2522 lines
69 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* PWM driver for Rockchip SoCs
*
* Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
* Copyright (C) 2014 ROCKCHIP, Inc.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/pwm-rockchip.h>
#include <linux/time.h>
#include <media/rc-core.h>
#include "pwm-rockchip-irq-callbacks.h"
#define PWM_MAX_CHANNEL_NUM 8
#define PWM_IR_TRANSMIT_BUFFER_SIZE 7
/*
* regs for pwm v1-v3
*/
#define PWM_CTRL_TIMER_EN (1 << 0)
#define PWM_CTRL_OUTPUT_EN (1 << 3)
/* PWM_PERIOD_HPR */
#define PWM_PERIOD_HPR 0x4
/* PWM_DUTY_LPR */
#define PWM_DUTY_LPR 0x8
/* PWM_CTRL */
#define PWM_CTRL_V1 0xc
#define PWM_ENABLE (1 << 0)
#define PWM_MODE_SHIFT 1
#define PWM_MODE_MASK (0x3 << PWM_MODE_SHIFT)
#define PWM_ONESHOT (0 << PWM_MODE_SHIFT)
#define PWM_CONTINUOUS (1 << PWM_MODE_SHIFT)
#define PWM_CAPTURE (2 << PWM_MODE_SHIFT)
#define PWM_DUTY_POSITIVE (1 << 3)
#define PWM_DUTY_NEGATIVE (0 << 3)
#define PWM_INACTIVE_NEGATIVE (0 << 4)
#define PWM_INACTIVE_POSITIVE (1 << 4)
#define PWM_POLARITY_MASK (PWM_DUTY_POSITIVE | PWM_INACTIVE_POSITIVE)
#define PWM_OUTPUT_LEFT (0 << 5)
#define PWM_OUTPUT_CENTER (1 << 5)
#define PWM_LOCK_EN (1 << 6)
#define PWM_LP_DISABLE (0 << 8)
#define PWM_CLK_SEL_SHIFT 9
#define PWM_CLK_SEL_MASK (1 << PWM_CLK_SEL_SHIFT)
#define PWM_SEL_NO_SCALED_CLOCK (0 << PWM_CLK_SEL_SHIFT)
#define PWM_SEL_SCALED_CLOCK (1 << PWM_CLK_SEL_SHIFT)
#define PWM_PRESCELE_SHIFT 12
#define PWM_PRESCALE_MASK (0x3 << PWM_PRESCELE_SHIFT)
#define PWM_SCALE_SHIFT 16
#define PWM_SCALE_MASK (0xff << PWM_SCALE_SHIFT)
#define PWM_ONESHOT_COUNT_SHIFT 24
#define PWM_ONESHOT_COUNT_MASK (0xff << PWM_ONESHOT_COUNT_SHIFT)
#define PWM_REG_INTSTS(n) ((3 - (n)) * 0x10 + 0x10)
#define PWM_REG_INT_EN(n) ((3 - (n)) * 0x10 + 0x14)
#define PWM_CH_INT(n) BIT(n)
/*
* regs for pwm v4
*/
#define HIWORD_UPDATE(v, l, h) (((v) << (l)) | (GENMASK(h, l) << 16))
/* VERSION_ID */
#define VERSION_ID 0x0
#define CHANNEL_NUM_SUPPORT_SHIFT 0
#define CHANNEL_NUM_SUPPORT_MASK (0xf << CHANNEL_NUM_SUPPORT_SHIFT)
#define CHANNLE_INDEX_SHIFT 4
#define CHANNLE_INDEX_MASK (0xf << CHANNLE_INDEX_SHIFT)
#define IR_TRANS_SUPPORT BIT(8)
#define POWER_KEY_SUPPORT BIT(9)
#define FREQ_METER_SUPPORT BIT(10)
#define COUNTER_SUPPORT BIT(11)
#define WAVE_SUPPORT BIT(12)
#define FILTER_SUPPORT BIT(13)
#define BIPHASIC_SUPPORT BIT(14)
#define MINOR_VERSION_SHIFT 16
#define MINOR_VERSION_MASK (0xff << MINOR_VERSION_SHIFT)
#define MAIN_VERSION_SHIFT 24
#define MAIN_VERSION_MASK (0xff << MAIN_VERSION_SHIFT)
/* ENABLE */
#define ENABLE 0x4
#define PWM_ENABLE_V4 (0x3 << 0)
#define PWM_CLK_EN(v) HIWORD_UPDATE(v, 0, 0)
#define PWM_EN(v) HIWORD_UPDATE(v, 1, 1)
#define PWM_CTRL_UPDATE_EN(v) HIWORD_UPDATE(v, 2, 2)
#define PWM_GLOBAL_JOIN_EN(v) HIWORD_UPDATE(v, 4, 4)
/* CLK_CTRL */
#define CLK_CTRL 0x8
#define CLK_PRESCALE(v) HIWORD_UPDATE(v, 0, 2)
#define CLK_SCALE(v) HIWORD_UPDATE(v, 4, 12)
#define CLK_SRC_SEL(v) HIWORD_UPDATE(v, 13, 14)
#define SRC_CLK_PWM 0
#define SRC_CLK_PWM_OSC 1
#define SRC_CLK_PWM_RC 2
#define CLK_GLOBAL_SEL(v) HIWORD_UPDATE(v, 15, 15)
