_RXDR:
case SAI_TX_DATA_CNT:
case SAI_RX_DATA_CNT:
case SAI_STATUS:
case SAI_VERSION:
return true;
default:
return false;
}
}
static bool rockchip_sai_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SAI_RXDR:
return true;
default:
return false;
}
}
static const struct reg_default rockchip_sai_reg_defaults[] = {
{ SAI_TXCR, 0x00000bff },
{ SAI_FSCR, 0x0001f03f },
{ SAI_RXCR, 0x00000bff },
{ SAI_PATH_SEL, 0x0000e4e4 },
};
static const struct regmap_config rockchip_sai_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SAI_LOOPBACK_LR,
.reg_defaults = rockchip_sai_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(rockchip_sai_reg_defaults),
.writeable_reg = rockchip_sai_wr_reg,
.readable_reg = rockchip_sai_rd_reg,
.volatile_reg = rockchip_sai_volatile_reg,
.precious_reg = rockchip_sai_precious_reg,
.cache_type = REGCACHE_FLAT,
};
static const struct of_device_id rockchip_sai_match[] __maybe_unused = {
{ .compatible = "rockchip,sai-v1", },
{},
};
static int rockchip_sai_init_dai(struct rk_sai_dev *sai, struct resource *res,
struct snd_soc_dai_driver **dp)
{
struct device_node *node = sai->dev->of_node;
struct snd_soc_dai_driver *dai;
struct property *dma_names;
const char *dma_name;
unsigned int val;
if (!device_property_read_u32(sai->dev, "rockchip,slot-width", &val)) {
if ((val < 8) || (val > 32)) {
dev_err(sai->dev, "Slot width should be in range [8, 32]\n");
return -EINVAL;
}
regmap_update_bits(sai->regmap, SAI_TXCR,
SAI_XCR_SBW_MASK,
SAI_XCR_SBW(val));
regmap_update_bits(sai->regmap, SAI_RXCR,
SAI_XCR_SBW_MASK,
SAI_XCR_SBW(val));
}
of_property_for_each_string(node, "dma-names", dma_names, dma_name) {
if (!strcmp(dma_name, "tx"))
sai->has_playback = true;
if (!strcmp(dma_name, "rx"))
sai->has_capture = true;
}
dai = devm_kmemdup(sai->dev, &rockchip_sai_dai,
sizeof(*dai), GFP_KERNEL);
if (!dai)
return -ENOMEM;
if (sai->has_playback) {
dai->playback.stream_name = "Playback";
dai->playback.channels_min = 1;
dai->playback.channels_max = 512;
dai->playback.rates = SNDRV_PCM_RATE_8000_384000;
dai->playback.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
sai->playback_dma_data.addr = res->start + SAI_TXDR;
sai->playback_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
sai->playback_dma_data.maxburst = MAXBURST_PER_FIFO;
}
if (sai->has_capture) {
dai->capture.stream_name = "Capture";
dai->capture.channels_min = 1;
dai->capture.channels_max = 512;
dai->capture.rates = SNDRV_PCM_RATE_8000_384000;
dai->capture.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
sai->capture_dma_data.addr = res->start + SAI_RXDR;
sai->capture_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
sai->capture_dma_data.maxburst = MAXBURST_PER_FIFO;
}
regmap_update_bits(sai->regmap, SAI_DMACR, SAI_DMACR_TDL_MASK,
SAI_DMACR_TDL(16));
regmap_update_bits(sai->regmap, SAI_DMACR, SAI_DMACR_RDL_MASK,
SAI_DMACR_RDL(16));
if (dp)
*dp = dai;
return 0;
}
static const char * const tx_lanes_text[] = { "Auto", "SDOx1", "SDOx2", "SDOx3", "SDOx4" };
static const char * const rx_lanes_text[] = { "Auto", "SDIx1", "SDIx2", "SDIx3", "SDIx4" };
static const char * const start_sel_text[] = { "Standalone", "Chained" };
