1509 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2023 Rockchip Electronics Co., Ltd.
*/
#include <linux/cache.h>
#include <linux/freezer.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <soc/rockchip/rk_minidump.h>
#include <asm/page.h>
#include <asm/memory.h>
#include <asm/sections.h>
#include <asm/stacktrace.h>
#include <linux/mm.h>
#include <linux/ratelimit.h>
#include <linux/notifier.h>
#include <linux/sizes.h>
#include <linux/sched/task.h>
#include <linux/suspend.h>
#include <linux/vmalloc.h>
#include <linux/android_debug_symbols.h>
#include <linux/elf.h>
#include <linux/seq_buf.h>
#include <linux/elfcore.h>
#include "minidump_private.h"
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP
#include <linux/bits.h>
#include <linux/sched/prio.h>
#include "../../../kernel/sched/sched.h"
#include <linux/kdebug.h>
#include <linux/thread_info.h>
#include <asm/ptrace.h>
#include <linux/uaccess.h>
#include <linux/percpu.h>
#include <linux/module.h>
#include <linux/cma.h>
#include <linux/dma-map-ops.h>
#include <asm-generic/irq_regs.h>
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
#include <trace/hooks/debug.h>
#endif
#include "minidump_memory.h"
#endif /* CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP */
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
#include <trace/events/sched.h>
#ifdef CONFIG_VMAP_STACK
#define STACK_NUM_PAGES (THREAD_SIZE / PAGE_SIZE)
#else
#define STACK_NUM_PAGES 1
#endif /* !CONFIG_VMAP_STACK */
struct md_stack_cpu_data {
int stack_mdidx[STACK_NUM_PAGES];
struct md_region stack_mdr[STACK_NUM_PAGES];
} ____cacheline_aligned_in_smp;
static int md_current_stack_init __read_mostly;
static DEFINE_PER_CPU_SHARED_ALIGNED(struct md_stack_cpu_data, md_stack_data);
struct md_suspend_context_data {
int task_mdno;
int stack_mdidx[STACK_NUM_PAGES];
struct md_region stack_mdr[STACK_NUM_PAGES];
struct md_region task_mdr;
bool init;
};
static struct md_suspend_context_data md_suspend_context;
#endif /* CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK */
static bool is_vmap_stack __read_mostly;
#ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE
#include <trace/hooks/ftrace_dump.h>
#include <linux/ring_buffer.h>
#define MD_FTRACE_BUF_SIZE SZ_2M
static char *md_ftrace_buf_addr;
static size_t md_ftrace_buf_current;
static bool minidump_ftrace_in_oops;
static bool minidump_ftrace_dump = true;
#endif
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP
/* Rnqueue information */
#define MD_RUNQUEUE_PAGES 8
static bool md_in_oops_handler;
static struct seq_buf *md_runq_seq_buf;
static int md_align_offset;
/* CPU context information */
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
#define MD_CPU_CNTXT_PAGES 32
static int die_cpu = -1;
static struct seq_buf *md_cntxt_seq_buf;
#endif
/* Meminfo */
static struct seq_buf *md_meminfo_seq_buf;
/* Slabinfo */
#ifdef CONFIG_SLUB_DEBUG
static struct seq_buf *md_slabinfo_seq_buf;
#endif
#ifdef CONFIG_PAGE_OWNER
size_t md_pageowner_dump_size = SZ_2M;
char *md_pageowner_dump_addr;
#endif
#ifdef CONFIG_SLUB_DEBUG
size_t md_slabowner_dump_size = SZ_2M;
char *md_slabowner_dump_addr;
#endif
size_t md_dma_buf_info_size = SZ_256K;
char *md_dma_buf_info_addr;
size_t md_dma_buf_procs_size = SZ_256K;
char *md_dma_buf_procs_addr;
/* Modules information */
#ifdef CONFIG_MODULES
#define MD_MODULE_PAGES 8
static struct seq_buf *md_mod_info_seq_buf;
static DEFINE_SPINLOCK(md_modules_lock);
#endif /* CONFIG_MODULES */
#endif
static struct md_region note_md_entry;
static DEFINE_PER_CPU_SHARED_ALIGNED(struct elf_prstatus *, cpu_epr);
static struct elf_prstatus *epr_hang_task[8];
static int register_stack_entry(struct md_region *ksp_entry, u64 sp, u64 size)
{
struct page *sp_page;
int entry;
ksp_entry->virt_addr = sp;
ksp_entry->size = size;
if (is_vmap_stack) {
sp_page = vmalloc_to_page((const void *) sp);
ksp_entry->phys_addr = page_to_phys(sp_page);
} else {
ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp);
}
entry = rk_minidump_add_region(ksp_entry);
if (entry < 0)
pr_err("Failed to add stack of entry %s in Minidump\n",
ksp_entry->name);
return entry;
}
#ifdef CONFIG_ANDROID_DEBUG_SYMBOLS
static void register_kernel_sections(void)
{
struct md_region ksec_entry;
char *data_name = "KDATABSS";
char *rodata_name = "KROAIDATA";
size_t static_size;
void __percpu *base;
unsigned int cpu;
void *_sdata, *__bss_stop;
void *start_ro, *end_ro;
_sdata = android_debug_symbol(ADS_SDATA);
__bss_stop = android_debug_symbol(ADS_BSS_END);
base = android_debug_symbol(ADS_PER_CPU_START);
static_size = (size_t)(android_debug_symbol(ADS_PER_CPU_END) - base);