/* CTRL */
#define CTRL_V4 0xc
#define PWM_MODE(v) HIWORD_UPDATE(v, 0, 1)
#define ONESHOT_MODE 0
#define CONTINUOUS_MODE 1
#define CAPTURE_MODE 2
#define PWM_POLARITY(v) HIWORD_UPDATE(v, 2, 3)
#define DUTY_NEGATIVE (0 << 0)
#define DUTY_POSITIVE (1 << 0)
#define INACTIVE_NEGATIVE (0 << 1)
#define INACTIVE_POSITIVE (1 << 1)
#define PWM_ALIGNED_INVALID(v) HIWORD_UPDATE(v, 5, 5)
#define PWM_IN_SEL(v) HIWORD_UPDATE(v, 6, 8)
/* PERIOD */
#define PERIOD 0x10
/* DUTY */
#define DUTY 0x14
/* OFFSET */
#define OFFSET 0x18
/* RPT */
#define RPT 0x1c
#define FIRST_DIMENSIONAL_SHIFT 0
#define SECOND_DIMENSINAL_SHIFT 16
/* HPC */
#define HPC 0x2c
/* LPC */
#define LPC 0x30
/* BIPHASIC_COUNTER_CTRL0 */
#define BIPHASIC_CTRL0 0x40
#define BIPHASIC_EN(v) HIWORD_UPDATE(v, 0, 0)
#define BIPHASIC_CONTINOUS_MODE_EN(v) HIWORD_UPDATE(v, 1, 1)
#define BIPHASIC_MODE(v) HIWORD_UPDATE(v, 3, 5)
#define BIPHASIC_SYNC_EN(v) HIWORD_UPDATE(v, 7, 7)
/* BIPHASIC_COUNTER_CTRL1 */
#define BIPHASIC_CTRL1 0x44
/* BIPHASIC_COUNTER_TIMER_VALUE */
#define BIPHASIC_TIMER_VALUE 0x48
/* BIPHASIC_COUNTER_RESULT_VALUE */
#define BIPHASIC_RESULT_VALUE 0x4c
/* BIPHASIC_COUNTER_RESULT_VALUE_SYNC */
#define BIPHASIC_RESULT_VALUE_SYNC 0x50
/* INTSTS*/
#define INTSTS 0x70
#define CAP_LPR_INTSTS_SHIFT 0
#define CAP_HPR_INTSTS_SHIFT 1
#define ONESHOT_END_INTSTS_SHIFT 2
#define RELOAD_INTSTS_SHIFT 3
#define FREQ_INTSTS_SHIFT 4
#define PWR_INTSTS_SHIFT 5
#define IR_TRANS_END_INTSTS_SHIFT 6
#define WAVE_MAX_INTSTS_SHIFT 7
#define WAVE_MIDDLE_INTSTS_SHIFT 8
#define BIPHASIC_INISTS_SHIFT 9
#define CAP_LPR_INT BIT(CAP_LPR_INTSTS_SHIFT)
#define CAP_HPR_INT BIT(CAP_HPR_INTSTS_SHIFT)
#define ONESHOT_END_INT BIT(ONESHOT_END_INTSTS_SHIFT)
#define RELOAD_INT BIT(RELOAD_INTSTS_SHIFT)
#define FREQ_INT BIT(FREQ_INTSTS_SHIFT)
#define PWR_INT BIT(PWR_INTSTS_SHIFT)
#define IR_TRANS_END_INT BIT(IR_TRANS_END_INTSTS_SHIFT)
#define WAVE_MAX_INT BIT(WAVE_MAX_INTSTS_SHIFT)
#define WAVE_MIDDLE_INT BIT(WAVE_MIDDLE_INTSTS_SHIFT)
#define BIPHASIC_INT BIT(BIPHASIC_INISTS_SHIFT)
/* INT_EN */
#define INT_EN 0x74
#define CAP_LPR_INT_EN(v) HIWORD_UPDATE(v, 0, 0)
#define CAP_HPR_INT_EN(v) HIWORD_UPDATE(v, 1, 1)
#define ONESHOT_END_INT_EN(v) HIWORD_UPDATE(v, 2, 2)
#define RELOAD_INT_EN(v) HIWORD_UPDATE(v, 3, 3)
#define FREQ_INT_EN(v) HIWORD_UPDATE(v, 4, 4)
#define PWR_INT_EN(v) HIWORD_UPDATE(v, 5, 5)
#define IR_TRANS_END_INT_EN(v) HIWORD_UPDATE(v, 6, 6)
#define WAVE_MAX_INT_EN(v) HIWORD_UPDATE(v, 7, 7)
#define WAVE_MIDDLE_INT_EN(v) HIWORD_UPDATE(v, 8, 8)
#define BIPHASIC_INT_EN(v) HIWORD_UPDATE(v, 9, 9)
/* WAVE_MEM_ARBITER */
#define WAVE_MEM_ARBITER 0x80
#define WAVE_MEM_GRANT_SHIFT 0
#define WAVE_MEM_READ_LOCK_SHIFT 16
/* WAVE_MEM_STATUS */
#define WAVE_MEM_STATUS 0x84
#define WAVE_MEM_STATUS_SHIFT 0
/* WAVE_CTRL */
#define WAVE_CTRL 0x88
#define WAVE_DUTY_EN(v) HIWORD_UPDATE(v, 0, 0)
#define WAVE_PERIOD_EN(v) HIWORD_UPDATE(v, 1, 1)
#define WAVE_WIDTH_MODE(v) HIWORD_UPDATE(v, 2, 2)
#define WAVE_UPDATE_MODE(v) HIWORD_UPDATE(v, 3, 3)
#define WAVE_MEM_CLK_SEL(v) HIWORD_UPDATE(v, 4, 5)
#define WAVE_DUTY_AMPLIFY(v) HIWORD_UPDATE(v, 6, 10)
