1219 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip Serial Flash Controller Driver
*
* Copyright (c) 2017-2021, Rockchip Inc.
* Author: Shawn Lin <shawn.lin@rock-chips.com>
* Chris Morgan <macroalpha82@gmail.com>
* Jon Lin <Jon.lin@rock-chips.com>
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spi/spi-mem.h>
#include <linux/of_gpio.h>
/* System control */
#define SFC_CTRL 0x0
#define SFC_CTRL_PHASE_SEL_NEGETIVE BIT(1)
#define SFC_CTRL_DTR_MODE BIT(2)
#define SFC_CTRL_CMD_BITS_SHIFT 8
#define SFC_CTRL_ADDR_BITS_SHIFT 10
#define SFC_CTRL_DATA_BITS_SHIFT 12
#define SFC_CTRL_DTR_MODE_BY_DEVICE BIT(17)
#define SFC_CTRL_CMD_STR_SHIFT 19
#define SFC_CTRL_ADDR_STR_SHIFT 20
#define SFC_CTRL_CMD_CTRL_CMD_EXT (2 << 27)
#define SFC_CTRL_WPEN BIT(29)
/* Interrupt mask */
#define SFC_IMR 0x4
#define SFC_IMR_RX_FULL BIT(0)
#define SFC_IMR_RX_UFLOW BIT(1)
#define SFC_IMR_TX_OFLOW BIT(2)
#define SFC_IMR_TX_EMPTY BIT(3)
#define SFC_IMR_TRAN_FINISH BIT(4)
#define SFC_IMR_BUS_ERR BIT(5)
#define SFC_IMR_NSPI_ERR BIT(6)
#define SFC_IMR_DMA BIT(7)
/* Interrupt clear */
#define SFC_ICLR 0x8
#define SFC_ICLR_RX_FULL BIT(0)
#define SFC_ICLR_RX_UFLOW BIT(1)
#define SFC_ICLR_TX_OFLOW BIT(2)
#define SFC_ICLR_TX_EMPTY BIT(3)
#define SFC_ICLR_TRAN_FINISH BIT(4)
#define SFC_ICLR_BUS_ERR BIT(5)
#define SFC_ICLR_NSPI_ERR BIT(6)
#define SFC_ICLR_DMA BIT(7)
/* FIFO threshold level */
#define SFC_FTLR 0xc
#define SFC_FTLR_TX_SHIFT 0
#define SFC_FTLR_TX_MASK 0x1f
#define SFC_FTLR_RX_SHIFT 8
#define SFC_FTLR_RX_MASK 0x1f
/* Reset FSM and FIFO */
#define SFC_RCVR 0x10
#define SFC_RCVR_RESET BIT(0)
/* Enhanced mode */
#define SFC_AX 0x14
/* Address Bit number */
#define SFC_ABIT 0x18
/* Interrupt status */
#define SFC_ISR 0x1c
#define SFC_ISR_RX_FULL_SHIFT BIT(0)
#define SFC_ISR_RX_UFLOW_SHIFT BIT(1)
#define SFC_ISR_TX_OFLOW_SHIFT BIT(2)
#define SFC_ISR_TX_EMPTY_SHIFT BIT(3)
#define SFC_ISR_TX_FINISH_SHIFT BIT(4)
#define SFC_ISR_BUS_ERR_SHIFT BIT(5)
#define SFC_ISR_NSPI_ERR_SHIFT BIT(6)
#define SFC_ISR_DMA_SHIFT BIT(7)
/* FIFO status */
#define SFC_FSR 0x20
#define SFC_FSR_TX_IS_FULL BIT(0)
#define SFC_FSR_TX_IS_EMPTY BIT(1)
#define SFC_FSR_RX_IS_EMPTY BIT(2)
#define SFC_FSR_RX_IS_FULL BIT(3)
#define SFC_FSR_TXLV_MASK GENMASK(13, 8)
#define SFC_FSR_TXLV_SHIFT 8
#define SFC_FSR_RXLV_MASK GENMASK(20, 16)
#define SFC_FSR_RXLV_SHIFT 16
/* FSM status */
#define SFC_SR 0x24
#define SFC_SR_IS_IDLE 0x0
#define SFC_SR_IS_BUSY 0x1
/* Raw interrupt status */
#define SFC_RISR 0x28
#define SFC_RISR_RX_FULL BIT(0)
#define SFC_RISR_RX_UNDERFLOW BIT(1)
#define SFC_RISR_TX_OVERFLOW BIT(2)
#define SFC_RISR_TX_EMPTY BIT(3)
#define SFC_RISR_TRAN_FINISH BIT(4)
#define SFC_RISR_BUS_ERR BIT(5)
#define SFC_RISR_NSPI_ERR BIT(6)
#define SFC_RISR_DMA BIT(7)
/* Version */
#define SFC_VER 0x2C
#define SFC_VER_3 0x3
#define SFC_VER_4 0x4
#define SFC_VER_5 0x5
#define SFC_VER_6 0x6
#define SFC_VER_8 0x8
#define SFC_VER_9 0x9
/* Ext ctrl */
#define SFC_EXT_CTRL 0x34
#define SFC_SCLK_X2_BYPASS BIT(24)
/* Delay line controller resiter */
#define SFC_DLL_CTRL0 0x3C
#define SFC_DLL_CTRL0_SCLK_SMP_DLL BIT(15)
#define SFC_DLL_CTRL0_DLL_MAX_VER4 0xFFU
#define SFC_DLL_CTRL0_DLL_MAX_VER5 0x1FFU
/* Dummy Cycle Control Register */
#define SFC_DUMM_CTRL 0x74
#define SFC_DUMMY_CTRL_SEL BIT(0)
#define SFC_DUMMY_CTRL_EXT_SHIFT 1
/* Command Extend Register */
#define SFC_CMD_EXT 0x78
/* Master trigger */
#define SFC_DMA_TRIGGER 0x80
#define SFC_DMA_TRIGGER_START 1
/* Src or Dst addr for master */
#define SFC_DMA_ADDR 0x84
