956 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2022 Rockchip Electronics Co., Ltd
*/
#include <linux/bcd.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mfd/syscon.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
/* RTC_CTRL_REG bitfields */
#define RTC_REG(x) ((x))
#define RTC_SET_SECONDS RTC_REG(0x0)
#define RTC_SET_MINUTES RTC_REG(0x4)
#define RTC_SET_HOURS RTC_REG(0x8)
#define RTC_SET_DAYS RTC_REG(0xc)
#define RTC_SET_MONTHS RTC_REG(0x10)
#define RTC_SET_YEARL RTC_REG(0x14)
#define RTC_SET_YEARH RTC_REG(0x18)
#define RTC_SET_WEEKS RTC_REG(0x1c)
#define RTC_ALARM_SECONDS RTC_REG(0x20)
#define RTC_ALARM_MINUTES RTC_REG(0x24)
#define RTC_ALARM_HOURS RTC_REG(0x28)
#define RTC_ALARM_DAYS RTC_REG(0x2c)
#define RTC_ALARM_MONTHS RTC_REG(0x30)
#define RTC_ALARM_YEARL RTC_REG(0x34)
#define RTC_ALARM_YEARH RTC_REG(0x38)
#define RTC_CTRL RTC_REG(0x3C)
#define RTC_STATUS0 RTC_REG(0x40)
#define RTC_STATUS1 RTC_REG(0x44)
#define RTC_INT0_EN RTC_REG(0x48)
#define RTC_INT1_EN RTC_REG(0x4c)
#define RTC_MSEC_CTRL RTC_REG(0x50)
#define RTC_MSEC_CNT RTC_REG(0x54)
#define RTC_COMP_H RTC_REG(0x58)
#define RTC_COMP_D RTC_REG(0x5c)
#define RTC_COMP_M RTC_REG(0x60)
#define RV1106_RTC_ANALOG_CTRL RTC_REG(0x64)
#define RV1106_RTC_ANALOG_TEST RTC_REG(0x68)
#define RV1106_RTC_LDO_CTRL RTC_REG(0x6c)
#define RV1106_RTC_XO_TRIM0 RTC_REG(0x70)
#define RV1106_RTC_XO_TRIM1 RTC_REG(0x74)
#define RV1106_RTC_VPTAT_TRIM RTC_REG(0x78)
#define RV1106_RTC_ANALOG_EN RTC_REG(0x7c)
#define RV1106_RTC_CLK32K_TEST RTC_REG(0x80)
#define RV1106_RTC_TEST_ST RTC_REG(0x84)
#define RV1106_RTC_TEST_LEN RTC_REG(0x88)
#define RV1106_RTC_CNT_0 RTC_REG(0x8c)
#define RV1106_RTC_CNT_1 RTC_REG(0x90)
#define RV1106_RTC_CNT_2 RTC_REG(0x94)
#define RV1106_RTC_CNT_3 RTC_REG(0x98)
#define RV1103B_RTC_XO_TRIM0 RTC_REG(0x64)
#define RV1103B_RTC_XO_TRIM1 RTC_REG(0x68)
#define RV1103B_RTC_TEST_SEL RTC_REG(0x6c)
#define RV1103B_RTC_LDO_CTRL RTC_REG(0x70)
#define RV1103B_RTC_ANALOG_EN RTC_REG(0x74)
#define RV1103B_RTC_TEST_ST RTC_REG(0x78)
#define RV1103B_RTC_TEST_LEN RTC_REG(0x7c)
#define RV1103B_RTC_CNT_0 RTC_REG(0x80)
#define RV1103B_RTC_CNT_1 RTC_REG(0x84)
#define RV1103B_RTC_CNT_2 RTC_REG(0x88)
#define RV1103B_RTC_CNT_3 RTC_REG(0x8c)
#define RTC_MAX_REGISTER RV1106_RTC_CNT_3
#define RV1106_VI_GRF_VI_MISC_CON0 0x50000
#define RV1106_RTC_CLAMP_EN BIT(6)
#define RV1103B_GRF_PMU_SOC_CON0 0x60000
#define RV1103B_RTC_CLAMP_EN BIT(15)
/* RTC_CTRL_REG bitfields */
#define RTC_CTRL_REG_START_RTC BIT(0)
#define RTC_TIMEOUT (3000 * 1000)
/* RK630 has a shadowed register for saving a "frozen" RTC time.