strscpy(ksec_entry.name, data_name, sizeof(ksec_entry.name));
ksec_entry.virt_addr = (u64)_sdata;
ksec_entry.phys_addr = virt_to_phys(_sdata);
ksec_entry.size = roundup((__bss_stop - _sdata), 4);
if (rk_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add data section in Minidump\n");
start_ro = android_debug_symbol(ADS_START_RO_AFTER_INIT);
end_ro = android_debug_symbol(ADS_END_RO_AFTER_INIT);
strscpy(ksec_entry.name, rodata_name, sizeof(ksec_entry.name));
ksec_entry.virt_addr = (uintptr_t)start_ro;
ksec_entry.phys_addr = virt_to_phys(start_ro);
ksec_entry.size = roundup((end_ro - start_ro), 4);
if (rk_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add rodata section in Minidump\n");
/* Add percpu static sections */
for_each_possible_cpu(cpu) {
void *start = per_cpu_ptr(base, cpu);
memset(&ksec_entry, 0, sizeof(ksec_entry));
scnprintf(ksec_entry.name, sizeof(ksec_entry.name),
"KSPERCPU%d", cpu);
ksec_entry.virt_addr = (uintptr_t)start;
ksec_entry.phys_addr = per_cpu_ptr_to_phys(start);
ksec_entry.size = static_size;
if (rk_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add percpu sections in Minidump\n");
}
}
#endif
static inline bool in_stack_range(
u64 sp, u64 base_addr, unsigned int stack_size)
{
u64 min_addr = base_addr;
u64 max_addr = base_addr + stack_size;
return (min_addr <= sp && sp < max_addr);
}
static unsigned int calculate_copy_pages(u64 sp, struct vm_struct *stack_area)
{
u64 tsk_stack_base = (u64) stack_area->addr;
u64 offset;
unsigned int stack_pages, copy_pages;
if (in_stack_range(sp, tsk_stack_base, get_vm_area_size(stack_area))) {
offset = sp - tsk_stack_base;
stack_pages = get_vm_area_size(stack_area) / PAGE_SIZE;
copy_pages = stack_pages - (offset / PAGE_SIZE);
} else {
copy_pages = 0;
}
return copy_pages;
}
void dump_stack_minidump(u64 sp)
{
struct md_region ksp_entry, ktsk_entry;
u32 cpu = smp_processor_id();
struct vm_struct *stack_vm_area;
unsigned int i, copy_pages;
if (IS_ENABLED(CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK))
return;
if (is_idle_task(current))
return;
is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK);
if (sp < KIMAGE_VADDR || sp > -256UL)
sp = current_stack_pointer;
/*
* Since stacks are now allocated with vmalloc, the translation to
* physical address is not a simple linear transformation like it is
* for kernel logical addresses, since vmalloc creates a virtual
* mapping. Thus, virt_to_phys() should not be used in this context;
* instead the page table must be walked to acquire the physical
* address of one page of the stack.
*/
stack_vm_area = task_stack_vm_area(current);
if (is_vmap_stack) {
sp &= ~(PAGE_SIZE - 1);
copy_pages = calculate_copy_pages(sp, stack_vm_area);
for (i = 0; i < copy_pages; i++) {
scnprintf(ksp_entry.name, sizeof(ksp_entry.name),
"KSTACK%d_%d", cpu, i);
(void)register_stack_entry(&ksp_entry, sp, PAGE_SIZE);
sp += PAGE_SIZE;
}
} else {
sp &= ~(THREAD_SIZE - 1);
scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d",
cpu);
(void)register_stack_entry(&ksp_entry, sp, THREAD_SIZE);
}
scnprintf(ktsk_entry.name, sizeof(ktsk_entry.name), "KTASK%d", cpu);
ktsk_entry.virt_addr = (u64)current;
ktsk_entry.phys_addr = virt_to_phys((uintptr_t *)current);
ktsk_entry.size = sizeof(struct task_struct);
if (rk_minidump_add_region(&ktsk_entry) < 0)
pr_err("Failed to add current task %d in Minidump\n", cpu);
}
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
static void update_stack_entry(struct md_region *ksp_entry, u64 sp,
int mdno)
{
struct page *sp_page;
ksp_entry->virt_addr = sp;
if (likely(is_vmap_stack)) {
sp_page = vmalloc_to_page((const void *) sp);
ksp_entry->phys_addr = page_to_phys(sp_page);
} else {
ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp);
}
if (rk_minidump_update_region(mdno, ksp_entry) < 0) {
pr_err_ratelimited(
"Failed to update stack entry %s in minidump\n",
ksp_entry->name);
}
}
static void register_vmapped_stack(struct md_region *mdr, int *mdno,
u64 sp, char *name_str, bool update)
{
int i;
sp &= ~(PAGE_SIZE - 1);
for (i = 0; i < STACK_NUM_PAGES; i++) {
if (unlikely(!update)) {
scnprintf(mdr->name, sizeof(mdr->name), "%s_%d",
name_str, i);
*mdno = register_stack_entry(mdr, sp, PAGE_SIZE);
} else {
update_stack_entry(mdr, sp, *mdno);
}
sp += PAGE_SIZE;
mdr++;
mdno++;
}
}
static void register_normal_stack(struct md_region *mdr, int *mdno,
u64 sp, char *name_str, bool update)
{
sp &= ~(THREAD_SIZE - 1);
if (unlikely(!update)) {
scnprintf(mdr->name, sizeof(mdr->name), name_str);
*mdno = register_stack_entry(mdr, sp, THREAD_SIZE);
} else {
update_stack_entry(mdr, sp, *mdno);
}
}
static void update_md_stack(struct md_region *stack_mdr,
int *stack_mdno, u64 sp)
