1067 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip SPI Slave Controller Driver
*
* Copyright (c) 2023, Rockchip Inc.
* Author: Jon Lin <Jon.lin@rock-chips.com>
*/
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#define DRIVER_NAME "rockchip-spi-slave"
/* SPI register offsets */
#define ROCKCHIP_SPI_CTRLR0 0x0000
#define ROCKCHIP_SPI_CTRLR1 0x0004
#define ROCKCHIP_SPI_SSIENR 0x0008
#define ROCKCHIP_SPI_SER 0x000c
#define ROCKCHIP_SPI_BAUDR 0x0010
#define ROCKCHIP_SPI_TXFTLR 0x0014
#define ROCKCHIP_SPI_RXFTLR 0x0018
#define ROCKCHIP_SPI_TXFLR 0x001c
#define ROCKCHIP_SPI_RXFLR 0x0020
#define ROCKCHIP_SPI_SR 0x0024
#define ROCKCHIP_SPI_IPR 0x0028
#define ROCKCHIP_SPI_IMR 0x002c
#define ROCKCHIP_SPI_ISR 0x0030
#define ROCKCHIP_SPI_RISR 0x0034
#define ROCKCHIP_SPI_ICR 0x0038
#define ROCKCHIP_SPI_DMACR 0x003c
#define ROCKCHIP_SPI_DMATDLR 0x0040
#define ROCKCHIP_SPI_DMARDLR 0x0044
#define ROCKCHIP_SPI_VERSION 0x0048
#define ROCKCHIP_SPI_TIMEOUT 0x004c
#define ROCKCHIP_SPI_BYPASS 0x0050
#define ROCKCHIP_SPI_BYPASS_ENR 0x0054
#define ROCKCHIP_SPI_TXDR 0x0400
#define ROCKCHIP_SPI_RXDR 0x0800
/* Bit fields in CTRLR0 */
#define CR0_DFS_OFFSET 0
#define CR0_DFS_4BIT 0x0
#define CR0_DFS_8BIT 0x1
#define CR0_DFS_16BIT 0x2
#define CR0_SCPH_OFFSET 6
#define CR0_EM_OFFSET 11
#define CR0_EM_LITTLE 0x0
#define CR0_EM_BIG 0x1
#define CR0_FBM_OFFSET 12
#define CR0_FBM_MSB 0x0
#define CR0_FBM_LSB 0x1
#define CR0_BHT_OFFSET 13
#define CR0_BHT_16BIT 0x0
#define CR0_BHT_8BIT 0x1
#define CR0_FRF_OFFSET 16
#define CR0_FRF_SPI 0x0
#define CR0_FRF_SSP 0x1
#define CR0_FRF_MICROWIRE 0x2
#define CR0_XFM_OFFSET 18
#define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET)
#define CR0_XFM_TR 0x0
#define CR0_XFM_TO 0x1
#define CR0_XFM_RO 0x2
#define CR0_OPM_OFFSET 20
#define CR0_OPM_MASTER 0x0
#define CR0_OPM_SLAVE 0x1
#define CR0_SOI_OFFSET 23
/* Bit fields in SR, 6bit */
#define SR_MASK 0x3f
#define SR_BUSY (1 << 0)
#define SR_TF_FULL (1 << 1)
#define SR_TF_EMPTY (1 << 2)
#define SR_RF_EMPTY (1 << 3)
#define SR_RF_FULL (1 << 4)
#define SR_SLAVE_TX_BUSY (1 << 5)
#define SR_SS_IN_N (1 << 6)
/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
#define INT_MASK 0x1f
#define INT_TF_EMPTY (1 << 0)
#define INT_TF_OVERFLOW (1 << 1)
#define INT_RF_UNDERFLOW (1 << 2)
#define INT_RF_OVERFLOW (1 << 3)
#define INT_RF_FULL (1 << 4)
#define INT_CS_INACTIVE (1 << 6)
/* Bit fields in ICR, 4bit */
#define ICR_MASK 0x0f
#define ICR_ALL (1 << 0)
#define ICR_RF_UNDERFLOW (1 << 1)
#define ICR_RF_OVERFLOW (1 << 2)
#define ICR_TF_OVERFLOW (1 << 3)
/* Bit fields in DMACR */
#define RF_DMA_EN (1 << 0)
#define TF_DMA_EN (1 << 1)
/* Bit fields in TIMEOUT */
#define TIMEOUT_THRESHOLD_OFFSET 0x0
#define TIMEOUT_COUNTER_EN (1 << 16)
#define TIMEOUT_SINGLE_REQUEST_EN (1 << 18)
/* Bit fields in BYPASS */
#define BYPASS_EN (1 << 0)
#define BYPASS_INT_TF_EN (1 << 1)
#define CLOCK_GATING_NONE (0x0 << 2)
#define CLOCK_GATING_SPICLK_INNER (0x1 << 2)
#define CLOCK_GATING_SPICLK_EXT (0x2 << 2)
#define CLOCK_GATING_ALL_IN_IDLE (0x3 << 2)
/* Driver state flags */
#define RXDMA (1 << 0)
#define TXDMA (1 << 1)
/*
* SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
* the controller seems to hang when given 0x10000, so stick with this for now.