/* Length control register extension 32GB */
#define SFC_LEN_CTRL 0x88
#define SFC_LEN_CTRL_TRB_SEL 1
#define SFC_LEN_EXT 0x8C
/* Command */
#define SFC_CMD 0x100
#define SFC_CMD_IDX_SHIFT 0
#define SFC_CMD_DUMMY_SHIFT 8
#define SFC_CMD_DIR_SHIFT 12
#define SFC_CMD_DIR_RD 0
#define SFC_CMD_DIR_WR 1
#define SFC_CMD_ADDR_SHIFT 14
#define SFC_CMD_ADDR_0BITS 0
#define SFC_CMD_ADDR_24BITS 1
#define SFC_CMD_ADDR_32BITS 2
#define SFC_CMD_ADDR_XBITS 3
#define SFC_CMD_TRAN_BYTES_SHIFT 16
#define SFC_CMD_CS_SHIFT 30
/* Address */
#define SFC_ADDR 0x104
/* Data */
#define SFC_DATA 0x108
#define SFC_CS1_REG_OFFSET 0x200
#define SFC_MAX_CHIPSELECT_NUM 2
#define SFC_MAX_IOSIZE_VER3 (512 * 31)
/* Although up to 4GB, 64KB is enough with less mem reserved */
#define SFC_MAX_IOSIZE_VER4 (0x10000U)
/* DMA is only enabled for large data transmission */
#define SFC_DMA_TRANS_THRETHOLD (0x40)
/* Maximum clock values from datasheet suggest keeping clock value under
* 150MHz. No minimum or average value is suggested.
*/
#define SFC_MAX_SPEED (150 * 1000 * 1000)
#define SFC_DLL_THRESHOLD_RATE (50 * 1000 * 1000)
#define SFC_DLL_TRANING_STEP 10 /* Training step */
#define SFC_DLL_TRANING_VALID_WINDOW 80 /* Valid DLL winbow */
#define ROCKCHIP_AUTOSUSPEND_DELAY 2000
struct rockchip_sfc_powergood {
bool valid;
u32 grf_offset;
u8 bits_mask;
};
struct rockchip_sfc_data {
struct rockchip_sfc_powergood powergood;
};
struct rockchip_sfc {
struct device *dev;
void __iomem *regbase;
struct clk *hclk;
struct clk *clk;
u32 speed[SFC_MAX_CHIPSELECT_NUM];
u32 cur_speed;
u32 cur_real_speed;
/* virtual mapped addr for dma_buffer */
void *buffer;
dma_addr_t dma_buffer;
struct completion cp;
bool use_dma;
bool sclk_x2_bypass;
u32 max_iosize;
u32 max_dll_cells;
u32 dll_cells[SFC_MAX_CHIPSELECT_NUM];
u16 version;
struct gpio_desc *rst_gpio;
struct gpio_desc **cs_gpiods;
struct spi_master *master;
struct regmap *grf;
struct rockchip_sfc_data *data;
};
static int rockchip_sfc_reset(struct rockchip_sfc *sfc)
{
int err;
u32 status;
writel_relaxed(SFC_RCVR_RESET, sfc->regbase + SFC_RCVR);
err = readl_poll_timeout(sfc->regbase + SFC_RCVR, status,
!(status & SFC_RCVR_RESET), 20,
jiffies_to_usecs(HZ));
if (err)
dev_err(sfc->dev, "SFC reset never finished\n");
/* Still need to clear the masked interrupt from RISR */
writel_relaxed(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
dev_dbg(sfc->dev, "reset\n");
return err;
}
static u16 rockchip_sfc_get_version(struct rockchip_sfc *sfc)
{
return (u16)(readl(sfc->regbase + SFC_VER) & 0xffff);
}
static u32 rockchip_sfc_get_max_iosize(struct rockchip_sfc *sfc)
{
if (sfc->version >= SFC_VER_4)
return SFC_MAX_IOSIZE_VER4;
return SFC_MAX_IOSIZE_VER3;
}
static u32 rockchip_sfc_get_max_dll_cells(struct rockchip_sfc *sfc)
{
if (sfc->max_dll_cells)
return sfc->max_dll_cells;
if (sfc->version > SFC_VER_4)
return SFC_DLL_CTRL0_DLL_MAX_VER5;
else if (sfc->version == SFC_VER_4)
return SFC_DLL_CTRL0_DLL_MAX_VER4;
else
return 0;
}
static void rockchip_sfc_set_delay_lines(struct rockchip_sfc *sfc, u16 cells, u8 cs)
{
u16 cell_max = (u16)rockchip_sfc_get_max_dll_cells(sfc);
u32 val = 0;
if (cells > cell_max)
cells = cell_max;
if (cells)
val = SFC_DLL_CTRL0_SCLK_SMP_DLL | cells;
writel(val, sfc->regbase + cs * SFC_CS1_REG_OFFSET + SFC_DLL_CTRL0);
}
static int rockchip_sfc_clk_set_rate(struct rockchip_sfc *sfc, unsigned long speed)
{
if (sfc->version < SFC_VER_8 || sfc->sclk_x2_bypass)
return clk_set_rate(sfc->clk, speed);
else
return clk_set_rate(sfc->clk, speed * 2);
}
static unsigned long rockchip_sfc_clk_get_rate(struct rockchip_sfc *sfc)