{
unsigned int i;
int *mdno;
if (likely(is_vmap_stack)) {
for (i = 0; i < STACK_NUM_PAGES; i++) {
mdno = stack_mdno + i;
if (unlikely(*mdno < 0))
return;
}
register_vmapped_stack(stack_mdr, stack_mdno, sp, NULL, true);
} else {
if (unlikely(*stack_mdno < 0))
return;
register_normal_stack(stack_mdr, stack_mdno, sp, NULL, true);
}
}
static void update_md_cpu_stack(u32 cpu, u64 sp)
{
struct md_stack_cpu_data *md_stack_cpu_d = &per_cpu(md_stack_data, cpu);
if (!md_current_stack_init)
return;
update_md_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp);
}
static void md_current_stack_notifer(void *ignore, bool preempt,
struct task_struct *prev, struct task_struct *next)
{
u32 cpu = task_cpu(next);
u64 sp = (u64)next->stack;
update_md_cpu_stack(cpu, sp);
}
static void md_current_stack_ipi_handler(void *data)
{
u32 cpu = smp_processor_id();
struct vm_struct *stack_vm_area;
u64 sp = current_stack_pointer;
if (is_idle_task(current))
return;
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
update_md_cpu_stack(cpu, sp);
}
static void update_md_current_task(struct md_region *mdr, int mdno)
{
mdr->virt_addr = (u64)current;
mdr->phys_addr = virt_to_phys((uintptr_t *)current);
if (rk_minidump_update_region(mdno, mdr) < 0)
pr_err("Failed to update %s current task in minidump\n",
mdr->name);
}
static void update_md_suspend_current_stack(void)
{
u64 sp = current_stack_pointer;
struct vm_struct *stack_vm_area;
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
update_md_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx, sp);
}
static void update_md_suspend_current_task(void)
{
if (unlikely(md_suspend_context.task_mdno < 0))
return;
update_md_current_task(&md_suspend_context.task_mdr,
md_suspend_context.task_mdno);
}
static void update_md_suspend_currents(void)
{
if (!md_suspend_context.init)
return;
update_md_suspend_current_stack();
update_md_suspend_current_task();
}
static void register_current_stack(void)
{
int cpu;
u64 sp = current_stack_pointer;
struct md_stack_cpu_data *md_stack_cpu_d;
struct vm_struct *stack_vm_area;
char name_str[MD_MAX_NAME_LENGTH];
/*
* Since stacks are now allocated with vmalloc, the translation to
* physical address is not a simple linear transformation like it is
* for kernel logical addresses, since vmalloc creates a virtual
* mapping. Thus, virt_to_phys() should not be used in this context;
* instead the page table must be walked to acquire the physical
* address of all pages of the stack.
*/
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
for_each_possible_cpu(cpu) {
/*
* Let's register dummies for now,
* once system up and running, let the cpu update its currents.
*/
md_stack_cpu_d = &per_cpu(md_stack_data, cpu);
scnprintf(name_str, sizeof(name_str), "KSTACK%d", cpu);
if (is_vmap_stack)
register_vmapped_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp,
name_str, false);
else
register_normal_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp,
name_str, false);
}
register_trace_sched_switch(md_current_stack_notifer, NULL);
md_current_stack_init = 1;
smp_call_function(md_current_stack_ipi_handler, NULL, 1);
}
static void register_suspend_stack(void)
{
char name_str[MD_MAX_NAME_LENGTH];
u64 sp = current_stack_pointer;
struct vm_struct *stack_vm_area = task_stack_vm_area(current);
scnprintf(name_str, sizeof(name_str), "KSUSPSTK");
if (is_vmap_stack) {
sp = (u64)stack_vm_area->addr;
register_vmapped_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx,
sp, name_str, false);
} else {
register_normal_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx,
sp, name_str, false);
}
}
static void register_current_task(struct md_region *mdr, int *mdno,
char *name_str)
{
scnprintf(mdr->name, sizeof(mdr->name), name_str);
mdr->virt_addr = (u64)current;
mdr->phys_addr = virt_to_phys((uintptr_t *)current);
mdr->size = sizeof(struct task_struct);
*mdno = rk_minidump_add_region(mdr);
if (*mdno < 0)
pr_err("Failed to add current task %s in Minidump\n",
mdr->name);
}
static void register_suspend_current_task(void)
{
char name_str[MD_MAX_NAME_LENGTH];
scnprintf(name_str, sizeof(name_str), "KSUSPTASK");
register_current_task(&md_suspend_context.task_mdr,
&md_suspend_context.task_mdno, name_str);
}
#if !defined(MODULE) && defined(CONFIG_ARM64)
static void register_irq_stacks(void)
{
struct md_region md_entry;
int cpu, ret;
struct page *sp_page;
for_each_possible_cpu(cpu) {
scnprintf(md_entry.name, sizeof(md_entry.name), "KIRQSTACK%d", cpu);
md_entry.virt_addr = (u64)per_cpu(irq_stack_ptr, cpu);
if (is_vmap_stack) {
sp_page = vmalloc_to_page((const void *) md_entry.virt_addr);
md_entry.phys_addr = page_to_phys(sp_page);
