1665 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Rockchip Electronics Co., Ltd.
* Author: Felix Zeng <felix.zeng@rock-chips.com>
*/
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/time.h>
#include <linux/uaccess.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/of_address.h>
#ifndef FPGA_PLATFORM
#include <soc/rockchip/rockchip_iommu.h>
#endif
#include "rknpu_ioctl.h"
#include "rknpu_reset.h"
#include "rknpu_fence.h"
#include "rknpu_drv.h"
#include "rknpu_gem.h"
#include "rknpu_devfreq.h"
#include "rknpu_iommu.h"
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
#include <drm/drm_device.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_file.h>
#include <drm/drm_drv.h>
#include "rknpu_gem.h"
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_DMA_HEAP
#include <linux/rk-dma-heap.h>
#include "rknpu_mem.h"
#endif
#define POWER_DOWN_FREQ 200000000
#define NPU_MMU_DISABLED_POLL_PERIOD_US 1000
#define NPU_MMU_DISABLED_POLL_TIMEOUT_US 20000
static int bypass_irq_handler;
module_param(bypass_irq_handler, int, 0644);
MODULE_PARM_DESC(bypass_irq_handler,
"bypass RKNPU irq handler if set it to 1, disabled by default");
static int bypass_soft_reset;
module_param(bypass_soft_reset, int, 0644);
MODULE_PARM_DESC(bypass_soft_reset,
"bypass RKNPU soft reset if set it to 1, disabled by default");
static const struct rknpu_irqs_data rknpu_irqs[] = {
{ "npu_irq", rknpu_core0_irq_handler }
};
static const struct rknpu_irqs_data rk3576_npu_irqs[] = {
{ "npu0_irq", rknpu_core0_irq_handler },
{ "npu1_irq", rknpu_core1_irq_handler }
};
static const struct rknpu_irqs_data rk3588_npu_irqs[] = {
{ "npu0_irq", rknpu_core0_irq_handler },
{ "npu1_irq", rknpu_core1_irq_handler },
{ "npu2_irq", rknpu_core2_irq_handler }
};
static const struct rknpu_amount_data rknpu_old_top_amount = {
.offset_clr_all = 0x8010,
.offset_dt_wr = 0x8034,
.offset_dt_rd = 0x8038,
.offset_wt_rd = 0x803c,
};
static const struct rknpu_amount_data rknpu_top_amount = {
.offset_clr_all = 0x2210,
.offset_dt_wr = 0x2234,
.offset_dt_rd = 0x2238,
.offset_wt_rd = 0x223c
};
static const struct rknpu_amount_data rknpu_core_amount = {
.offset_clr_all = 0x2410,
.offset_dt_wr = 0x2434,
.offset_dt_rd = 0x2438,
.offset_wt_rd = 0x243c,
};
static void rk3576_state_init(struct rknpu_device *rknpu_dev)
{
void __iomem *rknpu_core_base = rknpu_dev->base[0];
writel(0x1, rknpu_core_base + 0x10);
writel(0, rknpu_core_base + 0x1004);
writel(0x80000000, rknpu_core_base + 0x1024);
writel(1, rknpu_core_base + 0x1004);
writel(0x80000000, rknpu_core_base + 0x1024);
writel(0x1e, rknpu_core_base + 0x1004);
}
static int rk3576_cache_sgt_init(struct rknpu_device *rknpu_dev)
{
struct sg_table *sgt = NULL;
struct scatterlist *sgl = NULL;
uint64_t block_size_kb[4] = { 448, 64, 448, 64 };
uint64_t block_offset_kb[4] = { 0, 896, 448, 960 };
int core_num = rknpu_dev->config->num_irqs;
int ret = 0, i = 0, j = 0;
for (i = 0; i < core_num; i++) {
sgt = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!sgt)
goto out_free_table;
ret = sg_alloc_table(sgt, core_num, GFP_KERNEL);
if (ret) {
kfree(sgt);
goto out_free_table;
}
rknpu_dev->cache_sgt[i] = sgt;
for_each_sgtable_sg(sgt, sgl, j) {
sg_set_page(sgl, NULL,
block_size_kb[i * core_num + j] * 1024,
block_offset_kb[i * core_num + j] * 1024);
}
}
return 0;
out_free_table:
for (i = 0; i < core_num; i++) {
if (rknpu_dev->cache_sgt[i]) {
sg_free_table(rknpu_dev->cache_sgt[i]);
kfree(rknpu_dev->cache_sgt[i]);
rknpu_dev->cache_sgt[i] = NULL;
}
}
return ret;
}
static const struct rknpu_config rk356x_rknpu_config = {
.bw_priority_addr = 0xfe180008,
.bw_priority_length = 0x10,
.dma_mask = DMA_BIT_MASK(32),
.pc_data_amount_scale = 1,
.pc_task_number_bits = 12,
.pc_task_number_mask = 0xfff,
.pc_task_status_offset = 0x3c,
.pc_dma_ctrl = 0,
.irqs = rknpu_irqs,
.num_irqs = ARRAY_SIZE(rknpu_irqs),
.nbuf_phyaddr = 0,
.nbuf_size = 0,
.max_submit_number = (1 << 12) - 1,
.core_mask = 0x1,
.amount_top = &rknpu_old_top_amount,
.amount_core = NULL,
.state_init = NULL,
.cache_sgt_init = NULL,
};
static const struct rknpu_config rk3588_rknpu_config = {
.bw_priority_addr = 0x0,
.bw_priority_length = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.pc_data_amount_scale = 2,
.pc_task_number_bits = 12,
.pc_task_number_mask = 0xfff,
.pc_task_status_offset = 0x3c,
.pc_dma_ctrl = 0,
.irqs = rk3588_npu_irqs,
.num_irqs = ARRAY_SIZE(rk3588_npu_irqs),
.nbuf_phyaddr = 0,
.nbuf_size = 0,
.max_submit_number = (1 << 12) - 1,
.core_mask = 0x7,
.amount_top = NULL,
.amount_core = NULL,
.state_init = NULL,
.cache_sgt_init = NULL,
};
static const struct rknpu_config rk3583_rknpu_config = {
.bw_priority_addr = 0x0,
.bw_priority_length = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.pc_data_amount_scale = 2,