{
if (sfc->version < SFC_VER_8 || sfc->sclk_x2_bypass)
return clk_get_rate(sfc->clk);
else
return clk_get_rate(sfc->clk) / 2;
}
static void rockchip_sfc_irq_unmask(struct rockchip_sfc *sfc, u32 mask)
{
u32 reg;
/* Enable transfer complete interrupt */
reg = readl(sfc->regbase + SFC_IMR);
reg &= ~mask;
writel(reg, sfc->regbase + SFC_IMR);
}
static void rockchip_sfc_irq_mask(struct rockchip_sfc *sfc, u32 mask)
{
u32 reg;
/* Disable transfer finish interrupt */
reg = readl(sfc->regbase + SFC_IMR);
reg |= mask;
writel(reg, sfc->regbase + SFC_IMR);
}
static int rockchip_sfc_init(struct rockchip_sfc *sfc)
{
u32 reg;
writel(0, sfc->regbase + SFC_CTRL);
writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
rockchip_sfc_irq_mask(sfc, 0xFFFFFFFF);
if (rockchip_sfc_get_version(sfc) >= SFC_VER_4)
writel(SFC_LEN_CTRL_TRB_SEL, sfc->regbase + SFC_LEN_CTRL);
if (rockchip_sfc_get_version(sfc) >= SFC_VER_8 && sfc->sclk_x2_bypass) {
reg = readl(sfc->regbase + SFC_EXT_CTRL);
reg |= SFC_SCLK_X2_BYPASS;
writel(reg, sfc->regbase + SFC_EXT_CTRL);
}
return 0;
}
static int rockchip_sfc_wait_txfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status,
status & SFC_FSR_TXLV_MASK, 0,
timeout_us);
if (ret) {
dev_dbg(sfc->dev, "sfc wait tx fifo timeout\n");
return -ETIMEDOUT;
}
return (status & SFC_FSR_TXLV_MASK) >> SFC_FSR_TXLV_SHIFT;
}
static int rockchip_sfc_wait_rxfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status,
status & SFC_FSR_RXLV_MASK, 0,
timeout_us);
if (ret) {
print_hex_dump(KERN_WARNING, "sfc", DUMP_PREFIX_OFFSET, 4, 4, sfc->regbase, 0x104, 0);
dev_err(sfc->dev, "sfc wait rx fifo timeout\n");
return -ETIMEDOUT;
}
return (status & SFC_FSR_RXLV_MASK) >> SFC_FSR_RXLV_SHIFT;
}
static void rockchip_sfc_adjust_op_work(struct spi_mem_op *op)
{
if (unlikely(op->dummy.nbytes && !op->addr.nbytes)) {
/*
* SFC not support output DUMMY cycles right after CMD cycles, so
* treat it as ADDR cycles.
*/
op->addr.nbytes = op->dummy.nbytes;
op->addr.buswidth = op->dummy.buswidth;
op->addr.val = 0xFFFFFFFFF;
op->dummy.nbytes = 0;
}
}
static int rockchip_sfc_xfer_setup(struct rockchip_sfc *sfc,
struct spi_mem *mem,
const struct spi_mem_op *op,
u32 len)
{
u32 ctrl = 0, cmd = 0, cmd_ext = 0, dummy_ext = 0;
u8 cs = mem->spi->chip_select;
u32 voltage;
/* set CMD */
if (op->cmd.nbytes == 2) {
cmd_ext = op->cmd.opcode;
ctrl |= SFC_CTRL_CMD_CTRL_CMD_EXT;
} else {
cmd = op->cmd.opcode;
}
ctrl |= (find_first_bit((unsigned long *)&op->cmd.buswidth, 8) << SFC_CTRL_CMD_BITS_SHIFT);
ctrl |= (!op->cmd.dtr) << SFC_CTRL_CMD_STR_SHIFT;
/* set ADDR */
if (op->addr.nbytes) {
if (op->addr.nbytes == 4) {
cmd |= SFC_CMD_ADDR_32BITS << SFC_CMD_ADDR_SHIFT;
} else if (op->addr.nbytes == 3) {
cmd |= SFC_CMD_ADDR_24BITS << SFC_CMD_ADDR_SHIFT;
} else {
cmd |= SFC_CMD_ADDR_XBITS << SFC_CMD_ADDR_SHIFT;
writel(op->addr.nbytes * 8 - 1, sfc->regbase + cs * SFC_CS1_REG_OFFSET + SFC_ABIT);
dev_dbg(sfc->dev, "sfc addrxbits=%d\n", op->addr.nbytes * 8 - 1);
}
ctrl |= (find_first_bit((unsigned long *)&op->addr.buswidth, 8) << SFC_CTRL_ADDR_BITS_SHIFT);
}
ctrl |= (!op->addr.dtr) << SFC_CTRL_ADDR_STR_SHIFT;
/* set DUMMY */
if (op->dummy.nbytes) {
if (op->dummy.buswidth == 8)
dummy_ext |= ((op->dummy.nbytes / 2) << SFC_DUMMY_CTRL_EXT_SHIFT | SFC_DUMMY_CTRL_SEL); /* dtr */
else if (op->dummy.buswidth == 4)
cmd |= op->dummy.nbytes * 2 << SFC_CMD_DUMMY_SHIFT;
else if (op->dummy.buswidth == 2)
cmd |= op->dummy.nbytes * 4 << SFC_CMD_DUMMY_SHIFT;
else
cmd |= op->dummy.nbytes * 8 << SFC_CMD_DUMMY_SHIFT;
}