} else {
md_entry.phys_addr = virt_to_phys((const volatile void *)md_entry.virt_addr);
}
md_entry.size = IRQ_STACK_SIZE;
ret = rk_minidump_add_region(&md_entry);
if (ret < 0)
pr_err("Failed to add %s entry in Minidump\n", md_entry.name);
}
}
#else
static inline void register_irq_stacks(void)
{
}
#endif
static int minidump_pm_notifier(struct notifier_block *nb,
unsigned long event, void *unused)
{
switch (event) {
case PM_SUSPEND_PREPARE:
update_md_suspend_currents();
break;
}
return NOTIFY_DONE;
}
static struct notifier_block minidump_pm_nb = {
.notifier_call = minidump_pm_notifier,
};
static void register_suspend_context(void)
{
register_suspend_stack();
register_suspend_current_task();
register_pm_notifier(&minidump_pm_nb);
md_suspend_context.init = true;
}
#endif /* CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK */
static Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type,
size_t data_len)
{
struct elf_note *note = (struct elf_note *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = data_len;
note->n_type = type;
buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word));
memcpy(buf, name, note->n_namesz);
buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word));
return buf;
}
static void register_note_section(void)
{
int ret = 0, i = 0, j = 0;
size_t data_len;
Elf_Word *buf;
void *buffer_start;
struct elf_prstatus *epr;
struct user_pt_regs *regs;
struct md_region *mdr = &note_md_entry;
buffer_start = kzalloc(PAGE_SIZE * 2, GFP_KERNEL);
if (!buffer_start)
return;
memcpy(mdr->name, "note", 5);
mdr->virt_addr = (uintptr_t)buffer_start;
mdr->phys_addr = virt_to_phys(buffer_start);
buf = (Elf_Word *)mdr->virt_addr;
data_len = sizeof(struct elf_prstatus);
for_each_possible_cpu(i) {
buf = append_elf_note(buf, "CORE", NT_PRSTATUS, data_len);
epr = (struct elf_prstatus *)buf;
epr->pr_pid = i;
per_cpu(cpu_epr, i) = epr;
regs = (struct user_pt_regs *)&epr->pr_reg;
regs->pc = (u64)register_note_section; /* just for fun */
buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
}
j = i;
for (; i < 16; i++) {
buf = append_elf_note(buf, "TASK", NT_PRSTATUS, data_len);
epr = (struct elf_prstatus *)buf;
epr->pr_pid = i;
epr_hang_task[i - j] = epr;
regs = (struct user_pt_regs *)&epr->pr_reg;
regs->pc = (u64)register_note_section; /* just for fun */
buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
}
mdr->size = (u64)buf - mdr->virt_addr;
rk_md_flush_dcache_area((void *)mdr->virt_addr, mdr->size);
ret = rk_minidump_add_region(mdr);
if (ret < 0)
pr_err("Failed to add %s entry in Minidump\n", mdr->name);
}
static int md_register_minidump_entry(char *name, u64 virt_addr,
u64 phys_addr, u64 size)
{
struct md_region md_entry;
int ret;
strscpy(md_entry.name, name, sizeof(md_entry.name));
md_entry.virt_addr = virt_addr;
md_entry.phys_addr = phys_addr;
md_entry.size = size;
ret = rk_minidump_add_region(&md_entry);
if (ret < 0)
pr_err("Failed to add %s entry in Minidump\n", name);
return ret;
}
static struct page *md_vmalloc_to_page(const void *vmalloc_addr)
{
unsigned long addr = (unsigned long) vmalloc_addr;
struct page *page = NULL;
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
if (pgd_none(*pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none(*pud) || pud_bad(*pud))
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd) || pmd_bad(*pmd))
return NULL;
ptep = pte_offset_map(pmd, addr);
pte = *ptep;
if (pte_present(pte))
page = pte_page(pte);
pte_unmap(ptep);
return page;
}
static bool md_is_kernel_address(u64 addr)
{
u32 data;
u64 phys_addr = 0;
struct page *page;
if (!is_ttbr1_addr(addr))
return false;
if (addr >= (u64)_text && addr < (u64)_end)
return false;
if (__is_lm_address(addr)) {
phys_addr = virt_to_phys((void *)addr);
} else if (is_vmalloc_or_module_addr((const void *)addr)) {
page = md_vmalloc_to_page((const void *) addr);
if (page)
phys_addr = page_to_phys(page);
else
return false;
} else {
return false;
}
if (!md_is_ddr_address(phys_addr))
return false;
if (aarch64_insn_read((void *)addr, &data))
return false;
else
return true;
}
static int md_save_page(u64 addr, bool flush)
{
u64 phys_addr, virt_addr;
struct page *page;
char buf[32];
int ret;
if (md_is_kernel_address(addr)) {
if (!md_is_in_the_region(addr)) {
virt_addr = addr & PAGE_MASK;
sprintf(buf, "%x", (u32)(virt_addr >> 12));
if (__is_lm_address(virt_addr)) {
phys_addr = virt_to_phys((void *)virt_addr);
} else if (is_vmalloc_or_module_addr((const void *)virt_addr)) {
page = md_vmalloc_to_page((const void *) virt_addr);
phys_addr = page_to_phys(page);
} else {
return -1;
}
ret = md_register_minidump_entry(buf, (uintptr_t)virt_addr,
phys_addr, PAGE_SIZE);