.pc_task_number_bits = 12,
.pc_task_number_mask = 0xfff,
.pc_task_status_offset = 0x3c,
.pc_dma_ctrl = 0,
.irqs = rk3588_npu_irqs,
.num_irqs = 2,
.nbuf_phyaddr = 0,
.nbuf_size = 0,
.max_submit_number = (1 << 12) - 1,
.core_mask = 0x3,
.amount_top = NULL,
.amount_core = NULL,
.state_init = NULL,
.cache_sgt_init = NULL,
};
static const struct rknpu_config rv1106_rknpu_config = {
.bw_priority_addr = 0x0,
.bw_priority_length = 0x0,
.dma_mask = DMA_BIT_MASK(32),
.pc_data_amount_scale = 2,
.pc_task_number_bits = 16,
.pc_task_number_mask = 0xffff,
.pc_task_status_offset = 0x3c,
.pc_dma_ctrl = 0,
.irqs = rknpu_irqs,
.num_irqs = ARRAY_SIZE(rknpu_irqs),
.nbuf_phyaddr = 0,
.nbuf_size = 0,
.max_submit_number = (1 << 16) - 1,
.core_mask = 0x1,
.amount_top = &rknpu_old_top_amount,
.amount_core = NULL,
.state_init = NULL,
.cache_sgt_init = NULL,
};
static const struct rknpu_config rk3562_rknpu_config = {
.bw_priority_addr = 0x0,
.bw_priority_length = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.pc_data_amount_scale = 2,
.pc_task_number_bits = 16,
.pc_task_number_mask = 0xffff,
.pc_task_status_offset = 0x48,
.pc_dma_ctrl = 1,
.irqs = rknpu_irqs,
.num_irqs = ARRAY_SIZE(rknpu_irqs),
.nbuf_phyaddr = 0xfe400000,
.nbuf_size = 256 * 1024,
.max_submit_number = (1 << 16) - 1,
.core_mask = 0x1,
.amount_top = &rknpu_old_top_amount,
.amount_core = NULL,
.state_init = NULL,
.cache_sgt_init = NULL,
};
static const struct rknpu_config rk3576_rknpu_config = {
.bw_priority_addr = 0x0,
.bw_priority_length = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.pc_data_amount_scale = 2,
.pc_task_number_bits = 16,
.pc_task_number_mask = 0xffff,
.pc_task_status_offset = 0x48,
.pc_dma_ctrl = 1,
.irqs = rk3576_npu_irqs,
.num_irqs = ARRAY_SIZE(rk3576_npu_irqs),
.nbuf_phyaddr = 0x3fe80000,
.nbuf_size = 1024 * 1024,
.max_submit_number = (1 << 16) - 1,
.core_mask = 0x3,
.amount_top = &rknpu_top_amount,
.amount_core = &rknpu_core_amount,
.state_init = rk3576_state_init,
.cache_sgt_init = rk3576_cache_sgt_init,
};
/* driver probe and init */
static const struct of_device_id rknpu_of_match[] = {
{
.compatible = "rockchip,rknpu",
.data = &rk356x_rknpu_config,
},
{
.compatible = "rockchip,rk3568-rknpu",
.data = &rk356x_rknpu_config,
},
{
.compatible = "rockchip,rk3588-rknpu",
.data = &rk3588_rknpu_config,
},
{
.compatible = "rockchip,rv1106-rknpu",
.data = &rv1106_rknpu_config,
},
{
.compatible = "rockchip,rk3562-rknpu",
.data = &rk3562_rknpu_config,
},
{
.compatible = "rockchip,rk3576-rknpu",
.data = &rk3576_rknpu_config,
},
{},
};
static int rknpu_get_drv_version(uint32_t *version)
{
*version = RKNPU_GET_DRV_VERSION_CODE(DRIVER_MAJOR, DRIVER_MINOR,
DRIVER_PATCHLEVEL);
return 0;
}
static int rknpu_power_on(struct rknpu_device *rknpu_dev);
static int rknpu_power_off(struct rknpu_device *rknpu_dev);
static void rknpu_power_off_delay_work(struct work_struct *power_off_work)
{
int ret = 0;
struct rknpu_device *rknpu_dev =
container_of(to_delayed_work(power_off_work),
struct rknpu_device, power_off_work);
mutex_lock(&rknpu_dev->power_lock);
if (atomic_dec_if_positive(&rknpu_dev->power_refcount) == 0) {
ret = rknpu_power_off(rknpu_dev);
if (ret)
atomic_inc(&rknpu_dev->power_refcount);
}
mutex_unlock(&rknpu_dev->power_lock);
if (ret)
rknpu_power_put_delay(rknpu_dev);
}
int rknpu_power_get(struct rknpu_device *rknpu_dev)
{
int ret = 0;
mutex_lock(&rknpu_dev->power_lock);
if (atomic_inc_return(&rknpu_dev->power_refcount) == 1)
ret = rknpu_power_on(rknpu_dev);
mutex_unlock(&rknpu_dev->power_lock);
return ret;
}
int rknpu_power_put(struct rknpu_device *rknpu_dev)
{
int ret = 0;
mutex_lock(&rknpu_dev->power_lock);
if (atomic_dec_if_positive(&rknpu_dev->power_refcount) == 0) {
ret = rknpu_power_off(rknpu_dev);
if (ret)
atomic_inc(&rknpu_dev->power_refcount);
}
mutex_unlock(&rknpu_dev->power_lock);
if (ret)
rknpu_power_put_delay(rknpu_dev);
return ret;
}
int rknpu_power_put_delay(struct rknpu_device *rknpu_dev)
{
if (rknpu_dev->power_put_delay == 0)
return rknpu_power_put(rknpu_dev);
mutex_lock(&rknpu_dev->power_lock);
if (atomic_read(&rknpu_dev->power_refcount) == 1)
queue_delayed_work(
rknpu_dev->power_off_wq, &rknpu_dev->power_off_work,
msecs_to_jiffies(rknpu_dev->power_put_delay));
else
atomic_dec_if_positive(&rknpu_dev->power_refcount);
mutex_unlock(&rknpu_dev->power_lock);
return 0;
}
static int rknpu_action(struct rknpu_device *rknpu_dev,
struct rknpu_action *args)
{
int ret = -EINVAL;
switch (args->flags) {
case RKNPU_GET_HW_VERSION:
ret = rknpu_get_hw_version(rknpu_dev, &args->value);
break;
case RKNPU_GET_DRV_VERSION:
ret = rknpu_get_drv_version(&args->value);
break;
case RKNPU_GET_FREQ:
#ifndef FPGA_PLATFORM
args->value = clk_get_rate(rknpu_dev->clks[0].clk);
#endif