/* set DATA */
if (sfc->version >= SFC_VER_4) /* Clear it if no data to transfer */
writel(len, sfc->regbase + SFC_LEN_EXT);
else
cmd |= len << SFC_CMD_TRAN_BYTES_SHIFT;
if ((len && op->data.dir == SPI_MEM_DATA_OUT) || (!len && op->addr.nbytes))
cmd |= SFC_CMD_DIR_WR << SFC_CMD_DIR_SHIFT;
if (len)
ctrl |= (find_first_bit((unsigned long *)&op->data.buswidth, 8) << SFC_CTRL_DATA_BITS_SHIFT);
/* set the Controller */
ctrl |= SFC_CTRL_PHASE_SEL_NEGETIVE | SFC_CTRL_WPEN;
if (op->cmd.buswidth > 1)
ctrl |= SFC_CTRL_WPEN;
/* Workaround, binding dqs with buswidth 8 */
if (op->cmd.buswidth == 8)
ctrl |= (SFC_CTRL_DTR_MODE | SFC_CTRL_DTR_MODE_BY_DEVICE);
cmd |= cs << SFC_CMD_CS_SHIFT;
dev_dbg(sfc->dev, "sfc cmd.nbytes=%x(x%d) addr.nbytes=%x(x%d) dummy.nbytes=%x(x%d)\n",
op->cmd.nbytes, op->cmd.buswidth,
op->addr.nbytes, op->addr.buswidth,
op->dummy.nbytes, op->dummy.buswidth);
dev_dbg(sfc->dev, "sfc ctrl=%x cmd=%x cmd_ext=%x addr=%llx dummy_ext=%x len=%x cs=%d\n",
ctrl, cmd, cmd_ext, op->addr.val, cmd_ext, len, cs);
if (sfc->data && sfc->data->powergood.valid) {
if (regmap_read_poll_timeout(sfc->grf, sfc->data->powergood.grf_offset,
voltage, voltage & sfc->data->powergood.bits_mask,
1000, jiffies_to_usecs(HZ))) {
dev_err(sfc->dev, "wait for powergood failed\n");
return -EIO;
}
}
if (cmd_ext)
writel(cmd_ext, sfc->regbase + SFC_CMD_EXT);
if (sfc->version >= SFC_VER_8)
writel(dummy_ext, sfc->regbase + SFC_DUMM_CTRL);
writel(ctrl, sfc->regbase + cs * SFC_CS1_REG_OFFSET + SFC_CTRL);
writel(cmd, sfc->regbase + SFC_CMD);
if (op->addr.nbytes)
writel(op->addr.val, sfc->regbase + SFC_ADDR);
return 0;
}
static int rockchip_sfc_write_fifo(struct rockchip_sfc *sfc, const u8 *buf, int len)
{
u8 bytes = len & 0x3;
u32 dwords;
int tx_level;
u32 write_words;
u32 tmp = 0;
dwords = len >> 2;
while (dwords) {
tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000);
if (tx_level < 0)
return tx_level;
write_words = min_t(u32, tx_level, dwords);
iowrite32_rep(sfc->regbase + SFC_DATA, buf, write_words);
buf += write_words << 2;
dwords -= write_words;
}
/* write the rest non word aligned bytes */
if (bytes) {
tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000);
if (tx_level < 0)
return tx_level;
memcpy(&tmp, buf, bytes);
writel(tmp, sfc->regbase + SFC_DATA);
}
return len;
}
static int rockchip_sfc_read_fifo(struct rockchip_sfc *sfc, u8 *buf, int len)
{
u8 bytes = len & 0x3;
u32 dwords;
u8 read_words;
int rx_level;
int tmp;
/* word aligned access only */
dwords = len >> 2;
while (dwords) {
rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000);
if (rx_level < 0)
return rx_level;
read_words = min_t(u32, rx_level, dwords);
ioread32_rep(sfc->regbase + SFC_DATA, buf, read_words);
buf += read_words << 2;
dwords -= read_words;
}
/* read the rest non word aligned bytes */
if (bytes) {
rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000);
if (rx_level < 0)
return rx_level;
tmp = readl(sfc->regbase + SFC_DATA);
memcpy(buf, &tmp, bytes);
}
return len;
}
static int rockchip_sfc_fifo_transfer_dma(struct rockchip_sfc *sfc, dma_addr_t dma_buf, size_t len)
{
writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
writel((u32)dma_buf, sfc->regbase + SFC_DMA_ADDR);
writel(SFC_DMA_TRIGGER_START, sfc->regbase + SFC_DMA_TRIGGER);
return len;
}
static int rockchip_sfc_xfer_data_poll(struct rockchip_sfc *sfc,
const struct spi_mem_op *op, u32 len)
{
dev_dbg(sfc->dev, "sfc xfer_poll len=%x\n", len);
if (op->data.dir == SPI_MEM_DATA_OUT)
return rockchip_sfc_write_fifo(sfc, op->data.buf.out, len);
else