* When user setting "GET_TIME" to 1, the time will save in this shadowed
* register. If set "READSEL" to 1, user read rtc time register, actually
* get the time of that moment. If we need the real time, clr this bit.
*/
#define RTC_CTRL_REG_RTC_GET_TIME BIT(6)
#define RTC_CTRL_REG_RTC_READSEL_M BIT(7)
#define RTC_INT_REG_ALARM_EN BIT(7)
#define RTC_STATUS_MASK 0xFF
#define SECONDS_REG_MSK 0x7F
#define MINUTES_REG_MAK 0x7F
#define HOURS_REG_MSK 0x3F
#define DAYS_REG_MSK 0x3F
#define MONTHS_REG_MSK 0x1F
#define YEARS_REG_MSK 0xFF
#define WEEKS_REG_MSK 0x7
#define RTC_VREF_INIT 0x40
#define NUM_TIME_REGS 8
#define NUM_ALARM_REGS 7
#define DISABLE_ALARM_INT 0x3F
#define ENABLE_ALARM_INT 0xFF
#define ALARM_INT_STATUS BIT(4)
#define CLK32K_COMP_DIR_ADD BIT(7)
#define CLK32K_COMP_EN BIT(2)
#define CLK32K_NO_COMP 0x1
#define CLK32K_TEST_LEN 1
#define CLK32K_TEST_REF_CLK 24000000
#define RTC_WRITE_MASK 0xc4522900
/* RV1106_RTC_LDO_CTRL bitfields */
#define RV1106_RTC_D2A_XO_EN BIT(0)
#define RV1106_RTC_D2A_CLK_OUT_EN BIT(5)
/* RV1106_RTC_XO_TRIM bitfields */
#define RV1106_RTC_D2A_XO_START 0x7
/* RV1106_RTC_VPTAT_TRIM bitfields */
#define RV1106_CLK_32K_ENABLE BIT(5)
#define RV1106_D2A_POR_REG_SEL1 BIT(4)
#define RV1106_D2A_POR_REG_SEL0 BIT(1)
/* RV1106_RTC_CLK32K_TEST bitfields */
#define RV1106_CLK32K_TEST_EN BIT(0)
#define RV1106_CLK32K_TEST_START BIT(0)
#define RV1106_CLK32K_TEST_STATUS BIT(1)
#define RV1106_CLK32K_TEST_DONE BIT(2)
/* RV1103B_RTC_XO_TRIM0 bitfields */
#define RV1103B_RTC_D2A_XO_EN BIT(0)
/* RV1103B_RTC_XO_TRIM1 bitfields */
#define RV1103B_RTC_D2A_XO_CUR_SEL BIT(2)
/* RV1103B_RTC_ANALOG_EN bitfields */
#define RV1103B_RTC_D2A_CLK_OUT_EN BIT(3)
/* RV1103B_RTC_LDO_CTRL bitfields */
#define RV1103B_CLK_32K_ENABLE BIT(5)
#define RV1103B_D2A_POR_REG_SEL1 BIT(4)
#define RV1103B_D2A_POR_REG_SEL0 BIT(1)
/* RV1103B_RTC_TEST bitfields */
#define RV1103B_CLK32K_TEST_START BIT(0)
#define RV1103B_CLK32K_TEST_STATUS BIT(1)
#define RV1103B_CLK32K_TEST_DONE BIT(2)
enum {
ROCKCHIP_RV1106_RTC = 1,
ROCKCHIP_RV1103B_RTC = 2,
};
struct rockchip_rtc_chip {
int (*initialize)(struct regmap *regmap);
void (*clamp_en)(struct regmap *grf, bool on);
int (*test_start)(struct regmap *regmap);
};
struct rockchip_rtc {
struct regmap *regmap;
struct rtc_device *rtc;
struct regmap *grf;
struct clk_bulk_data *clks;
int num_clks;
int irq;
unsigned int flag;
unsigned int mode;
struct delayed_work trim_work;
bool suspend_bypass;
const struct rockchip_rtc_chip *chip;
};
static unsigned int rockchip_rtc_write(struct regmap *map,
u32 offset, u32 val)
{
return regmap_write(map, offset, val | RTC_WRITE_MASK);
}
static unsigned int rockchip_rtc_update_bits(struct regmap *map,
u32 offset, u32 mask,
u32 set)
{
unsigned int val;
regmap_read(map, offset, &val);
return regmap_write(map, offset, (val & ~mask) | set | RTC_WRITE_MASK);
}
/* Read current time and date in RTC */
static int rockchip_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct rockchip_rtc *rtc = dev_get_drvdata(dev);
u32 rtc_data[NUM_TIME_REGS];
int ret;
int yearl, yearh;
/* No shadowed registers, need read time three time to update time */