ret = 0;
break;
case RKNPU_SET_FREQ:
break;
case RKNPU_GET_VOLT:
#ifndef FPGA_PLATFORM
args->value = regulator_get_voltage(rknpu_dev->vdd);
#endif
ret = 0;
break;
case RKNPU_SET_VOLT:
break;
case RKNPU_ACT_RESET:
ret = rknpu_soft_reset(rknpu_dev);
break;
case RKNPU_GET_BW_PRIORITY:
ret = rknpu_get_bw_priority(rknpu_dev, &args->value, NULL,
NULL);
break;
case RKNPU_SET_BW_PRIORITY:
ret = rknpu_set_bw_priority(rknpu_dev, args->value, 0, 0);
break;
case RKNPU_GET_BW_EXPECT:
ret = rknpu_get_bw_priority(rknpu_dev, NULL, &args->value,
NULL);
break;
case RKNPU_SET_BW_EXPECT:
ret = rknpu_set_bw_priority(rknpu_dev, 0, args->value, 0);
break;
case RKNPU_GET_BW_TW:
ret = rknpu_get_bw_priority(rknpu_dev, NULL, NULL,
&args->value);
break;
case RKNPU_SET_BW_TW:
ret = rknpu_set_bw_priority(rknpu_dev, 0, 0, args->value);
break;
case RKNPU_ACT_CLR_TOTAL_RW_AMOUNT:
ret = rknpu_clear_rw_amount(rknpu_dev);
break;
case RKNPU_GET_DT_WR_AMOUNT:
ret = rknpu_get_rw_amount(rknpu_dev, &args->value, NULL, NULL);
break;
case RKNPU_GET_DT_RD_AMOUNT:
ret = rknpu_get_rw_amount(rknpu_dev, NULL, &args->value, NULL);
break;
case RKNPU_GET_WT_RD_AMOUNT:
ret = rknpu_get_rw_amount(rknpu_dev, NULL, NULL, &args->value);
break;
case RKNPU_GET_TOTAL_RW_AMOUNT:
ret = rknpu_get_total_rw_amount(rknpu_dev, &args->value);
break;
case RKNPU_GET_IOMMU_EN:
args->value = rknpu_dev->iommu_en;
ret = 0;
break;
case RKNPU_SET_PROC_NICE:
set_user_nice(current, *(int32_t *)&args->value);
ret = 0;
break;
case RKNPU_GET_TOTAL_SRAM_SIZE:
if (rknpu_dev->sram_mm)
args->value = rknpu_dev->sram_mm->total_chunks *
rknpu_dev->sram_mm->chunk_size;
else
args->value = 0;
ret = 0;
break;
case RKNPU_GET_FREE_SRAM_SIZE:
if (rknpu_dev->sram_mm)
args->value = rknpu_dev->sram_mm->free_chunks *
rknpu_dev->sram_mm->chunk_size;
else
args->value = 0;
ret = 0;
break;
case RKNPU_GET_IOMMU_DOMAIN_ID:
args->value = rknpu_dev->iommu_domain_id;
ret = 0;
break;
case RKNPU_SET_IOMMU_DOMAIN_ID: {
ret = rknpu_iommu_domain_get_and_switch(
rknpu_dev, *(int32_t *)&args->value);
if (ret)
break;
rknpu_iommu_domain_put(rknpu_dev);
break;
}
default:
ret = -EINVAL;
break;
}
return ret;
}
#ifdef CONFIG_ROCKCHIP_RKNPU_DMA_HEAP
static int rknpu_open(struct inode *inode, struct file *file)
{
struct rknpu_device *rknpu_dev =
container_of(file->private_data, struct rknpu_device, miscdev);
struct rknpu_session *session = NULL;
session = kzalloc(sizeof(*session), GFP_KERNEL);
if (!session) {
LOG_ERROR("rknpu session alloc failed\n");
return -ENOMEM;
}
session->rknpu_dev = rknpu_dev;
INIT_LIST_HEAD(&session->list);
file->private_data = (void *)session;
return nonseekable_open(inode, file);
}
static int rknpu_release(struct inode *inode, struct file *file)
{
struct rknpu_mem_object *entry;
struct rknpu_session *session = file->private_data;
struct rknpu_device *rknpu_dev = session->rknpu_dev;
LIST_HEAD(local_list);
spin_lock(&rknpu_dev->lock);
list_replace_init(&session->list, &local_list);
file->private_data = NULL;
spin_unlock(&rknpu_dev->lock);
while (!list_empty(&local_list)) {
entry = list_first_entry(&local_list, struct rknpu_mem_object,
head);
LOG_DEBUG(
"Fd close free rknpu_obj: %#llx, rknpu_obj->dma_addr: %#llx\n",
(__u64)(uintptr_t)entry, (__u64)entry->dma_addr);
vunmap(entry->kv_addr);
entry->kv_addr = NULL;
if (!entry->owner)
dma_buf_put(entry->dmabuf);
list_del(&entry->head);
kfree(entry);
}
kfree(session);
return 0;
}
static int rknpu_action_ioctl(struct rknpu_device *rknpu_dev,
unsigned long data)
{
struct rknpu_action args;
int ret = -EINVAL;
if (unlikely(copy_from_user(&args, (struct rknpu_action *)data,
sizeof(struct rknpu_action)))) {
LOG_ERROR("%s: copy_from_user failed\n", __func__);
ret = -EFAULT;
return ret;
}
ret = rknpu_action(rknpu_dev, &args);
if (unlikely(copy_to_user((struct rknpu_action *)data, &args,
sizeof(struct rknpu_action)))) {
LOG_ERROR("%s: copy_to_user failed\n", __func__);
ret = -EFAULT;
return ret;
}
return ret;
}
static long rknpu_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret = -EINVAL;
struct rknpu_device *rknpu_dev = NULL;
if (!file->private_data)
return -EINVAL;
rknpu_dev = ((struct rknpu_session *)file->private_data)->rknpu_dev;
rknpu_power_get(rknpu_dev);
switch (_IOC_NR(cmd)) {
case RKNPU_ACTION:
ret = rknpu_action_ioctl(rknpu_dev, arg);
break;
case RKNPU_SUBMIT:
ret = rknpu_submit_ioctl(rknpu_dev, arg);
break;
case RKNPU_MEM_CREATE:
ret = rknpu_mem_create_ioctl(rknpu_dev, file, cmd, arg);
break;
case RKNPU_MEM_MAP:
break;
case RKNPU_MEM_DESTROY:
ret = rknpu_mem_destroy_ioctl(rknpu_dev, file, arg);
break;
case RKNPU_MEM_SYNC:
ret = rknpu_mem_sync_ioctl(rknpu_dev, arg);
break;
default:
break;
}
rknpu_power_put_delay(rknpu_dev);
return ret;
}
const struct file_operations rknpu_fops = {