return rockchip_sfc_read_fifo(sfc, op->data.buf.in, len);
}
static int rockchip_sfc_xfer_data_dma(struct rockchip_sfc *sfc,
const struct spi_mem_op *op, u32 len)
{
int ret;
#ifdef ROCKCHIP_SFC_VERBOSE
ktime_t start_time;
ktime_t end_time;
unsigned long us = 0;
#endif
dev_dbg(sfc->dev, "sfc xfer_dma len=%x\n", len);
if (op->data.dir == SPI_MEM_DATA_OUT) {
memcpy(sfc->buffer, op->data.buf.out, len);
dma_sync_single_for_device(sfc->dev, sfc->dma_buffer, len, DMA_TO_DEVICE);
}
#ifdef ROCKCHIP_SFC_VERBOSE
start_time = ktime_get();
#endif
ret = rockchip_sfc_fifo_transfer_dma(sfc, sfc->dma_buffer, len);
if (!wait_for_completion_timeout(&sfc->cp, msecs_to_jiffies(2000))) {
dev_err(sfc->dev, "DMA wait for transfer finish timeout\n");
ret = -ETIMEDOUT;
}
#ifdef ROCKCHIP_SFC_VERBOSE
end_time = ktime_get();
us = ktime_to_us(ktime_sub(end_time, start_time));
dev_err(sfc->dev, "io %dB %ldus %ldKB/S\n", len, us, len * 1000 / us);
#endif
rockchip_sfc_irq_mask(sfc, SFC_IMR_DMA);
#ifdef ROCKCHIP_SFC_VERBOSE
start_time = ktime_get();
#endif
if (op->data.dir == SPI_MEM_DATA_IN) {
dma_sync_single_for_cpu(sfc->dev, sfc->dma_buffer, len, DMA_FROM_DEVICE);
memcpy(op->data.buf.in, sfc->buffer, len);
}
#ifdef ROCKCHIP_SFC_VERBOSE
end_time = ktime_get();
us = ktime_to_us(ktime_sub(end_time, start_time));
dev_err(sfc->dev, "cp %dB %ldus %ldKB/S\n", len, us, len * 1000 / us);
#endif
return ret;
}
static int rockchip_sfc_xfer_done(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
/*
* There is very little data left in fifo, and the controller will
* complete the transmission in a short period of time.
*/
ret = readl_poll_timeout(sfc->regbase + SFC_SR, status,
!(status & SFC_SR_IS_BUSY),
0, 10);
if (!ret)
return 0;
ret = readl_poll_timeout(sfc->regbase + SFC_SR, status,
!(status & SFC_SR_IS_BUSY),
20, timeout_us);
if (ret) {
dev_err(sfc->dev, "wait sfc idle timeout\n");
rockchip_sfc_reset(sfc);
ret = -EIO;
}
return ret;
}
static void rockchip_sfc_set_cs_gpio(struct rockchip_sfc *sfc, u8 cs, bool enable)
{
if (sfc->cs_gpiods) {
if (has_acpi_companion(sfc->dev))
gpiod_set_value_cansleep(sfc->cs_gpiods[cs], !enable);
else
/* Polarity handled by GPIO library */
gpiod_set_value_cansleep(sfc->cs_gpiods[cs], enable);
}
}
static int rockchip_sfc_exec_op_bypass(struct rockchip_sfc *sfc,
struct spi_mem *mem,
const struct spi_mem_op *op)
{
u32 len = min_t(u32, op->data.nbytes, sfc->max_iosize);
u8 cs = mem->spi->chip_select;
u32 ret;
rockchip_sfc_adjust_op_work((struct spi_mem_op *)op);
rockchip_sfc_set_cs_gpio(sfc, cs, true);
rockchip_sfc_xfer_setup(sfc, mem, op, len);
ret = rockchip_sfc_xfer_data_poll(sfc, op, len);
if (ret != len) {
dev_err(sfc->dev, "xfer data failed ret %d\n", ret);
return -EIO;
}
ret = rockchip_sfc_xfer_done(sfc, 100000);
rockchip_sfc_set_cs_gpio(sfc, cs, false);
return ret;
}
static void rockchip_sfc_delay_lines_tuning(struct rockchip_sfc *sfc, struct spi_mem *mem)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x9F, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(3, NULL, 1));
u8 id[3], id_temp[3];
u16 cell_max = (u16)rockchip_sfc_get_max_dll_cells(sfc);
u16 right, left = 0;
u16 step = SFC_DLL_TRANING_STEP;
bool dll_valid = false;
u8 cs = mem->spi->chip_select;
rockchip_sfc_clk_set_rate(sfc, SFC_DLL_THRESHOLD_RATE);
op.data.buf.in = &id;
rockchip_sfc_exec_op_bypass(sfc, mem, &op);
if ((0xFF == id[0] && 0xFF == id[1]) ||
(0x00 == id[0] && 0x00 == id[1])) {
dev_dbg(sfc->dev, "no dev, dll by pass\n");
rockchip_sfc_clk_set_rate(sfc, sfc->speed[cs]);
sfc->speed[cs] = SFC_DLL_THRESHOLD_RATE;