if (ret > 0 && flush)
rk_md_flush_dcache_area((void *)virt_addr, PAGE_SIZE);
} else {
if (flush)
rk_md_flush_dcache_area((void *)(addr & PAGE_MASK), PAGE_SIZE);
}
return 0;
}
return -1;
}
static void md_save_pages(u64 addr, bool flush)
{
u64 *p, *end;
if (!md_save_page(addr, flush)) {
addr &= ~0x7;
p = (u64 *)addr;
end = (u64 *)((addr & ~(PAGE_SIZE - 1)) + PAGE_SIZE);
while (p < end) {
if (!md_is_kernel_address((u64)p))
break;
md_save_page(*p++, flush);
}
}
}
void rk_minidump_update_cpu_regs(struct pt_regs *regs)
{
int cpu = raw_smp_processor_id();
struct user_pt_regs *old_regs;
int i = 0;
struct elf_prstatus *epr = per_cpu(cpu_epr, cpu);
if (!epr)
return;
if (system_state == SYSTEM_RESTART)
return;
old_regs = (struct user_pt_regs *)&epr->pr_reg;
/* if epr has been saved, don't save it again in panic notifier*/
if (old_regs->sp != 0)
return;
memcpy((void *)&epr->pr_reg, (void *)regs, sizeof(elf_gregset_t));
rk_md_flush_dcache_area((void *)&epr->pr_reg, sizeof(elf_gregset_t));
rk_md_flush_dcache_area((void *)(regs->sp & ~(PAGE_SIZE - 1)), PAGE_SIZE);
/* dump sp */
md_save_pages(regs->sp, true);
/*dump x0-x28, x29 is lr, x30 is fp*/
for (i = 0; i < 29; i++)
md_save_pages(regs->regs[i], true);
}
EXPORT_SYMBOL(rk_minidump_update_cpu_regs);
#ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE
static void minidump_add_trace_event(char *buf, size_t size)
{
char *addr;
if (!READ_ONCE(md_ftrace_buf_addr) ||
(size > (size_t)MD_FTRACE_BUF_SIZE))
return;
if ((md_ftrace_buf_current + size) > (size_t)MD_FTRACE_BUF_SIZE)
md_ftrace_buf_current = 0;
addr = md_ftrace_buf_addr + md_ftrace_buf_current;
memcpy(addr, buf, size);
md_ftrace_buf_current += size;
}
static void md_trace_oops_enter(void *unused, bool *enter_check)
{
if (!minidump_ftrace_in_oops) {
minidump_ftrace_in_oops = true;
*enter_check = false;
} else {
*enter_check = true;
}
}
static void md_trace_oops_exit(void *unused, bool *exit_check)
{
minidump_ftrace_in_oops = false;
}
static void md_update_trace_fmt(void *unused, bool *format_check)
{
*format_check = false;
}
static void md_buf_size_check(void *unused, unsigned long buffer_size,
bool *size_check)
{
if (!minidump_ftrace_dump) {
*size_check = true;
return;
}
if (buffer_size > (SZ_256K + PAGE_SIZE)) {
pr_err("Skip md ftrace buffer dump for: %#lx\n", buffer_size);
minidump_ftrace_dump = false;
*size_check = true;
}
}
static void md_dump_trace_buf(void *unused, struct trace_seq *trace_buf,
bool *printk_check)
{
if (minidump_ftrace_in_oops && minidump_ftrace_dump) {
minidump_add_trace_event(trace_buf->buffer,
trace_buf->seq.len);
*printk_check = false;
}
}
static void md_register_trace_buf(void)
{
struct md_region md_entry;
void *buffer_start;
buffer_start = kzalloc(MD_FTRACE_BUF_SIZE, GFP_KERNEL);
if (!buffer_start)
return;
strscpy(md_entry.name, "KFTRACE", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)buffer_start;
md_entry.phys_addr = virt_to_phys(buffer_start);
md_entry.size = MD_FTRACE_BUF_SIZE;
if (rk_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add ftrace buffer entry in Minidump\n");
register_trace_android_vh_ftrace_oops_enter(md_trace_oops_enter,
NULL);
register_trace_android_vh_ftrace_oops_exit(md_trace_oops_exit,
NULL);
register_trace_android_vh_ftrace_size_check(md_buf_size_check,
NULL);
register_trace_android_vh_ftrace_format_check(md_update_trace_fmt,
NULL);
register_trace_android_vh_ftrace_dump_buffer(md_dump_trace_buf,
NULL);
/* Complete registration before adding entries */
smp_mb();
WRITE_ONCE(md_ftrace_buf_addr, buffer_start);
}
#endif
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP
static void md_dump_align(void)
{
int tab_offset = md_align_offset;
while (tab_offset--)
seq_buf_printf(md_runq_seq_buf, " | ");
seq_buf_printf(md_runq_seq_buf, " |--");
}
static void md_dump_task_info(struct task_struct *task, char *status,
struct task_struct *curr)
{
struct sched_entity *se;
md_dump_align();
if (!task) {
seq_buf_printf(md_runq_seq_buf, "%s : None(0)\n", status);
return;
}
se = &task->se;
if (task == curr) {
seq_buf_printf(md_runq_seq_buf,
"[status: curr] pid: %d comm: %s preempt: %#llx\n",
task_pid_nr(task), task->comm,
(u64)task->thread_info.preempt_count);
return;
}
seq_buf_printf(md_runq_seq_buf,
"[status: %s] pid: %d tsk: %#lx comm: %s stack: %#lx",
status, task_pid_nr(task),
(unsigned long)task,
task->comm,
(unsigned long)task->stack);
seq_buf_printf(md_runq_seq_buf,
" prio: %d aff: %*pb",
task->prio, cpumask_pr_args(&task->cpus_mask));
#ifdef CONFIG_SCHED_WALT
seq_buf_printf(md_runq_seq_buf, " enq: %lu wake: %lu sleep: %lu",
task->wts.last_enqueued_ts, task->wts.last_wake_ts,
task->wts.last_sleep_ts);