.owner = THIS_MODULE,
.open = rknpu_open,
.release = rknpu_release,
.unlocked_ioctl = rknpu_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = rknpu_ioctl,
#endif
};
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
static const struct vm_operations_struct rknpu_gem_vm_ops = {
.fault = rknpu_gem_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
#endif
static int rknpu_action_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct rknpu_device *rknpu_dev = dev_get_drvdata(dev->dev);
return rknpu_action(rknpu_dev, (struct rknpu_action *)data);
}
#define RKNPU_IOCTL(func) \
static int __##func(struct drm_device *dev, void *data, \
struct drm_file *file_priv) \
{ \
struct rknpu_device *rknpu_dev = dev_get_drvdata(dev->dev); \
int ret = -EINVAL; \
rknpu_power_get(rknpu_dev); \
ret = func(dev, data, file_priv); \
rknpu_power_put_delay(rknpu_dev); \
return ret; \
}
RKNPU_IOCTL(rknpu_action_ioctl);
RKNPU_IOCTL(rknpu_submit_ioctl);
RKNPU_IOCTL(rknpu_gem_create_ioctl);
RKNPU_IOCTL(rknpu_gem_map_ioctl);
RKNPU_IOCTL(rknpu_gem_destroy_ioctl);
RKNPU_IOCTL(rknpu_gem_sync_ioctl);
static const struct drm_ioctl_desc rknpu_ioctls[] = {
DRM_IOCTL_DEF_DRV(RKNPU_ACTION, __rknpu_action_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(RKNPU_SUBMIT, __rknpu_submit_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(RKNPU_MEM_CREATE, __rknpu_gem_create_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(RKNPU_MEM_MAP, __rknpu_gem_map_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(RKNPU_MEM_DESTROY, __rknpu_gem_destroy_ioctl,
DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(RKNPU_MEM_SYNC, __rknpu_gem_sync_ioctl,
DRM_RENDER_ALLOW),
};
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
DEFINE_DRM_GEM_FOPS(rknpu_drm_driver_fops);
#else
static const struct file_operations rknpu_drm_driver_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.mmap = rknpu_gem_mmap,
.poll = drm_poll,
.read = drm_read,
.unlocked_ioctl = drm_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = drm_compat_ioctl,
#endif
.release = drm_release,
.llseek = noop_llseek,
};
#endif
static struct drm_driver rknpu_drm_driver = {
#if KERNEL_VERSION(5, 4, 0) <= LINUX_VERSION_CODE
.driver_features = DRIVER_GEM | DRIVER_RENDER,
#else
.driver_features = DRIVER_GEM | DRIVER_PRIME | DRIVER_RENDER,
#endif
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
.gem_free_object_unlocked = rknpu_gem_free_object,
.gem_vm_ops = &rknpu_gem_vm_ops,
.dumb_destroy = drm_gem_dumb_destroy,
.gem_prime_export = drm_gem_prime_export,
.gem_prime_get_sg_table = rknpu_gem_prime_get_sg_table,
.gem_prime_vmap = rknpu_gem_prime_vmap,
.gem_prime_vunmap = rknpu_gem_prime_vunmap,
#endif
.dumb_create = rknpu_gem_dumb_create,
#if KERNEL_VERSION(4, 19, 0) > LINUX_VERSION_CODE
.dumb_map_offset = rknpu_gem_dumb_map_offset,
#else
.dumb_map_offset = drm_gem_dumb_map_offset,
#endif
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
#if KERNEL_VERSION(4, 13, 0) <= LINUX_VERSION_CODE
.gem_prime_import = rknpu_gem_prime_import,
#else
.gem_prime_import = drm_gem_prime_import,
#endif
.gem_prime_import_sg_table = rknpu_gem_prime_import_sg_table,
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
.gem_prime_mmap = drm_gem_prime_mmap,
#else
.gem_prime_mmap = rknpu_gem_prime_mmap,
#endif
.ioctls = rknpu_ioctls,
.num_ioctls = ARRAY_SIZE(rknpu_ioctls),
.fops = &rknpu_drm_driver_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
};
#endif
static enum hrtimer_restart hrtimer_handler(struct hrtimer *timer)
{
struct rknpu_device *rknpu_dev =
container_of(timer, struct rknpu_device, timer);
struct rknpu_subcore_data *subcore_data = NULL;
struct rknpu_job *job = NULL;
ktime_t now;
unsigned long flags;
int i;
for (i = 0; i < rknpu_dev->config->num_irqs; i++) {
subcore_data = &rknpu_dev->subcore_datas[i];
spin_lock_irqsave(&rknpu_dev->irq_lock, flags);
job = subcore_data->job;
if (job) {
now = ktime_get();
subcore_data->timer.busy_time +=
ktime_sub(now, job->hw_recoder_time);
job->hw_recoder_time = now;
}
subcore_data->timer.total_busy_time =
subcore_data->timer.busy_time;
subcore_data->timer.busy_time = 0;
spin_unlock_irqrestore(&rknpu_dev->irq_lock, flags);
}
hrtimer_forward_now(timer, rknpu_dev->kt);
return HRTIMER_RESTART;
}
static void rknpu_init_timer(struct rknpu_device *rknpu_dev)
{
rknpu_dev->kt = ktime_set(0, RKNPU_LOAD_INTERVAL);
hrtimer_init(&rknpu_dev->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rknpu_dev->timer.function = hrtimer_handler;
hrtimer_start(&rknpu_dev->timer, rknpu_dev->kt, HRTIMER_MODE_REL);
}
static void rknpu_cancel_timer(struct rknpu_device *rknpu_dev)
{
hrtimer_cancel(&rknpu_dev->timer);
}
static bool rknpu_is_iommu_enable(struct device *dev)
{
struct device_node *iommu = NULL;