static const char * const edge_text[] = { "Rising Edge", "Dual Edge" };
static const char * const edge_shift_text[] = { "Normal", "Shift 1 Edge" };
static const char * const fpw_text[] = {
"One Bclk Width", "One Slot Width", "Half Frame Width" };
static const char * const fw_ratio_text[] = {
"1", "2", "3", "4", "5", "6", "7", "8" };
static const char * const sjm_text[] = { "Right J", "Left J" };
static const char * const fbm_text[] = { "MSB", "LSB" };
static const char * const vdj_text[] = { "Right J", "Left J" };
static const char * const sbw_text[] = {
"0", "0", "0", "0", "0", "0", "0", "8",
"9", "10", "11", "12", "13", "14", "15", "16",
"17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "31", "32", };
static const char * const mono_text[] = { "Disable", "Enable" };
static DECLARE_TLV_DB_SCALE(rmss_tlv, 0, 128, 0);
static const char * const mss_text[] = { "Slave", "Master" };
static const char * const ckp_text[] = { "Normal", "Inverted" };
static const char * const lplrc_text[] = { "L:MIC R:LP", "L:LP R:MIC" };
static const char * const lplr_text[] = { "Disable", "Enable" };
static const char * const lpx_text[] = {
"From SDO0", "From SDO1", "From SDO2", "From SDO3" };
static const char * const lps_text[] = { "Disable", "Enable" };
static const char * const sync_out_text[] = { "From CRU", "From IO" };
static const char * const sync_in_text[] = { "From IO", "From Sync Port" };
static const char * const rpaths_text[] = {
"From SDI0", "From SDI1", "From SDI2", "From SDI3" };
static const char * const tpaths_text[] = {
"From PATH0", "From PATH1", "From PATH2", "From PATH3" };
/* TXCR */
static SOC_ENUM_SINGLE_DECL(tsl_enum, SAI_TXCR, 23, start_sel_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused tsft_enum, SAI_TXCR, 22, edge_shift_text);
static const struct soc_enum tx_lanes_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(tx_lanes_text), tx_lanes_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused tsjm_enum, SAI_TXCR, 19, sjm_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused tfbm_enum, SAI_TXCR, 18, fbm_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused tvdj_enum, SAI_TXCR, 10, vdj_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused tsbw_enum, SAI_TXCR, 5, sbw_text);
/* FSCR */
static SOC_ENUM_SINGLE_DECL(__maybe_unused edge_enum, SAI_FSCR, 24, edge_text);
static const struct soc_enum __maybe_unused fpw_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(fpw_text), fpw_text);
static const struct soc_enum __maybe_unused fw_ratio_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(fw_ratio_text), fw_ratio_text);
/* RXCR */
static SOC_ENUM_SINGLE_DECL(rsl_enum, SAI_RXCR, 23, start_sel_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused rsft_enum, SAI_RXCR, 22, edge_shift_text);
static const struct soc_enum rx_lanes_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_lanes_text), rx_lanes_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused rsjm_enum, SAI_RXCR, 19, sjm_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused rfbm_enum, SAI_RXCR, 18, fbm_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused rvdj_enum, SAI_RXCR, 10, vdj_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused rsbw_enum, SAI_RXCR, 5, sbw_text);