*/
#define ROCKCHIP_SPI_MAX_TRANLEN 0xffff
#define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002
#define ROCKCHIP_SPI_VER2_TYPE2 0x00110002
#define ROCKCHIP_SPI_VER3 0x03110003
/*
* The callback function may not be timely, and even cs has been released, so
* some redundancy needs to be done for this.
*/
#define ROCKCHIP_SPI_DMA_CB_REDUNDANCY_US 10000
/*
* Tclk-invalid-to-cs-deassert
*/
#define ROCKCHIP_SPI_CLK_TO_CS_DEASSERT_US 10000
enum rockchip_spi_slave_xfer_mode {
ROCKCHIP_SPI_DMA,
ROCKCHIP_SPI_IRQ,
};
struct rockchip_spi {
struct device *dev;
struct clk_bulk_data *clks;
unsigned int clk_cnt;
void __iomem *regs;
dma_addr_t dma_addr_rx;
dma_addr_t dma_addr_tx;
u32 *dma_buf;
dma_addr_t dma_phys;
const void *tx;
void *rx;
unsigned int tx_left;
unsigned int rx_left;
atomic_t state;
struct completion xfer_done;
u32 version;
/*depth of the FIFO buffer */
u32 fifo_len;
int max_transfer_size;
u32 fixed_burst_size;
u8 tx_idle_type; /* 0-SR_TF_EMPTY 1-SR_SLAVE_TX_BUSY */
u32 dma_timeout;
u8 n_bytes;
u32 speed_hz;
bool slave_aborted;
bool cs_inactive; /* spi slave tansmition stop when cs inactive */
struct gpio_desc *ready; /* spi slave transmission ready */
struct spi_transfer *xfer; /* Store xfer temporarily */
enum rockchip_spi_slave_xfer_mode xfer_mode;
bool ext_spi_clk;
bool verbose;
ktime_t dbg_time;
};
static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
{
if (rs->ext_spi_clk)
writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_BYPASS_ENR);
writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
}
static inline void wait_for_tx_idle(struct rockchip_spi *rs)
{
unsigned long timeout = jiffies + msecs_to_jiffies(5);
u32 bit_field = SR_TF_EMPTY;
u32 idle_val = SR_TF_EMPTY;
uint32_t speed, us;
/* When using external clock, tx clk can function normally without waiting for idle */
if (rs->ext_spi_clk)
return;
if (rs->tx_idle_type == 1) {
bit_field = SR_SLAVE_TX_BUSY;
idle_val = 0;
}
do {
if ((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & bit_field) == idle_val) {
if (bit_field == SR_TF_EMPTY) {
speed = rs->speed_hz;
us = (8 * 1000000 / speed) * 2 + 1;
udelay(us);
}
return;
}
} while (!time_after(jiffies, timeout));
dev_warn(rs->dev, "spi controller is in busy state!\n");
}
static void rockchip_spi_slave_pio_writer(struct rockchip_spi *rs)
{
u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
u32 words = min(rs->tx_left, tx_free);
rs->tx_left -= words;
for (; words; words--) {
u32 txw;
if (rs->n_bytes == 1)
txw = *(u8 *)rs->tx;
else
txw = *(u16 *)rs->tx;
writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
rs->tx += rs->n_bytes;
}
}
static void rockchip_spi_slave_pio_reader(struct rockchip_spi *rs)
{
u32 rx_valid = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
u32 words = min(rs->rx_left, rx_valid);
rs->rx_left -= words;
for (; words; words--) {
u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
if (!rs->rx)
continue;
if (rs->n_bytes == 1)
*(u8 *)rs->rx = (u8)rxw;
else
*(u16 *)rs->rx = (u16)rxw;
rs->rx += rs->n_bytes;
}
}
static int rockchop_spi_rx_fifo_flush(struct spi_controller *ctlr)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
u32 rx_fifo_left;
/* Flush rx fifo */
rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
for (; rx_fifo_left; rx_fifo_left--)
readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
return 0;
}
static void rockchip_spi_slave_handle_err(struct spi_controller *ctlr)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
dev_err(rs->dev, "state=%x\n", atomic_read(&rs->state));
dev_err(rs->dev, "tx_left=%x\n", rs->tx_left);