ret = regmap_bulk_read(rtc->regmap, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bulk read rtc_data: %d\n", ret);
return ret;
}
ret = regmap_bulk_read(rtc->regmap, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bulk read rtc_data: %d\n", ret);
return ret;
}
ret = regmap_bulk_read(rtc->regmap, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bulk read rtc_data: %d\n", ret);
return ret;
}
tm->tm_sec = bcd2bin(rtc_data[0] & SECONDS_REG_MSK);
tm->tm_min = bcd2bin(rtc_data[1] & MINUTES_REG_MAK);
tm->tm_hour = bcd2bin(rtc_data[2] & HOURS_REG_MSK);
tm->tm_mday = bcd2bin(rtc_data[3] & DAYS_REG_MSK);
tm->tm_mon = (bcd2bin(rtc_data[4] & MONTHS_REG_MSK)) - 1;
yearl = (bcd2bin(rtc_data[5] & YEARS_REG_MSK));
yearh = (bcd2bin(rtc_data[6] & YEARS_REG_MSK));
tm->tm_year = yearh * 100 + yearl + 100;
tm->tm_wday = bcd2bin(rtc_data[7] & WEEKS_REG_MSK);
dev_dbg(dev, "RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday,
tm->tm_wday, tm->tm_hour, tm->tm_min, tm->tm_sec);
return ret;
}
/* Set current time and date in RTC */
static int rockchip_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct rockchip_rtc *rtc = dev_get_drvdata(dev);
u32 rtc_data[NUM_TIME_REGS];
int ret, status = 0;
int yearl, yearh;
dev_dbg(dev, "set RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday,
tm->tm_wday, tm->tm_hour, tm->tm_min, tm->tm_sec);
rtc_data[0] = bin2bcd(tm->tm_sec) | RTC_WRITE_MASK;
rtc_data[1] = bin2bcd(tm->tm_min) | RTC_WRITE_MASK;
rtc_data[2] = bin2bcd(tm->tm_hour) | RTC_WRITE_MASK;
rtc_data[3] = bin2bcd(tm->tm_mday) | RTC_WRITE_MASK;
rtc_data[4] = bin2bcd(tm->tm_mon + 1) | RTC_WRITE_MASK;
if (tm->tm_year > 199) {
yearh = (tm->tm_year - 100) / 100;
yearl = tm->tm_year - 100 - yearh * 100;
} else {
yearh = 0;
yearl = tm->tm_year - 100 - yearh * 100;
}
rtc_data[5] = bin2bcd(yearl) | RTC_WRITE_MASK;
rtc_data[6] = bin2bcd(yearh) | RTC_WRITE_MASK;
rtc_data[7] = bin2bcd(tm->tm_wday) | RTC_WRITE_MASK;
/* Stop RTC while updating the RTC registers */
ret = rockchip_rtc_update_bits(rtc->regmap, RTC_CTRL,
RTC_CTRL_REG_START_RTC, 0);
if (ret) {
dev_err(dev, "Failed to update RTC control: %d\n", ret);
return ret;
}
ret = regmap_read_poll_timeout(rtc->regmap, RTC_STATUS1, status,
!(status & RTC_CTRL_REG_START_RTC),
0, RTC_TIMEOUT);
if (ret)
dev_err(dev,
"%s:timeout Update RTC_STATUS1 : %d\n",
__func__, ret);
ret = regmap_bulk_write(rtc->regmap, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bull write rtc_data: %d\n", ret);
return ret;
}
/* Start RTC again */
ret = rockchip_rtc_update_bits(rtc->regmap, RTC_CTRL,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC);
if (ret) {
dev_err(dev, "Failed to update RTC control: %d\n", ret);
return ret;
}
ret = regmap_read_poll_timeout(rtc->regmap, RTC_STATUS1, status,
(status & RTC_CTRL_REG_START_RTC),
0, RTC_TIMEOUT);
if (ret)
dev_err(dev,
"%s:timeout Update RTC_STATUS1 : %d\n",
__func__, ret);
return 0;
}
/* Read alarm time and date in RTC */
static int rockchip_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rockchip_rtc *rtc = dev_get_drvdata(dev);
u32 alrm_data[NUM_ALARM_REGS];
u32 int_reg;
int yearl, yearh;
int ret;
ret = regmap_bulk_read(rtc->regmap,