/* MONO_CR */
static SOC_ENUM_SINGLE_DECL(rmono_switch, SAI_MONO_CR, 1, mono_text);
static SOC_ENUM_SINGLE_DECL(tmono_switch, SAI_MONO_CR, 0, mono_text);
/* CKR */
static const struct soc_enum __maybe_unused mss_switch =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(mss_text), mss_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused sp_switch, SAI_CKR, 1, ckp_text);
static SOC_ENUM_SINGLE_DECL(__maybe_unused fp_switch, SAI_CKR, 0, ckp_text);
/* PATH_SEL */
static SOC_ENUM_SINGLE_DECL(lp3_enum, SAI_PATH_SEL, 28, lpx_text);
static SOC_ENUM_SINGLE_DECL(lp2_enum, SAI_PATH_SEL, 26, lpx_text);
static SOC_ENUM_SINGLE_DECL(lp1_enum, SAI_PATH_SEL, 24, lpx_text);
static SOC_ENUM_SINGLE_DECL(lp0_enum, SAI_PATH_SEL, 22, lpx_text);
static SOC_ENUM_SINGLE_DECL(lp3_switch, SAI_PATH_SEL, 21, lps_text);
static SOC_ENUM_SINGLE_DECL(lp2_switch, SAI_PATH_SEL, 20, lps_text);
static SOC_ENUM_SINGLE_DECL(lp1_switch, SAI_PATH_SEL, 19, lps_text);
static SOC_ENUM_SINGLE_DECL(lp0_switch, SAI_PATH_SEL, 18, lps_text);
static SOC_ENUM_SINGLE_DECL(sync_out_switch, SAI_PATH_SEL, 17, sync_out_text);
static SOC_ENUM_SINGLE_DECL(sync_in_switch, SAI_PATH_SEL, 16, sync_in_text);
static SOC_ENUM_SINGLE_DECL(rpath3_enum, SAI_PATH_SEL, 14, rpaths_text);
static SOC_ENUM_SINGLE_DECL(rpath2_enum, SAI_PATH_SEL, 12, rpaths_text);
static SOC_ENUM_SINGLE_DECL(rpath1_enum, SAI_PATH_SEL, 10, rpaths_text);
static SOC_ENUM_SINGLE_DECL(rpath0_enum, SAI_PATH_SEL, 8, rpaths_text);
static SOC_ENUM_SINGLE_DECL(tpath3_enum, SAI_PATH_SEL, 6, tpaths_text);
static SOC_ENUM_SINGLE_DECL(tpath2_enum, SAI_PATH_SEL, 4, tpaths_text);
static SOC_ENUM_SINGLE_DECL(tpath1_enum, SAI_PATH_SEL, 2, tpaths_text);
static SOC_ENUM_SINGLE_DECL(tpath0_enum, SAI_PATH_SEL, 0, tpaths_text);
/* LOOPBACK_LR */
static SOC_ENUM_SINGLE_DECL(lp3lrc_enum, SAI_LOOPBACK_LR, 7, lplrc_text);
static SOC_ENUM_SINGLE_DECL(lp2lrc_enum, SAI_LOOPBACK_LR, 6, lplrc_text);
static SOC_ENUM_SINGLE_DECL(lp1lrc_enum, SAI_LOOPBACK_LR, 5, lplrc_text);
static SOC_ENUM_SINGLE_DECL(lp0lrc_enum, SAI_LOOPBACK_LR, 4, lplrc_text);
static SOC_ENUM_SINGLE_DECL(lp3lr_switch, SAI_LOOPBACK_LR, 3, lplr_text);
static SOC_ENUM_SINGLE_DECL(lp2lr_switch, SAI_LOOPBACK_LR, 2, lplr_text);
static SOC_ENUM_SINGLE_DECL(lp1lr_switch, SAI_LOOPBACK_LR, 1, lplr_text);
static SOC_ENUM_SINGLE_DECL(lp0lr_switch, SAI_LOOPBACK_LR, 0, lplr_text);
static int __maybe_unused rockchip_sai_fpw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = sai->fpw;
return 0;
}
static int __maybe_unused rockchip_sai_fpw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
int num;
num = ucontrol->value.enumerated.item[0];
if (num >= ARRAY_SIZE(fpw_text))
return -EINVAL;
sai->fpw = num;
return 1;
}
static int __maybe_unused rockchip_sai_fw_ratio_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = sai->fw_ratio - 1;
return 0;
}
static int __maybe_unused rockchip_sai_fw_ratio_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
int ratio = ucontrol->value.enumerated.item[0] + 1;