#endif
seq_buf_printf(md_runq_seq_buf,
" vrun: %lu arr: %lu sum_ex: %lu\n",
(unsigned long)se->vruntime,
(unsigned long)se->exec_start,
(unsigned long)se->sum_exec_runtime);
}
static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr);
static void md_dump_cgroup_state(char *status, struct sched_entity *se_p,
struct task_struct *curr)
{
struct task_struct *task;
struct cfs_rq *my_q = NULL;
unsigned int nr_running;
if (!se_p) {
md_dump_task_info(NULL, status, NULL);
return;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
my_q = se_p->my_q;
#endif
if (!my_q) {
task = container_of(se_p, struct task_struct, se);
md_dump_task_info(task, status, curr);
return;
}
nr_running = my_q->nr_running;
md_dump_align();
seq_buf_printf(md_runq_seq_buf, "%s: %d process is grouping\n",
status, nr_running);
md_align_offset++;
md_dump_cfs_rq(my_q, curr);
md_align_offset--;
}
static void md_dump_cfs_node_func(struct rb_node *node,
struct task_struct *curr)
{
struct sched_entity *se_p = container_of(node, struct sched_entity,
run_node);
md_dump_cgroup_state("pend", se_p, curr);
}
static void md_rb_walk_cfs(struct rb_root_cached *rb_root_cached_p,
struct task_struct *curr)
{
int max_walk = 200; /* Bail out, in case of loop */
struct rb_node *leftmost = rb_root_cached_p->rb_leftmost;
struct rb_root *root = &rb_root_cached_p->rb_root;
struct rb_node *rb_node = rb_first(root);
if (!leftmost)
return;
while (rb_node && max_walk--) {
md_dump_cfs_node_func(rb_node, curr);
rb_node = rb_next(rb_node);
}
}
static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr)
{
struct rb_root_cached *rb_root_cached_p = &cfs->tasks_timeline;
md_dump_cgroup_state("curr", cfs->curr, curr);
md_dump_cgroup_state("next", cfs->next, curr);
md_dump_cgroup_state("last", cfs->last, curr);
md_dump_cgroup_state("skip", cfs->skip, curr);
md_rb_walk_cfs(rb_root_cached_p, curr);
}
static void md_dump_rt_rq(struct rt_rq *rt_rq, struct task_struct *curr)
{
struct rt_prio_array *array = &rt_rq->active;
struct sched_rt_entity *rt_se;
int idx;
/* Lifted most of the below code from dump_throttled_rt_tasks() */
if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
return;
idx = sched_find_first_bit(array->bitmap);
while (idx < MAX_RT_PRIO) {
list_for_each_entry(rt_se, array->queue + idx, run_list) {
struct task_struct *p;
#ifdef CONFIG_RT_GROUP_SCHED
if (rt_se->my_q)
continue;
#endif
p = container_of(rt_se, struct task_struct, rt);
md_dump_task_info(p, "pend", curr);
}
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
}
}
static void md_dump_runqueues(void)
{
int cpu;
struct rq *rq;
struct rt_rq *rt;
struct cfs_rq *cfs;
if (!md_runq_seq_buf)
return;
for_each_possible_cpu(cpu) {
rq = cpu_rq(cpu);
rt = &rq->rt;
cfs = &rq->cfs;
seq_buf_printf(md_runq_seq_buf,
"CPU%d %d process is running\n",
cpu, rq->nr_running);
md_dump_task_info(cpu_curr(cpu), "curr", NULL);
seq_buf_printf(md_runq_seq_buf,
"CFS %d process is pending\n",
cfs->nr_running);
md_dump_cfs_rq(cfs, cpu_curr(cpu));
seq_buf_printf(md_runq_seq_buf,
"RT %d process is pending\n",
rt->rt_nr_running);
md_dump_rt_rq(rt, cpu_curr(cpu));
seq_buf_printf(md_runq_seq_buf, "\n");
}
rk_md_flush_dcache_area((void *)md_runq_seq_buf->buffer, md_runq_seq_buf->len);
}
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
/*
* dump a block of kernel memory from around the given address.
* Bulk of the code is lifted from arch/arm64/kernel/process.c.
*/
static void md_dump_data(unsigned long addr, int nbytes, const char *name)
{
int i, j;
int nlines;
u32 *p;
/*
* don't attempt to dump non-kernel addresses or
* values that are probably just small negative numbers
*/
if (addr < PAGE_OFFSET || addr > -256UL)
return;
seq_buf_printf(md_cntxt_seq_buf, "\n%s: %#lx:\n", name, addr);
/*
* round address down to a 32 bit boundary
* and always dump a multiple of 32 bytes
*/
p = (u32 *)(addr & ~(sizeof(u32) - 1));
nbytes += (addr & (sizeof(u32) - 1));
nlines = (nbytes + 31) / 32;
for (i = 0; i < nlines; i++) {
/*
* just display low 16 bits of address to keep
* each line of the dump < 80 characters
*/
seq_buf_printf(md_cntxt_seq_buf, "%04lx ",
(unsigned long)p & 0xffff);
for (j = 0; j < 8; j++) {
u32 data = 0;
if (get_kernel_nofault(data, p))
seq_buf_printf(md_cntxt_seq_buf, " ********");
else
seq_buf_printf(md_cntxt_seq_buf, " %08x", data);
++p;
}
seq_buf_printf(md_cntxt_seq_buf, "\n");
}
}
static void md_reg_context_data(struct pt_regs *regs)
{
mm_segment_t fs;
unsigned int i;
int nbytes = 128;
if (user_mode(regs) || !regs->pc)
return;
rk_minidump_update_cpu_regs(regs);
fs = get_fs();
set_fs(KERNEL_DS);
md_dump_data(regs->pc - nbytes, nbytes * 2, "PC");