dev_err(rs->dev, "rx_left=%x\n", rs->rx_left);
print_hex_dump(KERN_ERR, "regs ", DUMP_PREFIX_OFFSET, 4, 4, rs->regs, 0x58, 0);
rockchop_spi_rx_fifo_flush(ctlr);
if (atomic_read(&rs->state) & TXDMA)
dmaengine_terminate_async(ctlr->dma_tx);
if (atomic_read(&rs->state) & RXDMA)
dmaengine_terminate_async(ctlr->dma_rx);
atomic_set(&rs->state, 0);
}
static irqreturn_t rockchip_spi_slave_isr(int irq, void *dev_id)
{
struct spi_controller *ctlr = dev_id;
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
if (rs->xfer_mode == ROCKCHIP_SPI_IRQ) {
if (rs->tx_left)
rockchip_spi_slave_pio_writer(rs);
rockchip_spi_slave_pio_reader(rs);
if (!rs->rx_left) {
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
complete(&rs->xfer_done);
return IRQ_HANDLED;
}
}
/* When int_cs_inactive comes, spi slave abort */
if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_ISR) & INT_CS_INACTIVE) {
rs->slave_aborted = true;
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
complete(&rs->xfer_done);
}
return IRQ_HANDLED;
}
static int rockchip_spi_slave_prepare_irq(struct rockchip_spi *rs,
struct spi_controller *ctlr,
struct spi_transfer *xfer)
{
rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
rs->rx_left = xfer->len / rs->n_bytes;
writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
spi_enable_chip(rs, true);
if (rs->tx_left)
rockchip_spi_slave_pio_writer(rs);
if (rs->cs_inactive)
writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
else
writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
/* 1 means the transfer is in progress */
return 1;
}
static void rockchip_spi_slave_dma_rxcb(void *data)
{
struct spi_controller *ctlr = data;
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
int state = atomic_fetch_andnot(RXDMA, &rs->state);
if (state & TXDMA)
return;
complete(&rs->xfer_done);
}
static void rockchip_spi_slave_dma_txcb(void *data)
{
struct spi_controller *ctlr = data;
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
int state = atomic_fetch_andnot(TXDMA, &rs->state);
if (state & RXDMA)
return;
complete(&rs->xfer_done);
}
static u32 rockchip_spi_slave_calc_burst_size(struct rockchip_spi *rs, u32 data_len)
{
u32 i;
if (rs->dma_timeout)
return rs->fixed_burst_size;
/* burst size: 1, 2, 4, 8, 16 */
for (i = 1; i < 16; i <<= 1) {
if (data_len & i)
break;
}
return i;
}
static int rockchip_spi_slave_prepare_dma(struct rockchip_spi *rs,
struct spi_controller *ctlr, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL;
atomic_set(&rs->state, 0);
if (xfer->rx_buf) {
struct dma_slave_config rxconf = {
.direction = DMA_DEV_TO_MEM,
.src_addr = rs->dma_addr_rx,
.src_addr_width = rs->n_bytes,
.src_maxburst = rockchip_spi_slave_calc_burst_size(rs, xfer->len / rs->n_bytes),
};
dmaengine_slave_config(ctlr->dma_rx, &rxconf);
rxdesc = dmaengine_prep_slave_single(ctlr->dma_rx, rs->dma_phys, xfer->len,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (!rxdesc)
return -EINVAL;
rxdesc->callback = rockchip_spi_slave_dma_rxcb;
rxdesc->callback_param = ctlr;
}
if (xfer->tx_buf) {
struct dma_slave_config txconf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = rs->dma_addr_tx,
.dst_addr_width = rs->n_bytes,
.dst_maxburst = 8,
};
dmaengine_slave_config(ctlr->dma_tx, &txconf);
memcpy(rs->dma_buf, xfer->tx_buf, xfer->len);
txdesc = dmaengine_prep_slave_single(ctlr->dma_tx, rs->dma_phys, xfer->len,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!txdesc) {
if (rxdesc)
dmaengine_terminate_sync(ctlr->dma_rx);
return -EINVAL;
}
txdesc->callback = rockchip_spi_slave_dma_txcb;
txdesc->callback_param = ctlr;
}