if (ratio > FW_RATIO_MAX || ratio < FW_RATIO_MIN)
return -EINVAL;
sai->fw_ratio = ratio;
return 1;
}
static int rockchip_sai_tx_lanes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = sai->tx_lanes;
return 0;
}
static int rockchip_sai_tx_lanes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
int num;
num = ucontrol->value.enumerated.item[0];
if (num >= ARRAY_SIZE(tx_lanes_text))
return -EINVAL;
sai->tx_lanes = num;
return 1;
}
static int rockchip_sai_rx_lanes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = sai->rx_lanes;
return 0;
}
static int rockchip_sai_rx_lanes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
int num;
num = ucontrol->value.enumerated.item[0];
if (num >= ARRAY_SIZE(rx_lanes_text))
return -EINVAL;
sai->rx_lanes = num;
return 1;
}
static int __maybe_unused rockchip_sai_mss_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = sai->is_master_mode;
return 0;
}
static int __maybe_unused rockchip_sai_mss_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
bool mss;
/* MUST: do not update mode while stream is running */
if (snd_soc_component_active(component))
return -EPERM;
mss = !!ucontrol->value.enumerated.item[0];
if (mss == sai->is_master_mode)
return 0;
sai->is_master_mode = mss;
pm_runtime_get_sync(sai->dev);
if (sai->is_master_mode) {
/* Switch from Slave to Master */
regmap_update_bits(sai->regmap, SAI_CKR,
SAI_CKR_MSS_MASK,
SAI_CKR_MSS_MASTER);
regmap_update_bits(sai->regmap, SAI_XFER,
SAI_XFER_CLK_MASK |
SAI_XFER_FSS_MASK,
SAI_XFER_CLK_EN |
SAI_XFER_FSS_EN);
} else {
/* Switch from Master to Slave */
regmap_update_bits(sai->regmap, SAI_CKR,
SAI_CKR_MSS_MASK,
SAI_CKR_MSS_SLAVE);
regmap_update_bits(sai->regmap, SAI_XFER,
SAI_XFER_CLK_MASK |
SAI_XFER_FSS_MASK,
SAI_XFER_CLK_DIS |
SAI_XFER_FSS_DIS);
}
pm_runtime_put(sai->dev);
return 1;
}
static int rockchip_sai_clk_auto_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = sai->is_clk_auto;
return 0;
}
static int rockchip_sai_clk_auto_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
bool clk_auto = ucontrol->value.integer.value[0];
if (clk_auto == sai->is_clk_auto)
return 0;
sai->is_clk_auto = clk_auto;
return 1;
}
static int __maybe_unused rockchip_sai_tx_auto_gate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = sai->is_tx_auto_gate;
return 0;
}
static int __maybe_unused rockchip_sai_tx_auto_gate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
bool tx_auto_gate = ucontrol->value.integer.value[0];
if (sai->version < SAI_VER_2311)
return -EOPNOTSUPP;
if (tx_auto_gate == sai->is_tx_auto_gate)
return 0;
sai->is_tx_auto_gate = tx_auto_gate;
return 1;
}
static int rockchip_sai_wait_time_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = WAIT_TIME_MS_MAX;
uinfo->value.integer.step = 1;
return 0;
}
static int rockchip_sai_rd_wait_time_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = sai->wait_time[SNDRV_PCM_STREAM_CAPTURE];
return 0;
}
static int rockchip_sai_rd_wait_time_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
if (ucontrol->value.integer.value[0] > WAIT_TIME_MS_MAX)
return -EINVAL;
sai->wait_time[SNDRV_PCM_STREAM_CAPTURE] = ucontrol->value.integer.value[0];