iommu = of_parse_phandle(dev->of_node, "iommus", 0);
if (!iommu) {
LOG_DEV_INFO(
dev,
"rknpu iommu device-tree entry not found!, using non-iommu mode\n");
return false;
}
if (!of_device_is_available(iommu)) {
LOG_DEV_INFO(dev,
"rknpu iommu is disabled, using non-iommu mode\n");
of_node_put(iommu);
return false;
}
of_node_put(iommu);
LOG_DEV_INFO(dev, "rknpu iommu is enabled, using iommu mode\n");
return true;
}
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
static int drm_fake_dev_register(struct rknpu_device *rknpu_dev)
{
const struct platform_device_info rknpu_dev_info = {
.name = "rknpu_dev",
.id = PLATFORM_DEVID_AUTO,
.dma_mask = rknpu_dev->config->dma_mask,
};
struct platform_device *pdev = NULL;
int ret = -EINVAL;
pdev = platform_device_register_full(&rknpu_dev_info);
if (pdev) {
ret = of_dma_configure(&pdev->dev, NULL, true);
if (ret) {
platform_device_unregister(pdev);
pdev = NULL;
}
}
rknpu_dev->fake_dev = pdev ? &pdev->dev : NULL;
return ret;
}
static void drm_fake_dev_unregister(struct rknpu_device *rknpu_dev)
{
struct platform_device *pdev = NULL;
if (!rknpu_dev->fake_dev)
return;
pdev = to_platform_device(rknpu_dev->fake_dev);
platform_device_unregister(pdev);
}
static int rknpu_drm_probe(struct rknpu_device *rknpu_dev)
{
struct device *dev = rknpu_dev->dev;
struct drm_device *drm_dev = NULL;
int ret = -EINVAL;
drm_dev = drm_dev_alloc(&rknpu_drm_driver, dev);
if (IS_ERR(drm_dev))
return PTR_ERR(drm_dev);
/* register the DRM device */
ret = drm_dev_register(drm_dev, 0);
if (ret < 0)
goto err_free_drm;
drm_dev->dev_private = rknpu_dev;
rknpu_dev->drm_dev = drm_dev;
drm_fake_dev_register(rknpu_dev);
return 0;
err_free_drm:
#if KERNEL_VERSION(4, 15, 0) <= LINUX_VERSION_CODE
drm_dev_put(drm_dev);
#else
drm_dev_unref(drm_dev);
#endif
return ret;
}
static void rknpu_drm_remove(struct rknpu_device *rknpu_dev)
{
struct drm_device *drm_dev = rknpu_dev->drm_dev;
drm_fake_dev_unregister(rknpu_dev);
drm_dev_unregister(drm_dev);
#if KERNEL_VERSION(4, 15, 0) <= LINUX_VERSION_CODE
drm_dev_put(drm_dev);
#else
drm_dev_unref(drm_dev);
#endif
}
#endif
static int rknpu_power_on(struct rknpu_device *rknpu_dev)
{
struct device *dev = rknpu_dev->dev;
int ret = -EINVAL;
#ifndef FPGA_PLATFORM
if (rknpu_dev->vdd) {
ret = regulator_enable(rknpu_dev->vdd);
if (ret) {
LOG_DEV_ERROR(
dev,
"failed to enable vdd reg for rknpu, ret: %d\n",
ret);
return ret;
}
}
if (rknpu_dev->mem) {
ret = regulator_enable(rknpu_dev->mem);
if (ret) {
LOG_DEV_ERROR(
dev,
"failed to enable mem reg for rknpu, ret: %d\n",
ret);
return ret;
}
}
#endif
ret = clk_bulk_prepare_enable(rknpu_dev->num_clks, rknpu_dev->clks);
if (ret) {
LOG_DEV_ERROR(dev, "failed to enable clk for rknpu, ret: %d\n",
ret);
return ret;
}
#ifndef FPGA_PLATFORM
rknpu_devfreq_lock(rknpu_dev);
#endif
if (rknpu_dev->multiple_domains) {
if (rknpu_dev->genpd_dev_npu0) {
#if KERNEL_VERSION(5, 5, 0) < LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(
rknpu_dev->genpd_dev_npu0);
#else
ret = pm_runtime_get_sync(rknpu_dev->genpd_dev_npu0);
#endif
if (ret < 0) {
LOG_DEV_ERROR(
dev,
"failed to get pm runtime for npu0, ret: %d\n",
ret);
goto out;
}
}
if (rknpu_dev->genpd_dev_npu1) {
#if KERNEL_VERSION(5, 5, 0) < LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(
rknpu_dev->genpd_dev_npu1);
#else
ret = pm_runtime_get_sync(rknpu_dev->genpd_dev_npu1);
#endif
if (ret < 0) {
LOG_DEV_ERROR(
dev,
"failed to get pm runtime for npu1, ret: %d\n",
ret);
goto out;
}
}
if (rknpu_dev->genpd_dev_npu2) {
#if KERNEL_VERSION(5, 5, 0) < LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(
rknpu_dev->genpd_dev_npu2);
#else
ret = pm_runtime_get_sync(rknpu_dev->genpd_dev_npu2);
#endif
if (ret < 0) {
LOG_DEV_ERROR(
dev,
"failed to get pm runtime for npu2, ret: %d\n",
ret);
goto out;
}
}
}
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
LOG_DEV_ERROR(dev,
"failed to get pm runtime for rknpu, ret: %d\n",
ret);
}
if (rknpu_dev->config->state_init != NULL)
rknpu_dev->config->state_init(rknpu_dev);
out:
#ifndef FPGA_PLATFORM
rknpu_devfreq_unlock(rknpu_dev);
#endif
return ret;
}
static int rknpu_power_off(struct rknpu_device *rknpu_dev)
{
struct device *dev = rknpu_dev->dev;
#ifndef FPGA_PLATFORM
int ret;
bool val;
rknpu_devfreq_lock(rknpu_dev);
#endif
pm_runtime_put_sync(dev);
if (rknpu_dev->multiple_domains) {
#ifndef FPGA_PLATFORM
/*
* Because IOMMU's runtime suspend callback is asynchronous,
* So it may be executed after the NPU is turned off after PD/CLK/VD,
* and the runtime suspend callback has a register access.
* If the PD/VD/CLK is closed, the register access will crash.
* As a workaround, it's safe to close pd stuff until iommu disabled.
* If pm runtime framework can handle this issue in the future, remove
* this.