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
atomic_or(RXDMA, &rs->state);
ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
dma_async_issue_pending(ctlr->dma_rx);
}
if (rs->cs_inactive)
writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
spi_enable_chip(rs, true);
if (txdesc) {
atomic_or(TXDMA, &rs->state);
dmaengine_submit(txdesc);
dma_async_issue_pending(ctlr->dma_tx);
}
/* 1 means the transfer is in progress */
return 1;
}
static int rockchip_spi_slave_config(struct rockchip_spi *rs,
struct spi_device *spi, struct spi_transfer *xfer)
{
u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET
| CR0_BHT_8BIT << CR0_BHT_OFFSET
| CR0_EM_BIG << CR0_EM_OFFSET
| CR0_OPM_SLAVE << CR0_OPM_OFFSET;
u32 cr1;
u32 dmacr = 0;
u32 val = 0;
rs->slave_aborted = false;
if (xfer->speed_hz)
rs->speed_hz = xfer->speed_hz;
else
rs->speed_hz = 100000;
cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
if (spi->mode & SPI_LSB_FIRST)
cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
if (xfer->rx_buf && xfer->tx_buf) {
cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
} else if (xfer->rx_buf) {
cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
} else if (xfer->tx_buf) {
/*
* Use the water line of rx fifo in full duplex mode to trigger
* the interruption of tx irq transmission completion.
* For the new version of SPI witch support ext_spi_clk, TX under
* IRQ transmission can only be developed using TR.
*/
if (rs->xfer_mode == ROCKCHIP_SPI_IRQ)
cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
else
cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
} else {
dev_err(rs->dev, "no transmission buffer\n");
return -EINVAL;
}
switch (xfer->bits_per_word) {
case 4:
cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
cr1 = xfer->len - 1;
break;
case 8:
cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
cr1 = xfer->len - 1;
break;
case 16:
cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
cr1 = xfer->len / 2 - 1;
if (xfer->len & 0x1) {
dev_err(rs->dev, "xfer->len is not aligned with 16bits\n");
return -EINVAL;
}
break;
default:
/* we only whitelist 4, 8 and 16 bit words in
* ctlr->bits_per_word_mask, so this shouldn't
* happen
*/
dev_err(rs->dev, "unknown bits per word: %d\n",
xfer->bits_per_word);
return -EINVAL;
}
if (rs->xfer_mode == ROCKCHIP_SPI_DMA) {
if (xfer->tx_buf)
dmacr |= TF_DMA_EN;
if (xfer->rx_buf)
dmacr |= RF_DMA_EN;
}
writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
if (rs->ext_spi_clk) {
val = BYPASS_EN | BYPASS_INT_TF_EN | CLOCK_GATING_NONE;
writel_relaxed(val, rs->regs + ROCKCHIP_SPI_BYPASS);
}
if (rs->dma_timeout) {
val = TIMEOUT_SINGLE_REQUEST_EN | TIMEOUT_COUNTER_EN |
16 << TIMEOUT_THRESHOLD_OFFSET;
writel_relaxed(val, rs->regs + ROCKCHIP_SPI_TIMEOUT);
}
/* unfortunately setting the fifo threshold level to generate an
* interrupt exactly when the fifo is full doesn't seem to work,
* so we need the strict inequality here
*/
if ((xfer->len / rs->n_bytes) < rs->fifo_len)
writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
else
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
writel_relaxed(rockchip_spi_slave_calc_burst_size(rs, xfer->len / rs->n_bytes) - 1,
rs->regs + ROCKCHIP_SPI_DMARDLR);
writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
return 0;
}
static size_t rockchip_spi_slave_max_transfer_size(struct spi_device *spi)
{
struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
return rs->max_transfer_size;
}
static int rockchip_spi_slave_transfer_wait(struct spi_controller *ctlr)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
int state;
int ret = 0;