RTC_ALARM_SECONDS,
alrm_data, NUM_ALARM_REGS);
if (ret) {
dev_err(dev, "Failed to read RTC alarm date REG: %d\n", ret);
return ret;
}
alrm->time.tm_sec = bcd2bin(alrm_data[0] & SECONDS_REG_MSK);
alrm->time.tm_min = bcd2bin(alrm_data[1] & MINUTES_REG_MAK);
alrm->time.tm_hour = bcd2bin(alrm_data[2] & HOURS_REG_MSK);
alrm->time.tm_mday = bcd2bin(alrm_data[3] & DAYS_REG_MSK);
alrm->time.tm_mon = (bcd2bin(alrm_data[4] & MONTHS_REG_MSK)) - 1;
yearl = (bcd2bin(alrm_data[5] & YEARS_REG_MSK));
yearh = (bcd2bin(alrm_data[6] & YEARS_REG_MSK));
alrm->time.tm_year = yearh * 100 + yearl + 100;
ret = regmap_read(rtc->regmap, RTC_INT0_EN, &int_reg);
if (ret) {
dev_err(dev, "Failed to read RTC INT REG: %d\n", ret);
return ret;
}
dev_dbg(dev,
"alrm read RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + alrm->time.tm_year, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_wday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec);
alrm->enabled = (int_reg & RTC_INT_REG_ALARM_EN) ? 1 : 0;
return 0;
}
static int rockchip_rtc_stop_alarm(struct rockchip_rtc *rtc)
{
int ret;
ret = rockchip_rtc_write(rtc->regmap, RTC_INT0_EN, 0);
return ret;
}
static int rockchip_rtc_start_alarm(struct rockchip_rtc *rtc)
{
int ret;
ret = rockchip_rtc_write(rtc->regmap, RTC_STATUS0, RTC_STATUS_MASK);
ret = rockchip_rtc_write(rtc->regmap, RTC_STATUS0, 0);
ret = rockchip_rtc_write(rtc->regmap, RTC_INT0_EN, ENABLE_ALARM_INT);
return ret;
}
static int rockchip_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rockchip_rtc *rtc = dev_get_drvdata(dev);
u32 alrm_data[NUM_ALARM_REGS];
int yearl, yearh;
int ret;
ret = rockchip_rtc_stop_alarm(rtc);
if (ret) {
dev_err(dev, "Failed to stop alarm: %d\n", ret);
return ret;
}
dev_dbg(dev,
"alrm set RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + alrm->time.tm_year, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_wday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec);
alrm_data[0] = bin2bcd(alrm->time.tm_sec) | RTC_WRITE_MASK;
alrm_data[1] = bin2bcd(alrm->time.tm_min) | RTC_WRITE_MASK;
alrm_data[2] = bin2bcd(alrm->time.tm_hour) | RTC_WRITE_MASK;
alrm_data[3] = bin2bcd(alrm->time.tm_mday) | RTC_WRITE_MASK;
alrm_data[4] = bin2bcd(alrm->time.tm_mon + 1) | RTC_WRITE_MASK;
if (alrm->time.tm_year > 199) {
yearh = (alrm->time.tm_year - 100) / 100;
yearl = alrm->time.tm_year - 100 - yearh * 100;
} else {
yearh = 0;
yearl = alrm->time.tm_year - 100 - yearh * 100;
}
alrm_data[5] = bin2bcd(yearl) | RTC_WRITE_MASK;
alrm_data[6] = bin2bcd(yearh) | RTC_WRITE_MASK;
ret = regmap_bulk_write(rtc->regmap,
RTC_ALARM_SECONDS,
alrm_data, NUM_ALARM_REGS);
if (ret) {
dev_err(dev, "Failed to bulk write: %d\n", ret);
return ret;
}
if (alrm->enabled) {
ret = rockchip_rtc_start_alarm(rtc);
if (ret) {
dev_err(dev, "Failed to start alarm: %d\n", ret);
return ret;
}
}
return 0;
}
static int rockchip_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct rockchip_rtc *rtc = dev_get_drvdata(dev);
if (enabled)
return rockchip_rtc_start_alarm(rtc);
return rockchip_rtc_stop_alarm(rtc);
}
/*
* We will just handle setting the frequency and make use the framework for
* reading the periodic interrupts.