*/
ret = readx_poll_timeout(rockchip_iommu_is_enabled, dev, val,
!val, NPU_MMU_DISABLED_POLL_PERIOD_US,
NPU_MMU_DISABLED_POLL_TIMEOUT_US);
if (ret) {
LOG_DEV_ERROR(dev, "iommu still enabled\n");
pm_runtime_get_sync(dev);
rknpu_devfreq_unlock(rknpu_dev);
return ret;
}
#else
if (rknpu_dev->iommu_en)
msleep(20);
#endif
if (rknpu_dev->genpd_dev_npu2)
pm_runtime_put_sync(rknpu_dev->genpd_dev_npu2);
if (rknpu_dev->genpd_dev_npu1)
pm_runtime_put_sync(rknpu_dev->genpd_dev_npu1);
if (rknpu_dev->genpd_dev_npu0)
pm_runtime_put_sync(rknpu_dev->genpd_dev_npu0);
}
#ifndef FPGA_PLATFORM
rknpu_devfreq_unlock(rknpu_dev);
#endif
clk_bulk_disable_unprepare(rknpu_dev->num_clks, rknpu_dev->clks);
#ifndef FPGA_PLATFORM
if (rknpu_dev->vdd)
regulator_disable(rknpu_dev->vdd);
if (rknpu_dev->mem)
regulator_disable(rknpu_dev->mem);
#endif
return 0;
}
static int rknpu_register_irq(struct platform_device *pdev,
struct rknpu_device *rknpu_dev)
{
const struct rknpu_config *config = rknpu_dev->config;
struct device *dev = &pdev->dev;
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
struct resource *res;
#endif
int i, ret, irq;
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
config->irqs[0].name);
if (res) {
/* there are irq names in dts */
for (i = 0; i < config->num_irqs; i++) {
irq = platform_get_irq_byname(pdev,
config->irqs[i].name);
if (irq < 0) {
LOG_DEV_ERROR(dev, "no npu %s in dts\n",
config->irqs[i].name);
return irq;
}
ret = devm_request_irq(dev, irq,
config->irqs[i].irq_hdl,
IRQF_SHARED, dev_name(dev),
rknpu_dev);
if (ret < 0) {
LOG_DEV_ERROR(dev, "request %s failed: %d\n",
config->irqs[i].name, ret);
return ret;
}
}
} else {
/* no irq names in dts */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
LOG_DEV_ERROR(dev, "no npu irq in dts\n");
return irq;
}
ret = devm_request_irq(dev, irq, rknpu_core0_irq_handler,
IRQF_SHARED, dev_name(dev), rknpu_dev);
if (ret < 0) {
LOG_DEV_ERROR(dev, "request irq failed: %d\n", ret);
return ret;
}
}
#else
/* there are irq names in dts */
for (i = 0; i < config->num_irqs; i++) {
irq = platform_get_irq_byname(pdev, config->irqs[i].name);
if (irq < 0) {
irq = platform_get_irq(pdev, i);
if (irq < 0) {
LOG_DEV_ERROR(dev, "no npu %s in dts\n",
config->irqs[i].name);
return irq;
}
}
ret = devm_request_irq(dev, irq, config->irqs[i].irq_hdl,
IRQF_SHARED, dev_name(dev), rknpu_dev);
if (ret < 0) {
LOG_DEV_ERROR(dev, "request %s failed: %d\n",
config->irqs[i].name, ret);
return ret;
}
}
#endif
return 0;
}
static int rknpu_find_sram_resource(struct rknpu_device *rknpu_dev)
{
struct device *dev = rknpu_dev->dev;
struct device_node *sram_node = NULL;
struct resource sram_res;
uint32_t sram_size = 0;
int ret = -EINVAL;
/* get sram device node */
sram_node = of_parse_phandle(dev->of_node, "rockchip,sram", 0);
rknpu_dev->sram_size = 0;
if (!sram_node)
return -EINVAL;
/* get sram start and size */
ret = of_address_to_resource(sram_node, 0, &sram_res);
of_node_put(sram_node);
if (ret)
return ret;
/* check sram start and size is PAGE_SIZE align */
rknpu_dev->sram_start = round_up(sram_res.start, PAGE_SIZE);
rknpu_dev->sram_end = round_down(
sram_res.start + resource_size(&sram_res), PAGE_SIZE);
if (rknpu_dev->sram_end <= rknpu_dev->sram_start) {
LOG_DEV_WARN(
dev,
"invalid sram resource, sram start %pa, sram end %pa\n",
&rknpu_dev->sram_start, &rknpu_dev->sram_end);
return -EINVAL;
}
sram_size = rknpu_dev->sram_end - rknpu_dev->sram_start;
rknpu_dev->sram_base_io =
devm_ioremap(dev, rknpu_dev->sram_start, sram_size);
if (IS_ERR(rknpu_dev->sram_base_io)) {
LOG_DEV_ERROR(dev, "failed to remap sram base io!\n");
rknpu_dev->sram_base_io = NULL;
}
rknpu_dev->sram_size = sram_size;
LOG_DEV_INFO(dev, "sram region: [%pa, %pa), sram size: %#x\n",
&rknpu_dev->sram_start, &rknpu_dev->sram_end,
rknpu_dev->sram_size);
return 0;
}
static int rknpu_find_nbuf_resource(struct rknpu_device *rknpu_dev)
{
struct device *dev = rknpu_dev->dev;
if (rknpu_dev->config->nbuf_size == 0)
return -EINVAL;
rknpu_dev->nbuf_start = rknpu_dev->config->nbuf_phyaddr;
rknpu_dev->nbuf_size = rknpu_dev->config->nbuf_size;
rknpu_dev->nbuf_base_io =
devm_ioremap(dev, rknpu_dev->nbuf_start, rknpu_dev->nbuf_size);
if (IS_ERR(rknpu_dev->nbuf_base_io)) {
LOG_DEV_ERROR(dev, "failed to remap nbuf base io!\n");
rknpu_dev->nbuf_base_io = NULL;
}
rknpu_dev->nbuf_end = rknpu_dev->nbuf_start + rknpu_dev->nbuf_size;
LOG_DEV_INFO(dev, "nbuf region: [%pa, %pa), nbuf size: %#x\n",
&rknpu_dev->nbuf_start, &rknpu_dev->nbuf_end,
rknpu_dev->nbuf_size);
return 0;
}
static int rknpu_get_invalid_core_mask(struct device *dev)
{
int ret = 0;
u8 invalid_core_mask = 0;
if (of_property_match_string(dev->of_node, "nvmem-cell-names",
"cores") >= 0) {
ret = rockchip_nvmem_cell_read_u8(dev->of_node, "cores",
&invalid_core_mask);
/* The default valid npu cores for RK3583 are core0 and core1 */
invalid_core_mask |= RKNPU_CORE2_MASK;
if (ret) {
LOG_DEV_ERROR(
dev,
"failed to get specification_serial_number\n");
return invalid_core_mask;
}
}
return (int)invalid_core_mask;
}
static int rknpu_probe(struct platform_device *pdev)
{
struct resource *res = NULL;
struct rknpu_device *rknpu_dev = NULL;