md_dump_data(regs->regs[30] - nbytes, nbytes * 2, "LR");
md_dump_data(regs->sp - nbytes, nbytes * 2, "SP");
for (i = 0; i < 30; i++) {
char name[4];
snprintf(name, sizeof(name), "X%u", i);
md_dump_data(regs->regs[i] - nbytes, nbytes * 2, name);
}
set_fs(fs);
rk_md_flush_dcache_area((void *)md_cntxt_seq_buf->buffer, md_cntxt_seq_buf->len);
}
static inline void md_dump_panic_regs(void)
{
struct pt_regs regs;
u64 tmp1, tmp2;
/* Lifted from crash_setup_regs() */
__asm__ __volatile__ (
"stp x0, x1, [%2, #16 * 0]\n"
"stp x2, x3, [%2, #16 * 1]\n"
"stp x4, x5, [%2, #16 * 2]\n"
"stp x6, x7, [%2, #16 * 3]\n"
"stp x8, x9, [%2, #16 * 4]\n"
"stp x10, x11, [%2, #16 * 5]\n"
"stp x12, x13, [%2, #16 * 6]\n"
"stp x14, x15, [%2, #16 * 7]\n"
"stp x16, x17, [%2, #16 * 8]\n"
"stp x18, x19, [%2, #16 * 9]\n"
"stp x20, x21, [%2, #16 * 10]\n"
"stp x22, x23, [%2, #16 * 11]\n"
"stp x24, x25, [%2, #16 * 12]\n"
"stp x26, x27, [%2, #16 * 13]\n"
"stp x28, x29, [%2, #16 * 14]\n"
"mov %0, sp\n"
"stp x30, %0, [%2, #16 * 15]\n"
"/* faked current PSTATE */\n"
"mrs %0, CurrentEL\n"
"mrs %1, SPSEL\n"
"orr %0, %0, %1\n"
"mrs %1, DAIF\n"
"orr %0, %0, %1\n"
"mrs %1, NZCV\n"
"orr %0, %0, %1\n"
/* pc */
"adr %1, 1f\n"
"1:\n"
"stp %1, %0, [%2, #16 * 16]\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (&regs)
: "memory"
);
seq_buf_printf(md_cntxt_seq_buf, "PANIC CPU : %d\n",
raw_smp_processor_id());
if (in_interrupt())
md_reg_context_data(get_irq_regs());
else
md_reg_context_data(&regs);
}
static int md_die_context_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
if (md_in_oops_handler)
return NOTIFY_DONE;
md_in_oops_handler = true;
if (!md_cntxt_seq_buf) {
md_in_oops_handler = false;
return NOTIFY_DONE;
}
die_cpu = raw_smp_processor_id();
seq_buf_printf(md_cntxt_seq_buf, "\nDIE CPU : %d\n", die_cpu);
md_reg_context_data(args->regs);
md_in_oops_handler = false;
return NOTIFY_DONE;
}
static struct notifier_block md_die_context_nb = {
.notifier_call = md_die_context_notify,
.priority = INT_MAX - 2, /* < rk watchdog die notifier */
};
#endif
static int rk_minidump_collect_hang_task(void)
{
struct task_struct *g, *p;
struct elf_prstatus *epr;
struct user_pt_regs *regs;
int idx = 0, i = 0;
for_each_process_thread(g, p) {
touch_nmi_watchdog();
touch_all_softlockup_watchdogs();
if (p->state == TASK_UNINTERRUPTIBLE && p->state != TASK_IDLE) {
epr = epr_hang_task[idx++];
regs = (struct user_pt_regs *)&epr->pr_reg;
regs->regs[19] = (unsigned long)(p->thread.cpu_context.x19);
regs->regs[20] = (unsigned long)(p->thread.cpu_context.x20);
regs->regs[21] = (unsigned long)(p->thread.cpu_context.x21);
regs->regs[22] = (unsigned long)(p->thread.cpu_context.x22);
regs->regs[23] = (unsigned long)(p->thread.cpu_context.x23);
regs->regs[24] = (unsigned long)(p->thread.cpu_context.x24);
regs->regs[25] = (unsigned long)(p->thread.cpu_context.x25);
regs->regs[26] = (unsigned long)(p->thread.cpu_context.x26);
regs->regs[27] = (unsigned long)(p->thread.cpu_context.x27);
regs->regs[28] = (unsigned long)(p->thread.cpu_context.x28);
regs->regs[29] = (unsigned long)(p->thread.cpu_context.fp);
regs->sp = (unsigned long)(p->thread.cpu_context.sp);
regs->pc = (unsigned long)p->thread.cpu_context.pc;
md_save_pages(regs->sp, true);
for (i = 19; i < 29; i++)
md_save_pages(regs->regs[i], true);
rk_md_flush_dcache_area((void *)epr, sizeof(struct elf_prstatus));
}
if (idx >= 8)
return 0;
}
return 0;
}
static int md_panic_handler(struct notifier_block *this,
unsigned long event, void *ptr)
{
if (md_in_oops_handler)
return NOTIFY_DONE;
md_in_oops_handler = true;
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
if (!md_cntxt_seq_buf)
goto dump_rq;
if (raw_smp_processor_id() != die_cpu)
md_dump_panic_regs();
dump_rq:
#endif
md_dump_runqueues();
if (md_meminfo_seq_buf)
md_dump_meminfo(md_meminfo_seq_buf);
#ifdef CONFIG_SLUB_DEBUG
if (md_slabinfo_seq_buf)
md_dump_slabinfo(md_slabinfo_seq_buf);
#endif
#ifdef CONFIG_PAGE_OWNER
if (md_pageowner_dump_addr)
md_dump_pageowner(md_pageowner_dump_addr, md_pageowner_dump_size);
#endif
#ifdef CONFIG_SLUB_DEBUG
if (md_slabowner_dump_addr)
md_dump_slabowner(md_slabowner_dump_addr, md_slabowner_dump_size);
#endif
if (md_dma_buf_info_addr)
md_dma_buf_info(md_dma_buf_info_addr, md_dma_buf_info_size);
if (md_dma_buf_procs_addr)
md_dma_buf_procs(md_dma_buf_procs_addr, md_dma_buf_procs_size);
rk_minidump_collect_hang_task();
rk_minidump_flush_elfheader();
md_in_oops_handler = false;
return NOTIFY_DONE;
}
static struct notifier_block md_panic_blk = {
.notifier_call = md_panic_handler,
.priority = INT_MAX - 2,
};
static int md_register_panic_entries(int num_pages, char *name,
struct seq_buf **global_buf)
{
char *buf;