if (wait_for_completion_interruptible(&rs->xfer_done)) {
dev_dbg(rs->dev, "RK SPI transfer interrupted\n");
ret = -EINTR;
goto out;
}
if (rs->slave_aborted) {
if (rs->xfer_mode == ROCKCHIP_SPI_DMA) {
state = atomic_read(&rs->state);
reinit_completion(&rs->xfer_done);
if (state && state == atomic_read(&rs->state) &&
wait_for_completion_interruptible_timeout(&rs->xfer_done,
ROCKCHIP_SPI_DMA_CB_REDUNDANCY_US) <= 0) {
dev_err(rs->dev, "RK SPI transfer slave abort\n");
ret = -EIO;
goto out;
} else {
dev_dbg(rs->dev, "RK SPI transfer slave dma cb lately\n");
}
} else {
dev_err(rs->dev, "RK SPI transfer slave abort\n");
ret = -EIO;
goto out;
}
}
if (rs->xfer->tx_buf)
wait_for_tx_idle(rs);
out:
if (ret)
rockchip_spi_slave_handle_err(ctlr);
return 0;
}
static int rockchip_spi_slave_stop(struct spi_controller *ctlr)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
spi_enable_chip(rs, false);
return 0;
}
static int rockchip_spi_slave_do_one_msg(struct spi_controller *ctlr, struct spi_message *m)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
struct spi_device *spi = m->spi;
struct spi_transfer *xfer;
int ret = -EINVAL;
bool use_dma;
u32 status;
WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
if (rs->cs_inactive) {
ret = readl_poll_timeout(rs->regs + ROCKCHIP_SPI_SR, status,
status & SR_SS_IN_N, 20,
ROCKCHIP_SPI_CLK_TO_CS_DEASSERT_US);
if (ret) {
dev_err(rs->dev, "The cs of spi master is still asserted\n");
ret = -EIO;
goto out;
}
}
list_for_each_entry(xfer, &m->transfers, transfer_list) {
if (!xfer->len || (!xfer->tx_buf && !xfer->rx_buf)) {
dev_err(rs->dev, "No buffer for transfer\n");
ret = -EINVAL;
goto out;
}
if (xfer->len > rs->max_transfer_size) {
dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
ret = -EINVAL;
goto out;
}
rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
rs->xfer = xfer;
use_dma = ctlr->can_dma(ctlr, spi, xfer);
if (use_dma)
rs->xfer_mode = ROCKCHIP_SPI_DMA;
else
rs->xfer_mode = ROCKCHIP_SPI_IRQ;
ret = rockchip_spi_slave_config(rs, spi, xfer);
if (ret)
goto out;
rs->tx = xfer->tx_buf;
rs->rx = xfer->rx_buf;
reinit_completion(&rs->xfer_done);
switch (rs->xfer_mode) {
case ROCKCHIP_SPI_DMA:
ret = rockchip_spi_slave_prepare_dma(rs, ctlr, xfer);
break;
default:
ret = rockchip_spi_slave_prepare_irq(rs, ctlr, xfer);
}
if (rs->ready) {
gpiod_set_value(rs->ready, 0);
gpiod_set_value(rs->ready, 1);
}
if (rs->verbose)
dev_info(rs->dev, "cur_gap=%lldus\n",
ktime_to_us(ktime_sub(ktime_get(), rs->dbg_time)));
if (ret > 0)
ret = rockchip_spi_slave_transfer_wait(ctlr);
if (rs->verbose)
rs->dbg_time = ktime_get();
rockchip_spi_slave_stop(ctlr);
if (xfer->rx_buf && rs->xfer_mode == ROCKCHIP_SPI_DMA)
memcpy(xfer->rx_buf, rs->dma_buf, xfer->len);
m->actual_length += xfer->len;
}
out:
m->status = ret;
spi_finalize_current_message(ctlr);
return 0;
}
static bool rockchip_spi_slave_can_dma(struct spi_controller *ctlr,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
/* if the numbor of spi words to transfer is less than the fifo
* length we can just fill the fifo and wait for a single irq,
* so don't bother setting up dma
*/
return xfer->len / bytes_per_word >= rs->fifo_len;
}
static int rockchip_spi_slave_setup(struct spi_device *spi)
{
struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
u32 cr0;
pm_runtime_get_sync(rs->dev);
cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET) | CR0_OPM_SLAVE << CR0_OPM_OFFSET;
writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
pm_runtime_put(rs->dev);
return 0;
}
static int rockchip_spi_slave_probe(struct platform_device *pdev)
{