return 1;
}
static int rockchip_sai_wr_wait_time_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = sai->wait_time[SNDRV_PCM_STREAM_PLAYBACK];
return 0;
}
static int rockchip_sai_wr_wait_time_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct rk_sai_dev *sai = snd_soc_component_get_drvdata(component);
if (ucontrol->value.integer.value[0] > WAIT_TIME_MS_MAX)
return -EINVAL;
sai->wait_time[SNDRV_PCM_STREAM_PLAYBACK] = ucontrol->value.integer.value[0];
return 1;
}
#define SAI_PCM_WAIT_TIME(xname, xhandler_get, xhandler_put) \
{ .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = xname, \
.info = rockchip_sai_wait_time_info, \
.get = xhandler_get, .put = xhandler_put }
static __maybe_unused DECLARE_TLV_DB_SCALE(fs_shift_left_tlv, 0, 2, 0);
static __maybe_unused DECLARE_TLV_DB_SCALE(fs_shift_right_tlv, 0, 8192, 0);
static const struct snd_kcontrol_new rockchip_sai_controls[] = {
#ifdef CONFIG_SND_SOC_ROCKCHIP_SAI_VERBOSE
SOC_ENUM("Transmit Edge Shift", tsft_enum),
SOC_ENUM("Transmit Store Justified Mode", tsjm_enum),
SOC_ENUM("Transmit First Bit Mode", tfbm_enum),
SOC_ENUM("Transmit Valid Data Justified", tvdj_enum),
SOC_ENUM("Transmit Slot Bit Width", tsbw_enum),
SOC_ENUM("Receive Edge Shift", rsft_enum),
SOC_ENUM("Receive Store Justified Mode", rsjm_enum),
SOC_ENUM("Receive First Bit Mode", rfbm_enum),
SOC_ENUM("Receive Valid Data Justified", rvdj_enum),
SOC_ENUM("Receive Slot Bit Width", rsbw_enum),
SOC_ENUM("Frame Edge Switch", edge_enum),
SOC_ENUM_EXT("Frame Sync Pulse Width", fpw_enum,
rockchip_sai_fpw_get, rockchip_sai_fpw_put),
SOC_ENUM_EXT("Frame Width Ratio", fw_ratio_enum,
rockchip_sai_fw_ratio_get, rockchip_sai_fw_ratio_put),
SOC_ENUM_EXT("Master Slave Mode Select", mss_switch,
rockchip_sai_mss_get, rockchip_sai_mss_put),
SOC_ENUM("Sclk Polarity", sp_switch),
SOC_ENUM("Frame Sync Polarity", fp_switch),
SOC_SINGLE_BOOL_EXT("Transmit Clk Auto Gate Switch", 0,
rockchip_sai_tx_auto_gate_get,
rockchip_sai_tx_auto_gate_put),
SOC_SINGLE_TLV("Transmit Frame Shift Left Select", SAI_TX_SHIFT,
24, 2, 0, fs_shift_left_tlv),
SOC_SINGLE_TLV("Transmit Frame Shift Right Select", SAI_TX_SHIFT,
0, 8192, 0, fs_shift_right_tlv),
SOC_SINGLE_TLV("Receive Frame Shift Right Select", SAI_RX_SHIFT,
0, 8192, 0, fs_shift_right_tlv),
#endif
SOC_ENUM("Transmit Start Mode Sel", tsl_enum),
SOC_ENUM("Receive Start Mode Sel", rsl_enum),
SOC_ENUM_EXT("Transmit SDOx Select", tx_lanes_enum,
rockchip_sai_tx_lanes_get, rockchip_sai_tx_lanes_put),
SOC_ENUM_EXT("Receive SDIx Select", rx_lanes_enum,
rockchip_sai_rx_lanes_get, rockchip_sai_rx_lanes_put),
SOC_SINGLE_TLV("Receive Mono Slot Select", SAI_MONO_CR,
2, 128, 0, rmss_tlv),
SOC_ENUM("Receive Mono Switch", rmono_switch),
SOC_ENUM("Transmit Mono Switch", tmono_switch),
SOC_ENUM("SDI3 Loopback I2S LR Channel Sel", lp3lrc_enum),
SOC_ENUM("SDI2 Loopback I2S LR Channel Sel", lp2lrc_enum),
SOC_ENUM("SDI1 Loopback I2S LR Channel Sel", lp1lrc_enum),
SOC_ENUM("SDI0 Loopback I2S LR Channel Sel", lp0lrc_enum),
SOC_ENUM("SDI3 Loopback I2S LR Switch", lp3lr_switch),
SOC_ENUM("SDI2 Loopback I2S LR Switch", lp2lr_switch),
SOC_ENUM("SDI1 Loopback I2S LR Switch", lp1lr_switch),