return;
}
rockchip_sfc_clk_set_rate(sfc, sfc->speed[cs]);
op.data.buf.in = &id_temp;
for (right = 0; right <= cell_max; right += step) {
int ret;
rockchip_sfc_set_delay_lines(sfc, right, cs);
rockchip_sfc_exec_op_bypass(sfc, mem, &op);
dev_dbg(sfc->dev, "dll read flash id:%x %x %x\n",
id_temp[0], id_temp[1], id_temp[2]);
ret = memcmp(&id, &id_temp, 3);
if (dll_valid && ret) {
right -= step;
break;
}
if (!dll_valid && !ret)
left = right;
if (!ret)
dll_valid = true;
/* Add cell_max to loop */
if (right == cell_max)
break;
if (right + step > cell_max)
right = cell_max - step;
}
if (dll_valid && (right - left) >= SFC_DLL_TRANING_VALID_WINDOW) {
if (left == 0 && right < cell_max)
sfc->dll_cells[cs] = left + (right - left) * 2 / 5;
else
sfc->dll_cells[cs] = left + (right - left) / 2;
} else {
sfc->dll_cells[cs] = 0;
}
if (sfc->dll_cells[cs]) {
dev_dbg(sfc->dev, "%d %d %d dll training success in %dMHz max_cells=%u sfc_ver=%d\n",
left, right, sfc->dll_cells[cs], sfc->speed[cs],
rockchip_sfc_get_max_dll_cells(sfc), rockchip_sfc_get_version(sfc));
rockchip_sfc_set_delay_lines(sfc, (u16)sfc->dll_cells[cs], cs);
} else {
dev_err(sfc->dev, "%d %d dll training failed in %dMHz, reduce the frequency\n",
left, right, sfc->speed[cs]);
rockchip_sfc_set_delay_lines(sfc, 0, cs);
rockchip_sfc_clk_set_rate(sfc, SFC_DLL_THRESHOLD_RATE);
mem->spi->max_speed_hz = SFC_DLL_THRESHOLD_RATE;
sfc->cur_speed = SFC_DLL_THRESHOLD_RATE;
sfc->cur_real_speed = rockchip_sfc_clk_get_rate(sfc);
sfc->speed[cs] = SFC_DLL_THRESHOLD_RATE;
}
}
static int rockchip_sfc_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct rockchip_sfc *sfc = spi_master_get_devdata(mem->spi->master);
u32 len = op->data.nbytes;
int ret;
u8 cs = mem->spi->chip_select;
ret = pm_runtime_get_sync(sfc->dev);
if (ret < 0) {
pm_runtime_put_noidle(sfc->dev);
return ret;
}
if (unlikely(mem->spi->max_speed_hz != sfc->speed[cs]) &&
!has_acpi_companion(sfc->dev)) {
ret = rockchip_sfc_clk_set_rate(sfc, mem->spi->max_speed_hz);
if (ret)
goto out;
sfc->speed[cs] = mem->spi->max_speed_hz;
sfc->cur_speed = mem->spi->max_speed_hz;
sfc->cur_real_speed = rockchip_sfc_clk_get_rate(sfc);
if (rockchip_sfc_get_version(sfc) >= SFC_VER_4) {
if (sfc->cur_real_speed > SFC_DLL_THRESHOLD_RATE)
rockchip_sfc_delay_lines_tuning(sfc, mem);
else
rockchip_sfc_set_delay_lines(sfc, 0, cs);
}
dev_dbg(sfc->dev, "set_freq=%dHz real_freq=%ldHz\n",
sfc->speed[cs], rockchip_sfc_clk_get_rate(sfc));
}
rockchip_sfc_adjust_op_work((struct spi_mem_op *)op);
rockchip_sfc_set_cs_gpio(sfc, cs, true);
rockchip_sfc_xfer_setup(sfc, mem, op, len);
if (len) {
if (likely(sfc->use_dma) && len >= SFC_DMA_TRANS_THRETHOLD && !(len & 0x3)) {
init_completion(&sfc->cp);
rockchip_sfc_irq_unmask(sfc, SFC_IMR_DMA);
ret = rockchip_sfc_xfer_data_dma(sfc, op, len);
} else {
ret = rockchip_sfc_xfer_data_poll(sfc, op, len);
}
if (ret != len) {
dev_err(sfc->dev, "xfer data failed ret %d dir %d\n", ret, op->data.dir);
rockchip_sfc_reset(sfc);
ret = -EIO;
goto out;
}
}
ret = rockchip_sfc_xfer_done(sfc, 100000);
out:
rockchip_sfc_set_cs_gpio(sfc, cs, false);
pm_runtime_mark_last_busy(sfc->dev);
pm_runtime_put_autosuspend(sfc->dev);
return ret;
}
static int rockchip_sfc_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct rockchip_sfc *sfc = spi_master_get_devdata(mem->spi->master);
op->data.nbytes = min(op->data.nbytes, sfc->max_iosize);
return 0;
}
static bool rockchip_sfc_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
/*
* The number of address bytes should be equal to or less than 4 bytes.