int ret = 0;
struct rockchip_spi *rs;
struct spi_controller *ctlr;
struct resource *mem;
struct device_node *sram_np;
struct resource sram_res;
u32 val;
ctlr = spi_alloc_slave(&pdev->dev, sizeof(struct rockchip_spi));
if (!ctlr)
return -ENOMEM;
ctlr->rt = true;
platform_set_drvdata(pdev, ctlr);
rs = spi_controller_get_devdata(ctlr);
/* Get basic io resource and map it */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rs->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(rs->regs)) {
ret = PTR_ERR(rs->regs);
goto err_put_ctlr;
}
if (!has_acpi_companion(&pdev->dev))
ret = devm_clk_bulk_get_all(&pdev->dev, &rs->clks);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get clks\n");
goto err_put_ctlr;
}
rs->clk_cnt = ret;
if (!has_acpi_companion(&pdev->dev))
ret = clk_bulk_prepare_enable(rs->clk_cnt, rs->clks);
if (ret) {
dev_err(&pdev->dev, "Failed to enable clks\n");
goto err_put_ctlr;
}
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "Failed to set dma mask\n");
goto err_put_ctlr;
}
sram_np = of_parse_phandle(pdev->dev.of_node, "rockchip,sram", 0);
if (sram_np) {
/* get sram start and size */
ret = of_address_to_resource(sram_np, 0, &sram_res);
if (ret) {
dev_err(&pdev->dev, "find sram res error\n");
goto err_put_ctlr;
}
rs->max_transfer_size = resource_size(&sram_res);
rs->dma_phys = sram_res.start;
rs->dma_buf = devm_ioremap_resource(&pdev->dev, &sram_res);
if (IS_ERR(rs->dma_buf)) {
ret = PTR_ERR(rs->dma_buf);
goto err_put_ctlr;
}
dev_err(&pdev->dev, "set sram_buf\n");
} else {
rs->max_transfer_size = ROCKCHIP_SPI_MAX_TRANLEN;
rs->dma_buf = dma_alloc_coherent(&pdev->dev, rs->max_transfer_size + 1,
&rs->dma_phys, GFP_KERNEL);
if (!rs->dma_buf) {
ret = -ENOMEM;
goto err_put_ctlr;
}
}
spi_enable_chip(rs, false);
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_disable_spiclk;
ret = devm_request_irq(&pdev->dev, ret, rockchip_spi_slave_isr, 0, dev_name(&pdev->dev), ctlr);
if (ret)
goto err_disable_spiclk;
rs->dev = &pdev->dev;
rs->version = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
rs->verbose = 0;
device_property_read_u32(&pdev->dev, "rockchip,autosuspend-delay-ms", &val);
if (val <= 0)
val = (ROCKCHIP_SPI_CLK_TO_CS_DEASSERT_US + 999) / 1000;
pm_runtime_set_autosuspend_delay(&pdev->dev, val);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ctlr->auto_runtime_pm = true;
ctlr->bus_num = pdev->id;
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
ctlr->setup = rockchip_spi_slave_setup;
ctlr->transfer_one_message = rockchip_spi_slave_do_one_msg;
ctlr->max_transfer_size = rockchip_spi_slave_max_transfer_size;
ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
if (IS_ERR(ctlr->dma_tx)) {
/* Check tx to see if we need defer probing driver */
if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_disable_pm_runtime;
}
dev_warn(rs->dev, "Failed to request TX DMA channel\n");
ret = -EINVAL;
goto err_disable_spiclk;
}
ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
if (IS_ERR(ctlr->dma_rx)) {
if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_free_dma_tx;
}
dev_warn(rs->dev, "Failed to request RX DMA channel\n");
ret = -EINVAL;
goto err_free_dma_tx;
}
rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
ctlr->can_dma = rockchip_spi_slave_can_dma;
init_completion(&rs->xfer_done);
switch (rs->version) {
case ROCKCHIP_SPI_VER3:
rs->ext_spi_clk = true;
rs->dma_timeout = 16;
rs->fixed_burst_size = 16;
rs->tx_idle_type = 1;
rs->cs_inactive = true;
rs->fifo_len = 64;
break;
case ROCKCHIP_SPI_VER2_TYPE2:
rs->tx_idle_type = 1;
rs->cs_inactive = true;
rs->fifo_len = 64;
break;