SOC_ENUM("SDI0 Loopback I2S LR Switch", lp0lr_switch),
SOC_ENUM("SDI3 Loopback Src Select", lp3_enum),
SOC_ENUM("SDI2 Loopback Src Select", lp2_enum),
SOC_ENUM("SDI1 Loopback Src Select", lp1_enum),
SOC_ENUM("SDI0 Loopback Src Select", lp0_enum),
SOC_ENUM("SDI3 Loopback Switch", lp3_switch),
SOC_ENUM("SDI2 Loopback Switch", lp2_switch),
SOC_ENUM("SDI1 Loopback Switch", lp1_switch),
SOC_ENUM("SDI0 Loopback Switch", lp0_switch),
SOC_ENUM("Sync Out Switch", sync_out_switch),
SOC_ENUM("Sync In Switch", sync_in_switch),
SOC_ENUM("Receive PATH3 Source Select", rpath3_enum),
SOC_ENUM("Receive PATH2 Source Select", rpath2_enum),
SOC_ENUM("Receive PATH1 Source Select", rpath1_enum),
SOC_ENUM("Receive PATH0 Source Select", rpath0_enum),
SOC_ENUM("Transmit SDO3 Source Select", tpath3_enum),
SOC_ENUM("Transmit SDO2 Source Select", tpath2_enum),
SOC_ENUM("Transmit SDO1 Source Select", tpath1_enum),
SOC_ENUM("Transmit SDO0 Source Select", tpath0_enum),
SOC_SINGLE_BOOL_EXT("Clk Auto Switch", 0,
rockchip_sai_clk_auto_get,
rockchip_sai_clk_auto_put),
SAI_PCM_WAIT_TIME("PCM Read Wait Time MS",
rockchip_sai_rd_wait_time_get,
rockchip_sai_rd_wait_time_put),
SAI_PCM_WAIT_TIME("PCM Write Wait Time MS",
rockchip_sai_wr_wait_time_get,
rockchip_sai_wr_wait_time_put),
};
static const struct snd_soc_component_driver rockchip_sai_component = {
.name = DRV_NAME,
.controls = rockchip_sai_controls,
.num_controls = ARRAY_SIZE(rockchip_sai_controls),
.legacy_dai_naming = 1,
};
static irqreturn_t rockchip_sai_isr(int irq, void *devid)
{
struct rk_sai_dev *sai = (struct rk_sai_dev *)devid;
struct snd_pcm_substream *substream;
u32 val;
regmap_read(sai->regmap, SAI_INTSR, &val);
if (val & SAI_INTSR_TXUI_ACT) {
dev_warn_ratelimited(sai->dev, "TX FIFO Underrun\n");
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_TXUIC, SAI_INTCR_TXUIC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_TXUIE_MASK,
SAI_INTCR_TXUIE(0));
substream = sai->substreams[SNDRV_PCM_STREAM_PLAYBACK];
if (substream)
snd_pcm_stop_xrun(substream);
}
if (val & SAI_INTSR_RXOI_ACT) {
dev_warn_ratelimited(sai->dev, "RX FIFO Overrun\n");
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_RXOIC, SAI_INTCR_RXOIC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_RXOIE_MASK,
SAI_INTCR_RXOIE(0));
substream = sai->substreams[SNDRV_PCM_STREAM_CAPTURE];
if (substream)
snd_pcm_stop_xrun(substream);
}
if (val & SAI_INTSR_FSERRI_ACT) {
dev_warn_ratelimited(sai->dev, "Frame Sync Error\n");
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSERRC, SAI_INTCR_FSERRC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSERR_MASK,
SAI_INTCR_FSERR(0));
}
if (val & SAI_INTSR_FSLOSTI_ACT) {
dev_warn_ratelimited(sai->dev, "Frame Sync Lost\n");
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSLOSTC, SAI_INTCR_FSLOSTC);
regmap_update_bits(sai->regmap, SAI_INTCR,
SAI_INTCR_FSLOST_MASK,
SAI_INTCR_FSLOST(0));
}
return IRQ_HANDLED;
}
static int rockchip_sai_keep_clk_always_on(struct rk_sai_dev *sai)
{
unsigned int mclk_rate, bclk_rate, div_bclk;
sai->is_master_mode = true;
/* init I2S fmt default */
rockchip_sai_fmt_create(sai, SND_SOC_DAIFMT_I2S);