struct seq_buf *seq_buf_p;
int ret;
buf = kzalloc(num_pages * PAGE_SIZE, GFP_KERNEL);
if (!buf)
return -EINVAL;
seq_buf_p = kzalloc(sizeof(*seq_buf_p), GFP_KERNEL);
if (!seq_buf_p) {
ret = -EINVAL;
goto err_seq_buf;
}
ret = md_register_minidump_entry(name, (uintptr_t)buf,
virt_to_phys(buf),
num_pages * PAGE_SIZE);
if (ret < 0)
goto err_entry_reg;
seq_buf_init(seq_buf_p, buf, num_pages * PAGE_SIZE);
/* Complete registration before populating data */
smp_mb();
WRITE_ONCE(*global_buf, seq_buf_p);
return 0;
err_entry_reg:
kfree(seq_buf_p);
err_seq_buf:
kfree(buf);
return ret;
}
static void md_register_panic_data(void)
{
struct dentry *minidump_dir = NULL;
md_register_panic_entries(MD_RUNQUEUE_PAGES, "KRUNQUEUE",
&md_runq_seq_buf);
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
md_register_panic_entries(MD_CPU_CNTXT_PAGES, "KCNTXT",
&md_cntxt_seq_buf);
#endif
md_register_panic_entries(MD_MEMINFO_PAGES, "MEMINFO",
&md_meminfo_seq_buf);
#ifdef CONFIG_SLUB_DEBUG
md_register_panic_entries(MD_SLABINFO_PAGES, "SLABINFO",
&md_slabinfo_seq_buf);
#endif
if (!minidump_dir)
minidump_dir = debugfs_create_dir("minidump", NULL);
#ifdef CONFIG_PAGE_OWNER
if (is_page_owner_enabled()) {
md_register_memory_dump(md_pageowner_dump_size, "PAGEOWNER");
md_debugfs_pageowner(minidump_dir);
}
#endif
#ifdef CONFIG_SLUB_DEBUG
if (is_slub_debug_enabled()) {
md_register_memory_dump(md_slabowner_dump_size, "SLABOWNER");
md_debugfs_slabowner(minidump_dir);
}
#endif
md_register_memory_dump(md_dma_buf_info_size, "DMABUF_INFO");
md_debugfs_dmabufinfo(minidump_dir);
md_register_memory_dump(md_dma_buf_procs_size, "DMABUF_PROCS");
md_debugfs_dmabufprocs(minidump_dir);
}
static int print_module(const char *name, void *mod_addr, void *data)
{
if (!md_mod_info_seq_buf) {
pr_err("md_mod_info_seq_buf is NULL\n");
return -EINVAL;
}
seq_buf_printf(md_mod_info_seq_buf, "name: %s, base: %#lx\n", name, (uintptr_t)mod_addr);
return 0;
}
static int md_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
spin_lock(&md_modules_lock);
switch (mod->state) {
case MODULE_STATE_LIVE:
print_module(mod->name, mod->core_layout.base, data);
break;
case MODULE_STATE_GOING:
print_module(mod->name, mod->core_layout.base, data);
break;
default:
break;
}
spin_unlock(&md_modules_lock);
return 0;
}
static struct notifier_block md_module_nb = {
.notifier_call = md_module_notify,
};
static void md_register_module_data(void)
{
int ret;
ret = md_register_panic_entries(MD_MODULE_PAGES, "KMODULES",
&md_mod_info_seq_buf);
if (ret) {
pr_err("Failed to register minidump module buffer\n");
return;
}
seq_buf_printf(md_mod_info_seq_buf, "=== MODULE INFO ===\n");
ret = register_module_notifier(&md_module_nb);
if (ret) {
pr_err("Failed to register minidump module notifier\n");
return;
}
android_debug_for_each_module(print_module, NULL);
}
#endif /* CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP */
#ifdef CONFIG_HARDLOCKUP_DETECTOR
int rk_minidump_hardlock_notify(struct notifier_block *nb, unsigned long event,
void *p)
{
struct elf_prstatus *epr;
struct user_pt_regs *regs;
unsigned long hardlock_cpu = event;
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
int i = 0;
struct md_stack_cpu_data *md_stack_cpu_d;
struct md_region *mdr;
#endif
if (hardlock_cpu >= num_possible_cpus())
return NOTIFY_DONE;
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
md_stack_cpu_d = &per_cpu(md_stack_data, hardlock_cpu);
for (i = 0; i < STACK_NUM_PAGES; i++) {
mdr = &md_stack_cpu_d->stack_mdr[i];
if (md_is_kernel_address(mdr->virt_addr))
rk_md_flush_dcache_area((void *)mdr->virt_addr, mdr->size);
}
#endif
epr = per_cpu(cpu_epr, hardlock_cpu);
if (!epr)
return NOTIFY_DONE;
regs = (struct user_pt_regs *)&epr->pr_reg;
regs->pc = (u64)p;
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
regs->sp = mdr->virt_addr + mdr->size;
#endif
rk_md_flush_dcache_area((void *)epr, sizeof(struct elf_prstatus));
return NOTIFY_OK;
}
#endif
int rk_minidump_log_init(void)
{
is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK);
register_note_section();
#ifdef CONFIG_ANDROID_DEBUG_SYMBOLS
register_kernel_sections();
#endif
#ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK
register_current_stack();
register_suspend_context();
register_irq_stacks();
#endif
#ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE
md_register_trace_buf();
#endif
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP
md_register_module_data();
md_register_panic_data();
atomic_notifier_chain_register(&panic_notifier_list, &md_panic_blk);
#ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT
register_die_notifier(&md_die_context_nb);
#endif
#endif
return 0;
}