#define WAVE_PERIOD_AMPLIFY(v) HIWORD_UPDATE(v, 11, 15)
/* WAVE_MAX */
#define WAVE_MAX 0x8c
#define WAVE_DUTY_MAX_SHIFT 0
#define WAVE_PERIOD_MAX_SHIFT 16
/* WAVE_MIN */
#define WAVE_MIN 0x90
#define WAVE_DUTY_MIN_SHIFT 0
#define WAVE_PERIOD_MIN_SHIFT 16
/* WAVE_OFFSET */
#define WAVE_OFFSET 0x94
#define WAVE_OFFSET_SHIFT 0
/* WAVE_MIDDLE */
#define WAVE_MIDDLE 0x98
#define WAVE_MIDDLE_SHIFT 0
/* WAVE_HOLD */
#define WAVE_HOLD 0x9c
#define MAX_HOLD_SHIFT 0
#define MIN_HOLD_SHIFT 8
#define MIDDLE_HOLD_SHIFT 16
/* GLOBAL_ARBITER */
#define GLOBAL_ARBITER 0xc0
#define GLOBAL_GRANT_SHIFT 0
#define GLOBAL_READ_LOCK_SHIFT 16
/* GLOBAL_CTRL */
#define GLOBAL_CTRL 0xc4
#define GLOBAL_PWM_EN(v) HIWORD_UPDATE(v, 0, 0)
#define GLOBAL_PWM_UPDATE_EN(v) HIWORD_UPDATE(v, 1, 1)
/* IR_TRANS_ARBITER */
#define IR_TRANS_ARBITER 0x180
#define IR_TRANS_GRANT_SHIFT 0
#define IR_TRANS_READ_LOCK_SHIFT 16
/* IR_TRANS_CTRL0 */
#define IR_TRANS_CTRL0 0x184
#define IR_TRANS_OUT_ENABLE(v) HIWORD_UPDATE(v, 0, 0)
#define IR_TRANS_DUTY_POL(v) HIWORD_UPDATE(v, 1, 1)
#define IR_TRANS_INACTIVE_POL(v) HIWORD_UPDATE(v, 2, 2)
#define IR_TRANS_MODE(v) HIWORD_UPDATE(v, 3, 3)
#define IR_TRANS_FORMAT(v) HIWORD_UPDATE(v, 4, 7)
#define NEC_WITH_SIMPLE_REPEAT_CODE 0
#define NEC_WITH_FULL_REPEAT_CODE 1
#define TC9012 2
#define SONY 3
/* IR_TRANS_CTRL1 */
#define IR_TRANS_CTRL1 0x188
#define IR_TRANS_RPT(v) HIWORD_UPDATE(v, 0, 15)
/* IR_TRANS_PRE */
#define IR_TRANS_PRE 0x18c
#define IR_TRANS_OUT_LOW_PRELOAD_SHIFT 0
#define IR_TRANS_OUT_HIGH_PRELOAD_SHIFT 16
/* IR_TRANS_SPRE */
#define IR_TRANS_SPRE 0x190
#define IR_TRANS_OUT_HIGH_SIMPLE_PRELOAD_SHIFT 0
/* IR_TRANS_LD */
#define IR_TRANS_LD 0x194
#define IR_TRANS_OUT_DATA_LOW_PERIOD_SHIFT 0
/* IR_TRANS_HD */
#define IR_TRANS_HD 0x198
#define IR_TRANS_OUT_HIGH_PERIOD_FOR_ZERO_SHIFT 0
#define IR_TRANS_OUT_HIGH_PERIOD_FOR_ONE_SHIFT 16
/* IR_TRANS_BURST_FRAME */
#define IR_TRANS_BURST_FRAME 0x19c
#define IR_TRANS_OUT_FRAME_PERIOD_SHIFT 0
#define IR_TRANS_OUT_FRAME_PERIOD_MASK (0x3ffff << IR_TRANS_OUT_FRAME_PERIOD_SHIFT)
#define IR_TRANS_OUT_BURST_PERIOD_SHIFT 20
/* IR_TRANS_DATA_VALUE */
#define IR_TRANS_DATA_VALUE 0x1a0
#define IR_TRANS_OUT_VALUE_SHIFT 0
/* FREQ_ARBITER */
#define FREQ_ARBITER 0x1c0
#define FREQ_GRANT_SHIFT 0
#define FREQ_READ_LOCK_SHIFT 16
/* FREQ_CTRL */
#define FREQ_CTRL 0x1c4
#define FREQ_EN(v) HIWORD_UPDATE(v, 0, 0)
#define FREQ_CLK_SEL(v) HIWORD_UPDATE(v, 1, 1)
#define FREQ_CHANNEL_SEL(v) HIWORD_UPDATE(v, 3, 5)
#define FREQ_CLK_SWITCH_MODE(v) HIWORD_UPDATE(v, 6, 6)
#define FREQ_TIMIER_CLK_SEL(v) HIWORD_UPDATE(v, 7, 7)
/* FREQ_TIMER_VALUE */
#define FREQ_TIMER_VALUE 0x1c8
/* FREQ_RESULT_VALUE */
#define FREQ_RESULT_VALUE 0x1cc
/* COUNTER_ARBITER */
#define COUNTER_ARBITER 0x200
#define COUNTER_GRANT_SHIFT 0
#define COUNTER_READ_LOCK_SHIFT 16
/* COUNTER_CTRL */
#define COUNTER_CTRL 0x204
#define COUNTER_EN(v) HIWORD_UPDATE(v, 0, 0)
#define COUNTER_CLK_SEL(v) HIWORD_UPDATE(v, 1, 2)
#define COUNTER_CHANNEL_SEL(v) HIWORD_UPDATE(v, 3, 5)
#define COUNTER_CLR(v) HIWORD_UPDATE(v, 6, 6)