*
*/
static irqreturn_t rockchip_rtc_alarm_irq(int irq, void *data)
{
struct rockchip_rtc *rtc = data;
int ret, status;
ret = regmap_read(rtc->regmap, RTC_STATUS0, &status);
if (ret) {
pr_err("Failed to read RTC INT REG: %d\n", ret);
return ret;
}
ret = rockchip_rtc_write(rtc->regmap, RTC_STATUS0, status);
if (ret) {
pr_err("%s:Failed to update RTC status: %d\n", __func__, ret);
return ret;
}
if (status & ALARM_INT_STATUS) {
pr_info("Alarm by: %s\n", __func__);
rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
}
return IRQ_HANDLED;
}
static const struct rtc_class_ops rockchip_rtc_ops = {
.read_time = rockchip_rtc_read_time,
.set_time = rockchip_rtc_set_time,
.read_alarm = rockchip_rtc_readalarm,
.set_alarm = rockchip_rtc_setalarm,
.alarm_irq_enable = rockchip_rtc_alarm_irq_enable,
};
static int rv1103b_rtc_init(struct regmap *regmap)
{
int ret = 0;
ret = rockchip_rtc_update_bits(regmap, RV1103B_RTC_LDO_CTRL,
RV1103B_D2A_POR_REG_SEL1 |
RV1103B_CLK_32K_ENABLE,
RV1103B_D2A_POR_REG_SEL1 |
RV1103B_CLK_32K_ENABLE);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1103B_RTC_XO_TRIM0,
RV1103B_RTC_D2A_XO_EN,
RV1103B_RTC_D2A_XO_EN);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1103B_RTC_ANALOG_EN,
RV1103B_RTC_D2A_CLK_OUT_EN,
RV1103B_RTC_D2A_CLK_OUT_EN);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1103B_RTC_XO_TRIM1,
RV1103B_RTC_D2A_XO_CUR_SEL,
RV1103B_RTC_D2A_XO_CUR_SEL);
if (ret)
return ret;
return ret;
}
static int rv1106_rtc_init(struct regmap *regmap)
{
int ret = 0;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_VPTAT_TRIM,
RV1106_D2A_POR_REG_SEL1 |
RV1106_CLK_32K_ENABLE,
RV1106_D2A_POR_REG_SEL1 |
RV1106_CLK_32K_ENABLE);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_ANALOG_EN,
RV1106_D2A_POR_REG_SEL0,
0x00);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_LDO_CTRL,
RV1106_RTC_D2A_XO_EN,
RV1106_RTC_D2A_XO_EN);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_ANALOG_EN,
RV1106_RTC_D2A_CLK_OUT_EN,
RV1106_RTC_D2A_CLK_OUT_EN);
if (ret)
return ret;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_XO_TRIM0,
RV1106_RTC_D2A_XO_START,
RV1106_RTC_D2A_XO_START);
if (ret)
return ret;
return ret;
}
static void rv1103b_rtc_clamp(struct regmap *grf, bool en)
{
if (!grf)
return;
if (en)
regmap_write(grf, RV1103B_GRF_PMU_SOC_CON0,
(RV1103B_RTC_CLAMP_EN << 16));
else
regmap_write(grf, RV1103B_GRF_PMU_SOC_CON0,
(RV1103B_RTC_CLAMP_EN << 16) | RV1103B_RTC_CLAMP_EN);
}
static void rv1106_rtc_clamp(struct regmap *grf, bool en)
{
if (!grf)
return;
if (en)
regmap_write(grf, RV1106_VI_GRF_VI_MISC_CON0,
(RV1106_RTC_CLAMP_EN << 16));
else
regmap_write(grf, RV1106_VI_GRF_VI_MISC_CON0,
(RV1106_RTC_CLAMP_EN << 16) | RV1106_RTC_CLAMP_EN);
}
static int rv1106_rtc_test_start(struct regmap *regmap)
{
u64 camp;
u32 count[4], counts, g_ref, tcamp;