regmap_update_bits(sai->regmap, SAI_FSCR,
SAI_FSCR_FW_MASK |
SAI_FSCR_FPW_MASK,
SAI_FSCR_FW(64) |
SAI_FSCR_FPW(32));
mclk_rate = clk_get_rate(sai->mclk);
bclk_rate = DEFAULT_FS * 64;
div_bclk = DIV_ROUND_CLOSEST(mclk_rate, bclk_rate);
regmap_update_bits(sai->regmap, SAI_CKR, SAI_CKR_MDIV_MASK,
SAI_CKR_MDIV(div_bclk));
pm_runtime_forbid(sai->dev);
dev_info(sai->dev, "CLK-ALWAYS-ON: mclk: %d, bclk: %d, fsync: %d\n",
mclk_rate, bclk_rate, DEFAULT_FS);
return 0;
}
static int rockchip_sai_parse_quirks(struct rk_sai_dev *sai)
{
int ret = 0, i = 0;
for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
if (device_property_read_bool(sai->dev, of_quirks[i].quirk))
sai->quirks |= of_quirks[i].id;
if (sai->quirks & QUIRK_ALWAYS_ON)
ret = rockchip_sai_keep_clk_always_on(sai);
return ret;
}
static int rockchip_sai_get_fifo_count(struct device *dev,
struct snd_pcm_substream *substream)
{
struct rk_sai_dev *sai = dev_get_drvdata(dev);
int val = 0;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
regmap_read(sai->regmap, SAI_TXFIFOLR, &val);
else
regmap_read(sai->regmap, SAI_RXFIFOLR, &val);
val = ((val & SAI_FIFOLR_XFL3_MASK) >> SAI_FIFOLR_XFL3_SHIFT) +
((val & SAI_FIFOLR_XFL2_MASK) >> SAI_FIFOLR_XFL2_SHIFT) +
((val & SAI_FIFOLR_XFL1_MASK) >> SAI_FIFOLR_XFL1_SHIFT) +
((val & SAI_FIFOLR_XFL0_MASK) >> SAI_FIFOLR_XFL0_SHIFT);
return val;
}
static const struct snd_dlp_config dconfig = {
.get_fifo_count = rockchip_sai_get_fifo_count,
};
static int rockchip_sai_wait_time_init(struct rk_sai_dev *sai)
{
unsigned int wait_time;
if (!device_property_read_u32(sai->dev, "rockchip,sai-tx-wait-time-ms", &wait_time)) {
dev_info(sai->dev, "Init TX wait-time-ms: %d\n", wait_time);
sai->wait_time[SNDRV_PCM_STREAM_PLAYBACK] = wait_time;
}
if (!device_property_read_u32(sai->dev, "rockchip,sai-rx-wait-time-ms", &wait_time)) {
dev_info(sai->dev, "Init RX wait-time-ms: %d\n", wait_time);
sai->wait_time[SNDRV_PCM_STREAM_CAPTURE] = wait_time;
}
return 0;
}
static int rockchip_sai_register_platform(struct device *dev)
{
int ret = 0;
if (device_property_read_bool(dev, "rockchip,no-dmaengine")) {
dev_info(dev, "Used for Multi-DAI\n");
return 0;
}
if (device_property_read_bool(dev, "rockchip,digital-loopback"))
ret = devm_snd_dmaengine_dlp_register(dev, &dconfig);
else
ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
return ret;
}
static int rockchip_sai_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct rk_sai_dev *sai;
struct snd_soc_dai_driver *dai;
struct resource *res;
void __iomem *regs;
int ret, irq;
sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
if (!sai)
return -ENOMEM;
sai->dev = &pdev->dev;
sai->fw_ratio = 1;
/* match to register default */
sai->is_master_mode = true;
dev_set_drvdata(&pdev->dev, sai);
rockchip_sai_wait_time_init(sai);
sai->rst_h = devm_reset_control_get_optional_exclusive(&pdev->dev, "h");
if (IS_ERR(sai->rst_h))
return PTR_ERR(sai->rst_h);
sai->rst_m = devm_reset_control_get_optional_exclusive(&pdev->dev, "m");
if (IS_ERR(sai->rst_m))
return PTR_ERR(sai->rst_m);
regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(regs))
return PTR_ERR(regs);