/* COUNTER_LOW */
#define COUNTER_LOW 0x208
/* COUNTER_HIGH */
#define COUNTER_HIGH 0x20c
/* WAVE_MEM */
#define WAVE_MEM 0x400
struct rockchip_pwm_chip {
struct pwm_chip chip;
struct clk *clk;
struct clk *pclk;
struct clk *clk_osc;
struct pinctrl *pinctrl;
struct pinctrl_state *active_state;
struct delayed_work pwm_work;
const struct rockchip_pwm_data *data;
const struct rockchip_pwm_biphasic_config *biphasic_config;
struct resource *res;
struct dentry *debugfs;
struct completion ir_trans_completion;
void __iomem *base;
unsigned long clk_rate;
unsigned long is_clk_enabled;
bool vop_pwm_en; /* indicate voppwm mirror register state */
bool center_aligned;
bool oneshot_en;
bool capture_en;
bool wave_en;
bool global_ctrl_grant;
bool ir_trans_support;
bool freq_meter_support;
bool counter_support;
bool wave_support;
bool biphasic_support;
bool freq_res_valid;
bool biphasic_res_valid;
int channel_id;
int irq;
u32 scaler;
u8 main_version;
u8 capture_cnt;
};
struct rockchip_pwm_regs {
unsigned long duty;
unsigned long period;
unsigned long ctrl;
unsigned long version;
unsigned long enable;
};
struct rockchip_pwm_funcs {
int (*enable)(struct pwm_chip *chip, struct pwm_device *pwm, bool enable);
void (*config)(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state);
void (*set_capture)(struct pwm_chip *chip, struct pwm_device *pwm, bool enable);
int (*get_capture_result)(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *catpure_res);
int (*set_counter)(struct pwm_chip *chip, struct pwm_device *pwm,
enum rockchip_pwm_counter_input_sel input_sel, bool enable);
int (*get_counter_result)(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long *counter_res, bool is_clear);
int (*set_freq_meter)(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long delay_ms,
enum rockchip_pwm_freq_meter_input_sel input_sel,
bool enable);
int (*get_freq_meter_result)(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long delay_ms, unsigned long *freq_hz);
int (*global_ctrl)(struct pwm_chip *chip, struct pwm_device *pwm,
enum rockchip_pwm_global_ctrl_cmd cmd);
int (*set_wave_table)(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_wave_table *table_config,
enum rockchip_pwm_wave_table_width_mode width_mode);
int (*set_wave)(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_wave_config *config);
int (*set_biphasic)(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_biphasic_config *config);
int (*get_biphasic_result)(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long *biphasic_res);
int (*ir_transmit)(struct pwm_chip *chip, unsigned int *txbuf, unsigned int count);
irqreturn_t (*irq_handler)(int irq, void *data);
};
struct rockchip_pwm_data {
struct rockchip_pwm_regs regs;
struct rockchip_pwm_funcs funcs;
unsigned int prescaler;
bool supports_polarity;
bool supports_lock;
bool vop_pwm;
u8 main_version;
u32 enable_conf;
u32 enable_conf_mask;
u32 oneshot_cnt_max;
u32 oneshot_rpt_max;
u32 wave_table_max;
};
static inline struct rockchip_pwm_chip *to_rockchip_pwm_chip(struct pwm_chip *c)
{
return container_of(c, struct rockchip_pwm_chip, chip);