int ret, done = 0, trim_dir, c_hour,
c_day, c_det_day, c_mon, c_det_mon;
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_CLK32K_TEST,
RV1106_CLK32K_TEST_EN, RV1106_CLK32K_TEST_EN);
if (ret) {
pr_err("%s:Failed to update RTC CLK32K TEST: %d\n",
__func__, ret);
return ret;
}
ret = rockchip_rtc_write(regmap, RV1106_RTC_TEST_LEN,
CLK32K_TEST_LEN);
if (ret) {
pr_err("%s:Failed to update RTC CLK32K TEST LEN: %d\n",
__func__, ret);
return ret;
}
ret = rockchip_rtc_update_bits(regmap, RV1106_RTC_TEST_ST,
RV1106_CLK32K_TEST_START,
RV1106_CLK32K_TEST_START);
if (ret) {
pr_err("%s:Failed to update RTC CLK32K TEST STATUS : %d\n",
__func__, ret);
return ret;
}
ret = regmap_read_poll_timeout(regmap, RV1106_RTC_TEST_ST, done,
(done & RV1106_CLK32K_TEST_DONE), 20000, RTC_TIMEOUT);
if (ret)
pr_err("%s:timeout waiting for RTC TEST STATUS : %d\n", __func__, ret);
ret = regmap_bulk_read(regmap,
RV1106_RTC_CNT_0,
count, 4);
if (ret) {
pr_err("Failed to read RTC count REG: %d\n", ret);
return ret;
}
counts = count[0] | (count[1] << 8) |
(count[2] << 16) | (count[3] << 24);
g_ref = CLK32K_TEST_REF_CLK * (CLK32K_TEST_LEN + 1);
if (counts > g_ref) {
trim_dir = 0;
camp = 36ULL * (32768 * (counts - g_ref));
do_div(camp, (g_ref / 100));
} else {
trim_dir = CLK32K_COMP_DIR_ADD;
camp = 36ULL * (32768 * (g_ref - counts));
do_div(camp, (g_ref / 100));
}
tcamp = (u32)camp;
c_hour = DIV_ROUND_CLOSEST(tcamp, 32768);
c_day = DIV_ROUND_CLOSEST(24 * tcamp, 32768);
c_mon = DIV_ROUND_CLOSEST(30 * 24 * tcamp, 32768);
if (c_hour > 1)
rockchip_rtc_write(regmap, RTC_COMP_H, bin2bcd((c_hour - 1)) | trim_dir);
else
rockchip_rtc_write(regmap, RTC_COMP_H, CLK32K_NO_COMP);
if (c_day > c_hour * 23) {
c_det_day = c_day - c_hour * 23;
trim_dir = CLK32K_COMP_DIR_ADD;
} else {
c_det_day = c_hour * 24 - c_day;
trim_dir = 0;
}
if (c_det_day > 1)
rockchip_rtc_write(regmap, RTC_COMP_D,
bin2bcd((c_det_day - 1)) | trim_dir);
else
rockchip_rtc_write(regmap, RTC_COMP_D, CLK32K_NO_COMP);
if (c_mon > (29 * c_day + 23 * c_hour)) {
c_det_mon = c_mon - 29 * c_day - 23 * c_hour;
trim_dir = CLK32K_COMP_DIR_ADD;
} else {
c_det_mon = 29 * c_day + 23 * c_hour - c_mon;
trim_dir = 0;
}
if (c_det_mon > 1)
rockchip_rtc_write(regmap, RTC_COMP_M,
bin2bcd((c_det_mon - 1)) | trim_dir);
else
rockchip_rtc_write(regmap, RTC_COMP_M, CLK32K_NO_COMP);
ret = regmap_read(regmap, RTC_CTRL, &done);
if (ret) {
pr_err("Failed to read RTC_CTRL: %d\n", ret);
return ret;
}
ret = rockchip_rtc_update_bits(regmap, RTC_CTRL,
CLK32K_COMP_EN, CLK32K_COMP_EN);
if (ret) {
pr_err("%s:Failed to update RTC CTRL : %d\n", __func__, ret);
return ret;
}
return ret;
}
/*
* Due to the analog generator 32k clock affected by
* temperature, voltage, clock precision need test
* with the environment change. In rtc test,
* use 24M clock as reference clock to measure the 32k clock.