*/
if (op->addr.nbytes > 4)
return false;
return spi_mem_default_supports_op(mem, op);
}
static const struct spi_controller_mem_ops rockchip_sfc_mem_ops = {
.exec_op = rockchip_sfc_exec_mem_op,
.adjust_op_size = rockchip_sfc_adjust_op_size,
.supports_op = rockchip_sfc_supports_op,
};
static irqreturn_t rockchip_sfc_irq_handler(int irq, void *dev_id)
{
struct rockchip_sfc *sfc = dev_id;
u32 reg;
reg = readl(sfc->regbase + SFC_RISR);
/* Clear interrupt */
writel_relaxed(reg, sfc->regbase + SFC_ICLR);
if (reg & SFC_RISR_DMA) {
complete(&sfc->cp);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int rockchip_sfc_get_gpio_descs(struct spi_controller *ctlr, struct rockchip_sfc *sfc)
{
int nb, i;
struct gpio_desc **cs;
struct device *dev = &ctlr->dev;
unsigned int num_cs_gpios = 0;
nb = gpiod_count(dev, "sfc-cs");
ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
if (nb == 0 || nb == -ENOENT)
return 0;
else if (nb < 0)
return nb;
cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
GFP_KERNEL);
if (!cs)
return -ENOMEM;
sfc->cs_gpiods = cs;
for (i = 0; i < nb; i++) {
cs[i] = devm_gpiod_get_index_optional(dev, "sfc-cs", i,
GPIOD_OUT_LOW);
if (IS_ERR(cs[i]))
return PTR_ERR(cs[i]);
if (cs[i]) {
/*
* If we find a CS GPIO, name it after the device and
* chip select line.
*/
char *gpioname;
gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
dev_name(dev), i);
if (!gpioname)
return -ENOMEM;
gpiod_set_consumer_name(cs[i], gpioname);
num_cs_gpios++;
continue;
}
}
return 0;
}
static const struct rockchip_sfc_data rk3506_fspi_data = {
.powergood = {
.valid = true,
.grf_offset = 0x100,
.bits_mask = BIT(0),
},
};
static const struct of_device_id rockchip_sfc_dt_ids[] = {
{ .compatible = "rockchip,fspi",},
{ .compatible = "rockchip,rk3506-fspi", .data = &rk3506_fspi_data},
{ .compatible = "rockchip,sfc"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rockchip_sfc_dt_ids);
static int rockchip_sfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res;
struct rockchip_sfc *sfc;
int ret;
u32 i, val;
master = devm_spi_alloc_master(&pdev->dev, sizeof(*sfc));
if (!master)
return -ENOMEM;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->mem_ops = &rockchip_sfc_mem_ops;
master->dev.of_node = pdev->dev.of_node;
master->max_speed_hz = SFC_MAX_SPEED;
master->num_chipselect = SFC_MAX_CHIPSELECT_NUM;
sfc = spi_master_get_devdata(master);
sfc->dev = dev;
sfc->master = master;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sfc->regbase = devm_ioremap_resource(dev, res);
if (IS_ERR(sfc->regbase))
return PTR_ERR(sfc->regbase);
if (!has_acpi_companion(&pdev->dev))
sfc->clk = devm_clk_get(&pdev->dev, "clk_sfc");
if (IS_ERR(sfc->clk)) {
dev_err(&pdev->dev, "Failed to get sfc interface clk\n");
return PTR_ERR(sfc->clk);
}
if (!has_acpi_companion(&pdev->dev))
sfc->hclk = devm_clk_get(&pdev->dev, "hclk_sfc");
if (IS_ERR(sfc->hclk)) {
dev_err(&pdev->dev, "Failed to get sfc ahb clk\n");
return PTR_ERR(sfc->hclk);
}
if (has_acpi_companion(&pdev->dev)) {
ret = device_property_read_u32(&pdev->dev, "clock-frequency", &val);
if (ret) {
dev_err(&pdev->dev, "Failed to find clock-frequency in ACPI\n");
return ret;
}
for (i = 0; i < SFC_MAX_CHIPSELECT_NUM; i++)
sfc->speed[i] = val;
}
sfc->use_dma = !of_property_read_bool(sfc->dev->of_node,
"rockchip,sfc-no-dma");
sfc->sclk_x2_bypass = of_property_read_bool(sfc->dev->of_node,
"rockchip,sclk-x2-bypass");
device_property_read_u32(&pdev->dev, "rockchip,max-dll", &sfc->max_dll_cells);
if (sfc->max_dll_cells > SFC_DLL_CTRL0_DLL_MAX_VER5)
sfc->max_dll_cells = SFC_DLL_CTRL0_DLL_MAX_VER5;
ret = rockchip_sfc_get_gpio_descs(master, sfc);
if (ret) {
dev_err(&pdev->dev, "Failed to get gpio_descs\n");
return ret;
}
ret = clk_prepare_enable(sfc->hclk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable ahb clk\n");
goto err_hclk;
}
ret = clk_prepare_enable(sfc->clk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable interface clk\n");
goto err_clk;
}
/* Find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_irq;
ret = devm_request_irq(dev, ret, rockchip_sfc_irq_handler,
0, pdev->name, sfc);
if (ret) {
dev_err(dev, "Failed to request irq\n");
goto err_irq;
}