}
static int rockchip_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 enable_conf = pc->data->enable_conf;
u64 clk_rate_kHz = pc->clk_rate / 1000;
u64 tmp;
u32 scaler = pc->scaler ? pc->scaler * 2 : 1;
u32 val;
u32 dclk_div = 1;
int ret;
if (!pc->oneshot_en) {
ret = clk_enable(pc->pclk);
if (ret)
return 0;
}
if (pc->main_version < 4)
dclk_div = pc->oneshot_en ? 2 : 1;
tmp = readl_relaxed(pc->base + pc->data->regs.period);
tmp *= dclk_div * pc->data->prescaler * scaler * USEC_PER_SEC;
state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate_kHz);
tmp = readl_relaxed(pc->base + pc->data->regs.duty);
tmp *= dclk_div * pc->data->prescaler * scaler * USEC_PER_SEC;
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate_kHz);
if (pc->main_version >= 4) {
val = readl_relaxed(pc->base + pc->data->regs.enable);
} else {
val = readl_relaxed(pc->base + pc->data->regs.ctrl);
if (pc->oneshot_en) {
enable_conf &= ~PWM_MODE_MASK;
enable_conf |= PWM_ONESHOT;
} else if (pc->capture_en) {
enable_conf &= ~PWM_MODE_MASK;
enable_conf |= PWM_CAPTURE;
}
}
state->enabled = (val & enable_conf) == enable_conf;
if (pc->data->supports_polarity && !(val & PWM_DUTY_POSITIVE))
state->polarity = PWM_POLARITY_INVERSED;
else
state->polarity = PWM_POLARITY_NORMAL;
if (!pc->oneshot_en)
clk_disable(pc->pclk);
return 0;
}
static irqreturn_t rockchip_pwm_irq_v1(int irq, void *data)
{
struct rockchip_pwm_chip *pc = data;
struct pwm_state state;
u32 int_ctrl;
unsigned int id = pc->channel_id;
int val;
if (id > 3)
return IRQ_NONE;
val = readl_relaxed(pc->base + PWM_REG_INTSTS(id));
if ((val & PWM_CH_INT(id)) == 0)
return IRQ_NONE;
writel_relaxed(PWM_CH_INT(id), pc->base + PWM_REG_INTSTS(id));
if (pc->oneshot_en) {
/*
* Set pwm state to disabled when the oneshot mode finished.
*/
pwm_get_state(&pc->chip.pwms[0], &state);
state.enabled = false;
pwm_apply_state(&pc->chip.pwms[0], &state);
rockchip_pwm_oneshot_callback(&pc->chip.pwms[0], &state);
} else if (pc->capture_en) {
/*
* Capture input waveform:
* _______ _______
* | | | |
* __| |_______________| |________
* ^0 ^1 ^2
*
* At position 0, the interrupt comes, and DUTY_LPR reg shows the
* low polarity cycles which should be ignored. The effective high
* and low polarity cycles will be calculated in position 1 and
* position 2, where the interrupt comes.
*/
if (pc->capture_cnt++ > 3) {
int_ctrl = readl_relaxed(pc->base + PWM_REG_INT_EN(pc->channel_id));
int_ctrl &= ~PWM_CH_INT(pc->channel_id);
writel_relaxed(int_ctrl, pc->base + PWM_REG_INT_EN(pc->channel_id));
}
}
return IRQ_HANDLED;
}
static void rockchip_pwm_config_v1(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
unsigned long period, duty, delay_ns;
unsigned long flags;
u64 div;
u32 ctrl;
u8 dclk_div = 1;
#ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
if (state->oneshot_count > 0 && state->oneshot_count <= pc->data->oneshot_cnt_max)
dclk_div = 2;
#endif
/*
* Since period and duty cycle registers have a width of 32
* bits, every possible input period can be obtained using the
* default prescaler value for all practical clock rate values.