* Before start test 32k clock, we should enable clk32k test(0x80),
* and configure test length, when rtc test done(0x84[2]),
* latch the 24M clock domain counter,
* and read out the counter from rtc_test
* registers(0x8c~0x98) via apb bus.
* In RTC digital design, we set three level compensation,
* the compensation value due to the
* RTC 32k clock test result, and if we need compensation,
* we need configure the compensation enable bit.
* Comp every hour, compensation at last minute every hour,
* and support add time and sub time by the MSB bit.
* Comp every day, compensation at last minute in last hour every day,
* and support add time and sub time by the MSB bit.
* Comp every month, compensation at last minute
* in last hour in last day every month,
* and support add time and sub time by the MSB bit.
*/
static void rockchip_rtc_compensation_delay_work(struct work_struct *work)
{
struct rockchip_rtc *rtc = container_of(work, struct rockchip_rtc, trim_work.work);
int ret = 0;
if (rtc->chip->test_start) {
ret = rtc->chip->test_start(rtc->regmap);
if (ret) {
pr_err("%s:Failed to test rtc: %d\n", __func__, ret);
return;
}
}
}
static bool rockchip_rtc_is_trimed(struct rockchip_rtc *rtc)
{
int ret, comp_done;
ret = regmap_read(rtc->regmap, RTC_CTRL, &comp_done);
if (ret) {
pr_err("%s: Failed to read RTC_CTRL: %d\n", __func__, ret);
return false;
}
return (comp_done & CLK32K_COMP_EN) == CLK32K_COMP_EN;
}
static void rockchip_rtc_trim_start(struct rockchip_rtc *rtc)
{
if (!rockchip_rtc_is_trimed(rtc) && rtc->chip->test_start)
queue_delayed_work(system_long_wq, &rtc->trim_work,
msecs_to_jiffies(5000));
}
static void __maybe_unused rockchip_rtc_trim_close(struct rockchip_rtc *rtc)
{
if (!rockchip_rtc_is_trimed(rtc) && rtc->chip->test_start)
cancel_delayed_work_sync(&rtc->trim_work);
}
/* Enable the alarm if it should be enabled (in case it was disabled to
* prevent use as a wake source).
*/
#ifdef CONFIG_PM_SLEEP
/* Turn off the alarm if it should not be a wake source. */
static int rockchip_rtc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rockchip_rtc *rtc = dev_get_drvdata(&pdev->dev);
if (rtc->suspend_bypass)
return 0;
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq);
rockchip_rtc_trim_close(rtc);
rtc->chip->clamp_en(rtc->grf, 1);
clk_bulk_disable_unprepare(rtc->num_clks, rtc->clks);
return 0;
}
/* Enable the alarm if it should be enabled (in case it was disabled to
* prevent use as a wake source).