sfc->data = (struct rockchip_sfc_data *)device_get_match_data(&pdev->dev);
if (sfc->data) {
sfc->grf = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "rockchip,grf");
if (IS_ERR_OR_NULL(sfc->grf)) {
ret = -EINVAL;
dev_err(dev, "Failed to find grf\n");
goto err_irq;
}
}
platform_set_drvdata(pdev, sfc);
if (IS_ENABLED(CONFIG_ROCKCHIP_THUNDER_BOOT)) {
u32 status;
if (readl_poll_timeout(sfc->regbase + SFC_SR, status,
!(status & SFC_SR_IS_BUSY), 10,
5000 * USEC_PER_MSEC))
dev_err(dev, "Wait for SFC idle timeout!\n");
}
ret = rockchip_sfc_init(sfc);
if (ret)
goto err_irq;
sfc->version = rockchip_sfc_get_version(sfc);
if (sfc->version == SFC_VER_9)
sfc->version = SFC_VER_6;
sfc->max_iosize = rockchip_sfc_get_max_iosize(sfc);
master->mode_bits = SPI_TX_QUAD | SPI_TX_DUAL | SPI_RX_QUAD | SPI_RX_DUAL;
if (sfc->version >= SFC_VER_8)
master->mode_bits |= SPI_TX_OCTAL | SPI_RX_OCTAL;
pm_runtime_set_autosuspend_delay(dev, ROCKCHIP_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_get_noresume(dev);
if (sfc->use_dma) {
sfc->buffer = (u8 *)__get_free_pages(GFP_KERNEL | GFP_DMA32, get_order(sfc->max_iosize));
if (!sfc->buffer) {
ret = -ENOMEM;
goto err_dma;
}
sfc->dma_buffer = virt_to_phys(sfc->buffer);
}
sfc->rst_gpio = devm_gpiod_get_optional(&pdev->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(sfc->rst_gpio)) {
dev_err(&pdev->dev, "invalid reset-gpios property in node\n");
ret = PTR_ERR(sfc->rst_gpio);
goto err_dma;
} else if (sfc->rst_gpio) {
dev_info(&pdev->dev, "reset OCTA Flash at first\n");
gpiod_set_value_cansleep(sfc->rst_gpio, 1);
mdelay(1);
gpiod_set_value_cansleep(sfc->rst_gpio, 0);
mdelay(1);
}
ret = spi_register_master(master);
if (ret)
goto err_register;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_register:
free_pages((unsigned long)sfc->buffer, get_order(sfc->max_iosize));
err_dma:
pm_runtime_disable(sfc->dev);
pm_runtime_set_suspended(sfc->dev);
pm_runtime_dont_use_autosuspend(sfc->dev);
err_irq:
clk_disable_unprepare(sfc->clk);
err_clk:
clk_disable_unprepare(sfc->hclk);
err_hclk:
return ret;
}
static int rockchip_sfc_remove(struct platform_device *pdev)
{
struct rockchip_sfc *sfc = platform_get_drvdata(pdev);
struct spi_master *master = sfc->master;
free_pages((unsigned long)sfc->buffer, get_order(sfc->max_iosize));
spi_unregister_master(master);
clk_disable_unprepare(sfc->clk);
clk_disable_unprepare(sfc->hclk);
return 0;
}
static int __maybe_unused rockchip_sfc_runtime_suspend(struct device *dev)
{
struct rockchip_sfc *sfc = dev_get_drvdata(dev);
clk_disable_unprepare(sfc->clk);
clk_disable_unprepare(sfc->hclk);
return 0;
}
static int __maybe_unused rockchip_sfc_runtime_resume(struct device *dev)
{
struct rockchip_sfc *sfc = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(sfc->hclk);
if (ret < 0)
return ret;
ret = clk_prepare_enable(sfc->clk);
if (ret < 0)
clk_disable_unprepare(sfc->hclk);
return ret;
}
static int __maybe_unused rockchip_sfc_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev);
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused rockchip_sfc_resume(struct device *dev)
{
struct rockchip_sfc *sfc = dev_get_drvdata(dev);
int ret, i;
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
pinctrl_pm_select_default_state(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
rockchip_sfc_init(sfc);
for (i = 0; i < SFC_MAX_CHIPSELECT_NUM; i++) {
if (sfc->dll_cells[i])
rockchip_sfc_set_delay_lines(sfc, (u16)sfc->dll_cells[i], i);
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops rockchip_sfc_pm_ops = {
SET_RUNTIME_PM_OPS(rockchip_sfc_runtime_suspend,
rockchip_sfc_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(rockchip_sfc_suspend, rockchip_sfc_resume)
};
static struct platform_driver rockchip_sfc_driver = {
.driver = {
.name = "rockchip-sfc",
.of_match_table = rockchip_sfc_dt_ids,
.pm = &rockchip_sfc_pm_ops,
},
.probe = rockchip_sfc_probe,
.remove = rockchip_sfc_remove,
};
module_platform_driver(rockchip_sfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Rockchip Serial Flash Controller Driver");
MODULE_AUTHOR("Shawn Lin <shawn.lin@rock-chips.com>");
MODULE_AUTHOR("Chris Morgan <macromorgan@hotmail.com>");
MODULE_AUTHOR("Jon Lin <Jon.lin@rock-chips.com>");