*/
div = (u64)pc->clk_rate * state->period;
period = DIV_ROUND_CLOSEST_ULL(div, dclk_div * pc->data->prescaler * NSEC_PER_SEC);
div = (u64)pc->clk_rate * state->duty_cycle;
duty = DIV_ROUND_CLOSEST_ULL(div, dclk_div * pc->data->prescaler * NSEC_PER_SEC);
if (pc->data->supports_lock) {
div = (u64)10 * NSEC_PER_SEC * dclk_div * pc->data->prescaler;
delay_ns = DIV_ROUND_UP_ULL(div, pc->clk_rate);
}
local_irq_save(flags);
ctrl = readl_relaxed(pc->base + PWM_CTRL_V1);
if (pc->data->vop_pwm) {
if (pc->vop_pwm_en)
ctrl |= PWM_ENABLE;
else
ctrl &= ~PWM_ENABLE;
}
#ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
if (state->oneshot_count > 0 && state->oneshot_count <= pc->data->oneshot_cnt_max) {
u32 int_ctrl;
/*
* This is a workaround, an uncertain waveform will be
* generated after oneshot ends. It is needed to enable
* the dclk scale function to resolve it. It doesn't
* matter what the scale factor is, just make sure the
* scale function is turned on, for which we set scale
* factor to 2.
*/
ctrl &= ~PWM_SCALE_MASK;
ctrl |= (dclk_div / 2) << PWM_SCALE_SHIFT;
ctrl &= ~PWM_CLK_SEL_MASK;
ctrl |= PWM_SEL_SCALED_CLOCK;
pc->oneshot_en = true;
ctrl &= ~PWM_MODE_MASK;
ctrl |= PWM_ONESHOT;
ctrl &= ~PWM_ONESHOT_COUNT_MASK;
ctrl |= (state->oneshot_count - 1) << PWM_ONESHOT_COUNT_SHIFT;
if (pc->irq >= 0) {
int_ctrl = readl_relaxed(pc->base + PWM_REG_INT_EN(pc->channel_id));
int_ctrl |= PWM_CH_INT(pc->channel_id);
writel_relaxed(int_ctrl, pc->base + PWM_REG_INT_EN(pc->channel_id));
}
} else {
u32 int_ctrl;
ctrl &= ~PWM_SCALE_MASK;
ctrl &= ~PWM_CLK_SEL_MASK;
ctrl |= PWM_SEL_NO_SCALED_CLOCK;
if (state->oneshot_count)
dev_err(chip->dev, "Oneshot_count must be between 1 and %d.\n",
pc->data->oneshot_cnt_max);
pc->oneshot_en = false;
ctrl &= ~PWM_MODE_MASK;
ctrl |= PWM_CONTINUOUS;
ctrl &= ~PWM_ONESHOT_COUNT_MASK;
int_ctrl = readl_relaxed(pc->base + PWM_REG_INT_EN(pc->channel_id));
int_ctrl &= ~PWM_CH_INT(pc->channel_id);
writel_relaxed(int_ctrl, pc->base + PWM_REG_INT_EN(pc->channel_id));
}
#endif
/*
* Lock the period and duty of previous configuration, then
* change the duty and period, that would not be effective.
*/
if (pc->data->supports_lock) {
ctrl |= PWM_LOCK_EN;
writel_relaxed(ctrl, pc->base + PWM_CTRL_V1);
}
writel(period, pc->base + PWM_PERIOD_HPR);
writel(duty, pc->base + PWM_DUTY_LPR);
if (pc->data->supports_polarity) {
ctrl &= ~PWM_POLARITY_MASK;
if (state->polarity == PWM_POLARITY_INVERSED)
ctrl |= PWM_DUTY_NEGATIVE | PWM_INACTIVE_POSITIVE;
else
ctrl |= PWM_DUTY_POSITIVE | PWM_INACTIVE_NEGATIVE;
}
/*
* Unlock and set polarity at the same time, the configuration of duty,
* period and polarity would be effective together at next period. It
* takes 10 dclk cycles to make sure lock works before unlocking.
*/
if (pc->data->supports_lock) {
ctrl &= ~PWM_LOCK_EN;
ndelay(delay_ns);
}
writel(ctrl, pc->base + PWM_CTRL_V1);
local_irq_restore(flags);
}
static int rockchip_pwm_enable_v1(struct pwm_chip *chip, struct pwm_device *pwm, bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 enable_conf = pc->data->enable_conf;
int ret;
u32 val;
if (enable) {
ret = clk_enable(pc->clk);
if (ret)
return ret;
}
val = readl_relaxed(pc->base + PWM_CTRL_V1);
val &= ~pc->data->enable_conf_mask;
if (PWM_OUTPUT_CENTER & pc->data->enable_conf_mask) {
if (pc->center_aligned)
val |= PWM_OUTPUT_CENTER;
}
if (pc->oneshot_en) {
enable_conf &= ~PWM_MODE_MASK;
enable_conf |= PWM_ONESHOT;
} else if (pc->capture_en) {
enable_conf &= ~PWM_MODE_MASK;
enable_conf |= PWM_CAPTURE;
}
if (enable) {
val |= enable_conf;
} else {
/*
* The PWM io input/output state is controlled by PWM mode
* configuration. In order to avoid the antagonistic drive
* state between the PWM pin and the external pin, keep the
* PWM mode fixed in capture mode although PWM is disabled.