struct device *dev = &pdev->dev;
struct device *virt_dev = NULL;
const struct of_device_id *match = NULL;
const struct rknpu_config *config = NULL;
int ret = -EINVAL, i = 0;
if (!pdev->dev.of_node) {
LOG_DEV_ERROR(dev, "rknpu device-tree data is missing!\n");
return -ENODEV;
}
match = of_match_device(rknpu_of_match, dev);
if (!match) {
LOG_DEV_ERROR(dev, "rknpu device-tree entry is missing!\n");
return -ENODEV;
}
rknpu_dev = devm_kzalloc(dev, sizeof(*rknpu_dev), GFP_KERNEL);
if (!rknpu_dev) {
LOG_DEV_ERROR(dev, "failed to allocate rknpu device!\n");
return -ENOMEM;
}
config = of_device_get_match_data(dev);
if (!config)
return -EINVAL;
if (match->data == (void *)&rk3588_rknpu_config) {
int invalid_core_mask = rknpu_get_invalid_core_mask(dev);
/* The default valid npu cores for RK3583 are core0 and core1 */
if (invalid_core_mask & RKNPU_CORE2_MASK) {
if ((invalid_core_mask & RKNPU_CORE0_MASK) ||
(invalid_core_mask & RKNPU_CORE1_MASK)) {
LOG_DEV_ERROR(
dev,
"rknpu core invalid, invalid core mask: %#x\n",
invalid_core_mask);
return -ENODEV;
}
config = &rk3583_rknpu_config;
}
}
rknpu_dev->config = config;
rknpu_dev->dev = dev;
dev_set_drvdata(dev, rknpu_dev);
rknpu_dev->iommu_en = rknpu_is_iommu_enable(dev);
if (rknpu_dev->iommu_en) {
rknpu_dev->iommu_group = iommu_group_get(dev);
if (!rknpu_dev->iommu_group)
return -EINVAL;
} else {
/* Initialize reserved memory resources */
ret = of_reserved_mem_device_init(dev);
if (!ret) {
LOG_DEV_INFO(
dev,
"initialize reserved memory for rknpu device!\n");
}
}
rknpu_dev->bypass_irq_handler = bypass_irq_handler;
rknpu_dev->bypass_soft_reset = bypass_soft_reset;
rknpu_reset_get(rknpu_dev);
rknpu_dev->num_clks = devm_clk_bulk_get_all(dev, &rknpu_dev->clks);
if (rknpu_dev->num_clks < 1) {
LOG_DEV_ERROR(dev, "failed to get clk source for rknpu\n");
#ifndef FPGA_PLATFORM
return -ENODEV;
#endif
}
#ifndef FPGA_PLATFORM
rknpu_dev->vdd = devm_regulator_get_optional(dev, "rknpu");
if (IS_ERR(rknpu_dev->vdd)) {
if (PTR_ERR(rknpu_dev->vdd) != -ENODEV) {
ret = PTR_ERR(rknpu_dev->vdd);
LOG_DEV_ERROR(
dev,
"failed to get vdd regulator for rknpu: %d\n",
ret);
return ret;
}
rknpu_dev->vdd = NULL;
}
rknpu_dev->mem = devm_regulator_get_optional(dev, "mem");
if (IS_ERR(rknpu_dev->mem)) {
if (PTR_ERR(rknpu_dev->mem) != -ENODEV) {
ret = PTR_ERR(rknpu_dev->mem);
LOG_DEV_ERROR(
dev,
"failed to get mem regulator for rknpu: %d\n",
ret);
return ret;
}
rknpu_dev->mem = NULL;
}
#endif
spin_lock_init(&rknpu_dev->lock);
spin_lock_init(&rknpu_dev->irq_lock);
mutex_init(&rknpu_dev->power_lock);
mutex_init(&rknpu_dev->reset_lock);
mutex_init(&rknpu_dev->domain_lock);
for (i = 0; i < config->num_irqs; i++) {
INIT_LIST_HEAD(&rknpu_dev->subcore_datas[i].todo_list);
init_waitqueue_head(&rknpu_dev->subcore_datas[i].job_done_wq);
rknpu_dev->subcore_datas[i].task_num = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res) {
LOG_DEV_ERROR(
dev,
"failed to get memory resource for rknpu\n");
return -ENXIO;
}
rknpu_dev->base[i] = devm_ioremap_resource(dev, res);
if (PTR_ERR(rknpu_dev->base[i]) == -EBUSY) {
rknpu_dev->base[i] = devm_ioremap(dev, res->start,
resource_size(res));
}
if (IS_ERR(rknpu_dev->base[i])) {
LOG_DEV_ERROR(dev,
"failed to remap register for rknpu\n");
return PTR_ERR(rknpu_dev->base[i]);
}
}
if (config->bw_priority_length > 0) {
rknpu_dev->bw_priority_base =
devm_ioremap(dev, config->bw_priority_addr,
config->bw_priority_length);
if (IS_ERR(rknpu_dev->bw_priority_base)) {
LOG_DEV_ERROR(
rknpu_dev->dev,
"failed to remap bw priority register for rknpu\n");
rknpu_dev->bw_priority_base = NULL;
}
}
if (!rknpu_dev->bypass_irq_handler) {
ret = rknpu_register_irq(pdev, rknpu_dev);
if (ret)
return ret;
} else {
LOG_DEV_WARN(dev, "bypass irq handler!\n");
}
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
ret = rknpu_drm_probe(rknpu_dev);
if (ret) {
LOG_DEV_ERROR(dev, "failed to probe device for rknpu\n");
return ret;
}
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_DMA_HEAP
rknpu_dev->miscdev.minor = MISC_DYNAMIC_MINOR;
rknpu_dev->miscdev.name = "rknpu";
rknpu_dev->miscdev.fops = &rknpu_fops;
ret = misc_register(&rknpu_dev->miscdev);
if (ret) {
LOG_DEV_ERROR(dev, "cannot register miscdev (%d)\n", ret);
return ret;
}
rknpu_dev->heap = rk_dma_heap_find("rk-dma-heap-cma");
if (!rknpu_dev->heap) {
LOG_DEV_ERROR(dev, "failed to find cma heap\n");
return -ENOMEM;
}
rk_dma_heap_set_dev(dev);
LOG_DEV_INFO(dev, "Initialized %s: v%d.%d.%d for %s\n", DRIVER_DESC,
DRIVER_MAJOR, DRIVER_MINOR, DRIVER_PATCHLEVEL,
DRIVER_DATE);
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_FENCE
ret = rknpu_fence_context_alloc(rknpu_dev);
if (ret) {
LOG_DEV_ERROR(dev,
"failed to allocate fence context for rknpu\n");
goto err_remove_drv;
}
#endif
platform_set_drvdata(pdev, rknpu_dev);
pm_runtime_enable(dev);
if (of_count_phandle_with_args(dev->of_node, "power-domains",
"#power-domain-cells") > 1) {
virt_dev = dev_pm_domain_attach_by_name(dev, "npu0");
if (!IS_ERR(virt_dev))
rknpu_dev->genpd_dev_npu0 = virt_dev;
virt_dev = dev_pm_domain_attach_by_name(dev, "npu1");
if (!IS_ERR(virt_dev))
rknpu_dev->genpd_dev_npu1 = virt_dev;