sai->regmap = devm_regmap_init_mmio(&pdev->dev, regs,
&rockchip_sai_regmap_config);
if (IS_ERR(sai->regmap))
return PTR_ERR(sai->regmap);
irq = platform_get_irq_optional(pdev, 0);
if (irq > 0) {
ret = devm_request_irq(&pdev->dev, irq, rockchip_sai_isr,
IRQF_SHARED, node->name, sai);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq %d\n", irq);
return ret;
}
}
sai->is_mclk_calibrate =
device_property_read_bool(&pdev->dev, "rockchip,mclk-calibrate");
if (sai->is_mclk_calibrate) {
sai->mclk_root = devm_clk_get(&pdev->dev, "mclk_root");
if (IS_ERR(sai->mclk_root)) {
dev_err(&pdev->dev, "Should assign 'mclk_root' in DT\n");
return PTR_ERR(sai->mclk_root);
}
sai->mclk_root_initial_rate = clk_get_rate(sai->mclk_root);
sai->mclk_root_rate = sai->mclk_root_initial_rate;
dev_info(&pdev->dev, "Have mclk compensation feature\n");
}
sai->mclk = devm_clk_get(&pdev->dev, "mclk");
if (IS_ERR(sai->mclk)) {
dev_err(&pdev->dev, "Failed to get mclk\n");
return PTR_ERR(sai->mclk);
}
sai->hclk = devm_clk_get(&pdev->dev, "hclk");
if (IS_ERR(sai->hclk)) {
dev_err(&pdev->dev, "Failed to get hclk\n");
return PTR_ERR(sai->hclk);
}
ret = clk_prepare_enable(sai->hclk);
if (ret)
return ret;
regmap_read(sai->regmap, SAI_VERSION, &sai->version);
ret = rockchip_sai_parse_quirks(sai);
if (ret)
goto err_disable_hclk;
ret = rockchip_sai_parse_paths(sai, node);
if (ret)
goto err_disable_hclk;
ret = rockchip_sai_init_dai(sai, res, &dai);
if (ret)
goto err_disable_hclk;
/*
* MUST: after pm_runtime_enable step, any register R/W
* should be wrapped with pm_runtime_get_sync/put.
*
* Another approach is to enable the regcache true to
* avoid access HW registers.
*
* Alternatively, performing the registers R/W before
* pm_runtime_enable is also a good option.
*/
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = rockchip_sai_runtime_resume(&pdev->dev);
if (ret)
goto err_runtime_disable;
}
ret = rockchip_sai_register_platform(&pdev->dev);
if (ret)
goto err_runtime_suspend;
ret = devm_snd_soc_register_component(&pdev->dev,
&rockchip_sai_component,
dai, 1);
if (ret)
goto err_runtime_suspend;
clk_disable_unprepare(sai->hclk);
return 0;
err_runtime_suspend:
if (!pm_runtime_status_suspended(&pdev->dev))
rockchip_sai_runtime_suspend(&pdev->dev);
err_runtime_disable:
pm_runtime_disable(&pdev->dev);
err_disable_hclk:
clk_disable_unprepare(sai->hclk);
return ret;
}
static int rockchip_sai_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
rockchip_sai_runtime_suspend(&pdev->dev);
return 0;
}
static const struct dev_pm_ops rockchip_sai_pm_ops = {
SET_RUNTIME_PM_OPS(rockchip_sai_runtime_suspend, rockchip_sai_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
};
static struct platform_driver rockchip_sai_driver = {
.probe = rockchip_sai_probe,
.remove = rockchip_sai_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(rockchip_sai_match),
.pm = &rockchip_sai_pm_ops,
},
};
module_platform_driver(rockchip_sai_driver);
MODULE_DESCRIPTION("Rockchip SAI ASoC Interface");
MODULE_AUTHOR("Sugar Zhang <sugar.zhang@rock-chips.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);
MODULE_DEVICE_TABLE(of, rockchip_sai_match);