*/
if (pc->capture_en)
val |= PWM_CAPTURE;
}
writel_relaxed(val, pc->base + PWM_CTRL_V1);
if (pc->data->vop_pwm)
pc->vop_pwm_en = enable;
if (!enable)
clk_disable(pc->clk);
return 0;
}
static irqreturn_t rockchip_pwm_irq_v4(int irq, void *data)
{
struct rockchip_pwm_chip *pc = data;
int val;
irqreturn_t ret = IRQ_NONE;
val = readl_relaxed(pc->base + INTSTS);
#ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
if (val & ONESHOT_END_INT) {
struct pwm_state state;
writel_relaxed(ONESHOT_END_INT, pc->base + INTSTS);
/*
* Set pwm state to disabled when the oneshot mode finished.
*/
pwm_get_state(&pc->chip.pwms[0], &state);
state.enabled = false;
state.oneshot_count = 0;
state.oneshot_repeat = 0;
pwm_apply_state(&pc->chip.pwms[0], &state);
rockchip_pwm_oneshot_callback(&pc->chip.pwms[0], &state);
ret = IRQ_HANDLED;
}
#endif
if (val & CAP_LPR_INT) {
writel_relaxed(CAP_LPR_INT, pc->base + INTSTS);
pc->capture_cnt++;
ret = IRQ_HANDLED;
} else if (val & CAP_HPR_INT) {
writel_relaxed(CAP_HPR_INT, pc->base + INTSTS);
pc->capture_cnt++;
ret = IRQ_HANDLED;
}
/*
* Capture input waveform:
* _______ _______
* | | | |
* __| |_______________| |________
* ^0 ^1 ^2
*
* At position 0, the LPR interrupt comes, and LPR reg shows the
* low polarity cycles which should be ignored. The effective high
* and low polarity cycles will be calculated in position 1 and
* position 2, where the HPR and LPR interrupts come again.
*/
if (pc->capture_cnt > 3) {
writel_relaxed(CAP_LPR_INT | CAP_HPR_INT, pc->base + INTSTS);
writel_relaxed(CAP_LPR_INT_EN(false) | CAP_HPR_INT_EN(false), pc->base + INT_EN);
}
if (val & FREQ_INT) {
writel_relaxed(FREQ_INT, pc->base + INTSTS);
pc->freq_res_valid = true;
ret = IRQ_HANDLED;
}
if (val & BIPHASIC_INT) {
writel_relaxed(BIPHASIC_INT, pc->base + INTSTS);
pc->biphasic_res_valid = true;
ret = IRQ_HANDLED;
}
if (val & WAVE_MIDDLE_INT) {
writel_relaxed(WAVE_MIDDLE_INT, pc->base + INTSTS);
rockchip_pwm_wave_middle_callback(&pc->chip.pwms[0]);
ret = IRQ_HANDLED;
}
if (val & WAVE_MAX_INT) {
writel_relaxed(WAVE_MAX_INT, pc->base + INTSTS);
rockchip_pwm_wave_max_callback(&pc->chip.pwms[0]);
ret = IRQ_HANDLED;
}
if (val & IR_TRANS_END_INT) {
writel_relaxed(IR_TRANS_END_INT, pc->base + INTSTS);
complete(&pc->ir_trans_completion);
ret = IRQ_HANDLED;
}
return ret;
}
static void rockchip_pwm_config_v4(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
unsigned long period, duty;
u64 clk_rate_kHz = pc->clk_rate / 1000;
u64 div = 0;
u64 tmp = 0;
u32 scaler = pc->scaler ? pc->scaler * 2 : 1;
u32 rpt = 0;
u32 offset = 0;
tmp = (u64)pc->data->prescaler * scaler * USEC_PER_SEC;
/*
* Since period and duty cycle registers have a width of 32
* bits, every possible input period can be obtained using the
* default prescaler value for all practical clock rate values.