if (config->num_irqs > 2) {
virt_dev = dev_pm_domain_attach_by_name(dev, "npu2");
if (!IS_ERR(virt_dev))
rknpu_dev->genpd_dev_npu2 = virt_dev;
}
rknpu_dev->multiple_domains = true;
}
ret = rknpu_power_on(rknpu_dev);
if (ret)
goto err_remove_drv;
#ifndef FPGA_PLATFORM
rknpu_devfreq_init(rknpu_dev);
#endif
// set default power put delay to 3s
rknpu_dev->power_put_delay = 3000;
rknpu_dev->power_off_wq =
create_freezable_workqueue("rknpu_power_off_wq");
if (!rknpu_dev->power_off_wq) {
LOG_DEV_ERROR(dev, "rknpu couldn't create power_off workqueue");
ret = -ENOMEM;
goto err_devfreq_remove;
}
INIT_DEFERRABLE_WORK(&rknpu_dev->power_off_work,
rknpu_power_off_delay_work);
if (IS_ENABLED(CONFIG_NO_GKI) &&
IS_ENABLED(CONFIG_ROCKCHIP_RKNPU_SRAM) && rknpu_dev->iommu_en) {
if (!rknpu_find_sram_resource(rknpu_dev)) {
ret = rknpu_mm_create(rknpu_dev->sram_size, PAGE_SIZE,
&rknpu_dev->sram_mm);
if (ret != 0)
goto err_remove_wq;
} else {
LOG_DEV_WARN(dev, "could not find sram resource!\n");
}
}
if (IS_ENABLED(CONFIG_NO_GKI) && rknpu_dev->iommu_en &&
rknpu_dev->config->nbuf_size > 0) {
rknpu_find_nbuf_resource(rknpu_dev);
if (rknpu_dev->config->cache_sgt_init != NULL)
rknpu_dev->config->cache_sgt_init(rknpu_dev);
}
if (rknpu_dev->iommu_en)
rknpu_iommu_init_domain(rknpu_dev);
rknpu_power_off(rknpu_dev);
atomic_set(&rknpu_dev->power_refcount, 0);
atomic_set(&rknpu_dev->cmdline_power_refcount, 0);
atomic_set(&rknpu_dev->iommu_domain_refcount, 0);
rknpu_debugger_init(rknpu_dev);
rknpu_init_timer(rknpu_dev);
return 0;
err_remove_wq:
destroy_workqueue(rknpu_dev->power_off_wq);
err_devfreq_remove:
#ifndef FPGA_PLATFORM
rknpu_devfreq_remove(rknpu_dev);
#endif
err_remove_drv:
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
rknpu_drm_remove(rknpu_dev);
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_DMA_HEAP
misc_deregister(&(rknpu_dev->miscdev));
#endif
return ret;
}
static int rknpu_remove(struct platform_device *pdev)
{
struct rknpu_device *rknpu_dev = platform_get_drvdata(pdev);
int i = 0;
cancel_delayed_work_sync(&rknpu_dev->power_off_work);
destroy_workqueue(rknpu_dev->power_off_wq);
rknpu_debugger_remove(rknpu_dev);
rknpu_cancel_timer(rknpu_dev);
if (rknpu_dev->config->cache_sgt_init != NULL) {
for (i = 0; i < RKNPU_CACHE_SG_TABLE_NUM; i++) {
if (rknpu_dev->cache_sgt[i]) {
sg_free_table(rknpu_dev->cache_sgt[i]);
kfree(rknpu_dev->cache_sgt[i]);
rknpu_dev->cache_sgt[i] = NULL;
}
}
}
for (i = 0; i < rknpu_dev->config->num_irqs; i++) {
WARN_ON(rknpu_dev->subcore_datas[i].job);
WARN_ON(!list_empty(&rknpu_dev->subcore_datas[i].todo_list));
}
if (IS_ENABLED(CONFIG_ROCKCHIP_RKNPU_SRAM) && rknpu_dev->sram_mm)
rknpu_mm_destroy(rknpu_dev->sram_mm);
if (rknpu_dev->iommu_en) {
rknpu_iommu_free_domains(rknpu_dev);
iommu_group_put(rknpu_dev->iommu_group);
}
#ifdef CONFIG_ROCKCHIP_RKNPU_DRM_GEM
rknpu_drm_remove(rknpu_dev);
#endif
#ifdef CONFIG_ROCKCHIP_RKNPU_DMA_HEAP
misc_deregister(&(rknpu_dev->miscdev));
#endif
#ifndef FPGA_PLATFORM
rknpu_devfreq_remove(rknpu_dev);
#endif
mutex_lock(&rknpu_dev->power_lock);
if (atomic_read(&rknpu_dev->power_refcount) > 0)
rknpu_power_off(rknpu_dev);
mutex_unlock(&rknpu_dev->power_lock);
if (rknpu_dev->multiple_domains) {
if (rknpu_dev->genpd_dev_npu0)
dev_pm_domain_detach(rknpu_dev->genpd_dev_npu0, true);
if (rknpu_dev->genpd_dev_npu1)
dev_pm_domain_detach(rknpu_dev->genpd_dev_npu1, true);
if (rknpu_dev->genpd_dev_npu2)
dev_pm_domain_detach(rknpu_dev->genpd_dev_npu2, true);
}
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifndef FPGA_PLATFORM
#ifdef CONFIG_PM_SLEEP
static int rknpu_suspend(struct device *dev)
{
struct rknpu_device *rknpu_dev = dev_get_drvdata(dev);
rknpu_power_get(rknpu_dev);
return pm_runtime_force_suspend(dev);
}
static int rknpu_resume(struct device *dev)
{
struct rknpu_device *rknpu_dev = dev_get_drvdata(dev);
rknpu_power_put_delay(rknpu_dev);
return pm_runtime_force_resume(dev);
}
#endif
static int rknpu_runtime_suspend(struct device *dev)
{
return rknpu_devfreq_runtime_suspend(dev);
}
static int rknpu_runtime_resume(struct device *dev)
{
return rknpu_devfreq_runtime_resume(dev);
}
static const struct dev_pm_ops rknpu_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rknpu_suspend, rknpu_resume) SET_RUNTIME_PM_OPS(
rknpu_runtime_suspend, rknpu_runtime_resume, NULL)
};
#endif
static struct platform_driver rknpu_driver = {
.probe = rknpu_probe,
.remove = rknpu_remove,
.driver = {
.owner = THIS_MODULE,
.name = "RKNPU",
#ifndef FPGA_PLATFORM
.pm = &rknpu_pm_ops,
#endif
.of_match_table = of_match_ptr(rknpu_of_match),
},
};
static int rknpu_init(void)
{
return platform_driver_register(&rknpu_driver);
}
static void rknpu_exit(void)
{
platform_driver_unregister(&rknpu_driver);
}
late_initcall(rknpu_init);
module_exit(rknpu_exit);
MODULE_DESCRIPTION("RKNPU driver");
MODULE_AUTHOR("Felix Zeng <felix.zeng@rock-chips.com>");
MODULE_ALIAS("rockchip-rknpu");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(RKNPU_GET_DRV_VERSION_STRING(DRIVER_MAJOR, DRIVER_MINOR,
DRIVER_PATCHLEVEL));
#if KERNEL_VERSION(5, 16, 0) < LINUX_VERSION_CODE
MODULE_IMPORT_NS(DMA_BUF);
#endif