*/
static int rockchip_rtc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rockchip_rtc *rtc = dev_get_drvdata(&pdev->dev);
int ret;
if (rtc->suspend_bypass)
return 0;
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq);
rtc->chip->clamp_en(rtc->grf, 0);
ret = clk_bulk_prepare_enable(rtc->num_clks, rtc->clks);
if (ret) {
dev_err(dev, "Cannot enable clock.\n");
return ret;
}
rockchip_rtc_trim_start(rtc);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(rockchip_rtc_pm_ops,
rockchip_rtc_suspend, rockchip_rtc_resume);
static const struct rockchip_rtc_chip rv1106_rtc_data = {
.initialize = rv1106_rtc_init,
.clamp_en = rv1106_rtc_clamp,
.test_start = rv1106_rtc_test_start,
};
static const struct rockchip_rtc_chip rv1103b_rtc_data = {
.initialize = rv1103b_rtc_init,
.clamp_en = rv1103b_rtc_clamp,
};
static const struct of_device_id rockchip_rtc_of_match[] = {
#ifdef CONFIG_CPU_RV1106
{
.compatible = "rockchip,rv1106-rtc",
.data = (void *)&rv1106_rtc_data,
},
#endif
#ifdef CONFIG_CPU_RV1103B
{
.compatible = "rockchip,rv1103b-rtc",
.data = (void *)&rv1103b_rtc_data,
},
#endif
{},
};
MODULE_DEVICE_TABLE(of, rockchip_rtc_of_match);
static void rockchip_rtc_clk_disable(void *data)
{
struct rockchip_rtc *rtc = data;
clk_bulk_disable_unprepare(rtc->num_clks, rtc->clks);
}
static int rockchip_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct rockchip_rtc *rtc;
int ret;
struct rtc_time tm_read, tm = {
.tm_wday = 0,
.tm_year = 121,
.tm_mon = 0,
.tm_mday = 1,
.tm_hour = 12,
.tm_min = 0,
.tm_sec = 0,
};
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->chip = (const struct rockchip_rtc_chip *)device_get_match_data(&pdev->dev);
if (!rtc->chip)
return -EINVAL;
rtc->regmap = device_node_to_regmap(np);
if (IS_ERR(rtc->regmap))
return dev_err_probe(dev, PTR_ERR(rtc->regmap),
"no regmap available\n");
rtc->grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
if (IS_ERR(rtc->grf)) {
dev_warn(dev, "Missing rockchip,grf property\n");
rtc->grf = NULL;
} else {
rtc->chip->clamp_en(rtc->grf, 0);
}
platform_set_drvdata(pdev, rtc);
rtc->num_clks = devm_clk_bulk_get_all(&pdev->dev, &rtc->clks);
if (rtc->num_clks < 1)
return -ENODEV;
ret = clk_bulk_prepare_enable(rtc->num_clks, rtc->clks);
if (ret)
return dev_err_probe(dev, ret, "Cannot enable clock.\n");
ret = devm_add_action_or_reset(dev, rockchip_rtc_clk_disable, rtc);
if (ret)
return dev_err_probe(dev, ret,
"Failed to add clk disable action.");
ret = rtc->chip->initialize(rtc->regmap);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Failed to init RTC\n");
/* start rtc running by default, and use shadowed timer. */
ret = rockchip_rtc_update_bits(rtc->regmap, RTC_CTRL,
RTC_CTRL_REG_START_RTC |
RTC_CTRL_REG_RTC_READSEL_M,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to update RTC control\n");
ret = rockchip_rtc_write(rtc->regmap, RTC_STATUS0, RTC_STATUS_MASK);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to write RTC status0\n");
ret = rockchip_rtc_write(rtc->regmap, RTC_STATUS0, 0);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to write RTC status0\n");
device_init_wakeup(&pdev->dev, 1);
rockchip_rtc_read_time(&pdev->dev, &tm_read);
if (rtc_valid_tm(&tm_read) != 0)
rockchip_rtc_set_time(&pdev->dev, &tm);
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return dev_err_probe(&pdev->dev, rtc->irq, "No IRQ resource\n");
/* request alarm irq of rtc */
ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
&rockchip_rtc_alarm_irq, IRQF_ONESHOT,
"RTC alarm", rtc);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to request alarm IRQ %d\n",
rtc->irq);
/* If rtc 32k used as time for deep sleep, the rtc suspend func bypass do nothing. */
rtc->suspend_bypass = device_property_read_bool(&pdev->dev,
"rockchip,rtc-suspend-bypass");
rtc->rtc = devm_rtc_device_register(&pdev->dev, "rtc-rockchip",
&rockchip_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc->rtc))
return PTR_ERR(rtc->rtc);
if (rtc->chip->test_start) {
INIT_DELAYED_WORK(&rtc->trim_work, rockchip_rtc_compensation_delay_work);
rockchip_rtc_trim_start(rtc);
}
return 0;
}
static struct platform_driver rockchip_rtc_driver = {
.probe = rockchip_rtc_probe,
.driver = {
.name = "rockchip-rtc",
.pm = &rockchip_rtc_pm_ops,
.of_match_table = rockchip_rtc_of_match,
},
};
module_platform_driver(rockchip_rtc_driver);
MODULE_DESCRIPTION("RTC driver for the rockchip");
MODULE_AUTHOR("Zhang Qing <zhangqing@rock-chips.com>");
MODULE_LICENSE("GPL");