case ROCKCHIP_SPI_VER2_TYPE1:
rs->tx_idle_type = 0;
rs->cs_inactive = true;
rs->fifo_len = 64;
break;
default:
rs->ext_spi_clk = false;
rs->dma_timeout = 0;
rs->fixed_burst_size = 0;
rs->tx_idle_type = 0;
rs->cs_inactive = false;
rs->fifo_len = 32;
}
if (device_property_read_bool(&pdev->dev, "rockchip,cs-inactive-disable"))
rs->cs_inactive = false;
if (!device_property_read_bool(&pdev->dev, "rockchip,dma-support-req-mix"))
rs->dma_timeout = 0;
rs->ready = devm_gpiod_get_optional(&pdev->dev, "ready", GPIOD_OUT_HIGH);
if (IS_ERR(rs->ready)) {
ret = PTR_ERR(rs->ready);
dev_err(&pdev->dev, "invalid ready-gpios property in node\n");
goto err_free_dma_rx;
}
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register controller\n");
goto err_free_dma_rx;
}
dev_info(rs->dev, "slave probed, cs-inactive=%d, ready=%d, ext=%d, dam_buf=%x\n",
rs->cs_inactive, rs->ready ? 1 : 0, rs->ext_spi_clk, (u32)rs->dma_phys);
return 0;
err_free_dma_rx:
dma_release_channel(ctlr->dma_rx);
err_free_dma_tx:
dma_release_channel(ctlr->dma_tx);
err_disable_pm_runtime:
pm_runtime_disable(&pdev->dev);
err_disable_spiclk:
clk_bulk_disable_unprepare(rs->clk_cnt, rs->clks);
err_put_ctlr:
spi_controller_put(ctlr);
return ret;
}
static int rockchip_spi_slave_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
pm_runtime_get_sync(&pdev->dev);
clk_bulk_disable_unprepare(rs->clk_cnt, rs->clks);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
if (ctlr->dma_tx)
dma_release_channel(ctlr->dma_tx);
if (ctlr->dma_rx)
dma_release_channel(ctlr->dma_rx);
spi_controller_put(ctlr);
return 0;
}
#ifdef CONFIG_PM
static int rockchip_spi_slave_runtime_suspend(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
clk_bulk_disable_unprepare(rs->clk_cnt, rs->clks);
return 0;
}
static int rockchip_spi_slave_runtime_resume(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
return clk_bulk_prepare_enable(rs->clk_cnt, rs->clks);
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_SLEEP
static int rockchip_spi_slave_suspend(struct device *dev)
{
int ret;
struct spi_controller *ctlr = dev_get_drvdata(dev);
ret = spi_controller_suspend(ctlr);
if (ret < 0)
return ret;
/* Avoid redundant clock disable */
if (!pm_runtime_status_suspended(dev))
rockchip_spi_slave_runtime_suspend(dev);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int rockchip_spi_slave_resume(struct device *dev)
{
int ret;
struct spi_controller *ctlr = dev_get_drvdata(dev);
pinctrl_pm_select_default_state(dev);
if (!pm_runtime_status_suspended(dev)) {
ret = rockchip_spi_slave_runtime_resume(dev);
if (ret < 0)
return ret;
}
ret = spi_controller_resume(ctlr);
if (ret < 0)
rockchip_spi_slave_runtime_suspend(dev);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops rockchip_spi_slave_pm = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_slave_suspend, rockchip_spi_slave_resume)
SET_RUNTIME_PM_OPS(rockchip_spi_slave_runtime_suspend,
rockchip_spi_slave_runtime_resume, NULL)
};
static const struct of_device_id rockchip_spi_slave_dt_match[] = {
{ .compatible = "rockchip,spi-slave", },
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_spi_slave_dt_match);
static struct platform_driver rockchip_spi_slave_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &rockchip_spi_slave_pm,
.of_match_table = of_match_ptr(rockchip_spi_slave_dt_match),
},
.probe = rockchip_spi_slave_probe,
.remove = rockchip_spi_slave_remove,
};
module_platform_driver(rockchip_spi_slave_driver);
MODULE_AUTHOR("Jon Lin <jon.lin@rock-chips.com>");
MODULE_DESCRIPTION("ROCKCHIP SPI Slave Controller Driver");
MODULE_LICENSE("GPL");