*/
div = (u64)clk_rate_kHz * state->period;
period = DIV_ROUND_CLOSEST_ULL(div, tmp);
div = (u64)clk_rate_kHz * state->duty_cycle;
duty = DIV_ROUND_CLOSEST_ULL(div, tmp);
writel_relaxed(period, pc->base + PERIOD);
writel_relaxed(duty, pc->base + DUTY);
if (pc->data->supports_polarity) {
if (state->polarity == PWM_POLARITY_INVERSED)
writel_relaxed(PWM_POLARITY(DUTY_NEGATIVE | INACTIVE_POSITIVE),
pc->base + CTRL_V4);
else
writel_relaxed(PWM_POLARITY(DUTY_POSITIVE | INACTIVE_NEGATIVE),
pc->base + CTRL_V4);
}
#ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
if ((state->oneshot_count > 0 && state->oneshot_count <= pc->data->oneshot_cnt_max) &&
(state->oneshot_repeat <= pc->data->oneshot_rpt_max)) {
rpt |= (state->oneshot_count - 1) << FIRST_DIMENSIONAL_SHIFT;
if (state->oneshot_repeat)
rpt |= (state->oneshot_repeat - 1) << SECOND_DIMENSINAL_SHIFT;
if (state->duty_offset > 0 &&
state->duty_offset <= (state->period - state->duty_cycle)) {
div = (u64)clk_rate_kHz * state->duty_offset;
offset = DIV_ROUND_CLOSEST_ULL(div, tmp);
} else if (state->duty_offset > (state->period - state->duty_cycle)) {
dev_err(chip->dev, "Duty_offset must be between %lld and %lld.\n",
state->duty_cycle, state->period);
}
pc->oneshot_en = true;
} else {
if (state->oneshot_count)
dev_err(chip->dev, "Oneshot_count must be between 1 and %d.\n",
pc->data->oneshot_cnt_max);
pc->oneshot_en = false;
}
#endif
if (pc->oneshot_en) {
writel_relaxed(PWM_MODE(ONESHOT_MODE) | PWM_ALIGNED_INVALID(true),
pc->base + CTRL_V4);
writel_relaxed(offset, pc->base + OFFSET);
writel_relaxed(rpt, pc->base + RPT);
writel_relaxed(ONESHOT_END_INT_EN(true), pc->base + INT_EN);
} else {
writel_relaxed(PWM_MODE(CONTINUOUS_MODE) | PWM_ALIGNED_INVALID(false),
pc->base + CTRL_V4);
writel_relaxed(0, pc->base + OFFSET);
if (!pc->wave_en)
writel_relaxed(0, pc->base + RPT);
writel_relaxed(ONESHOT_END_INT_EN(false), pc->base + INT_EN);
}
writel_relaxed(PWM_CTRL_UPDATE_EN(true), pc->base + ENABLE);
}
static int rockchip_pwm_enable_v4(struct pwm_chip *chip, struct pwm_device *pwm, bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
struct pwm_state curstate;
unsigned long delay_us;
int ret;
if (enable) {
ret = clk_enable(pc->clk);
if (ret)
return ret;
}
writel_relaxed(PWM_EN(enable) | PWM_CLK_EN(enable), pc->base + ENABLE);
if (!enable) {
pwm_get_state(pwm, &curstate);
delay_us = DIV_ROUND_UP_ULL(curstate.period, NSEC_PER_USEC);
fsleep(delay_us);
clk_disable(pc->clk);
}
return 0;
}
static void rockchip_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
pc->data->funcs.config(chip, pwm, state);
}
static int rockchip_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
return pc->data->funcs.enable(chip, pwm, enable);
}
static int rockchip_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
struct pwm_state curstate;
bool enabled;
int ret = 0;
if (!pc->oneshot_en) {
ret = clk_enable(pc->pclk);
if (ret)
return ret;
}
pwm_get_state(pwm, &curstate);
enabled = curstate.enabled;
if (state->polarity != curstate.polarity && enabled &&
!pc->data->supports_lock) {
ret = rockchip_pwm_enable(chip, pwm, false);
if (ret)
goto out;
enabled = false;
}
rockchip_pwm_config(chip, pwm, state);
if (state->enabled != enabled) {
ret = rockchip_pwm_enable(chip, pwm, state->enabled);
if (ret)
goto out;
}
if (state->enabled)
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
out:
if (!pc->oneshot_en)
clk_disable(pc->pclk);
return ret;
}
static void rockchip_pwm_set_capture_v1(struct pwm_chip *chip, struct pwm_device *pwm,
bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 int_ctrl;
int_ctrl = readl_relaxed(pc->base + PWM_REG_INT_EN(pc->channel_id));
if (enable)
int_ctrl |= PWM_CH_INT(pc->channel_id);
else
int_ctrl &= ~PWM_CH_INT(pc->channel_id);
writel_relaxed(int_ctrl, pc->base + PWM_REG_INT_EN(pc->channel_id));
pc->capture_en = enable;
pc->capture_cnt = 0;
}
static int rockchip_pwm_get_capture_result_v1(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *capture_res)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 tmp;
tmp = readl_relaxed(pc->base + PWM_PERIOD_HPR);
tmp *= pc->data->prescaler * NSEC_PER_SEC;
capture_res->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, pc->clk_rate);
tmp = readl_relaxed(pc->base + PWM_DUTY_LPR);
tmp *= pc->data->prescaler * NSEC_PER_SEC;
capture_res->period = DIV_ROUND_CLOSEST_ULL(tmp, pc->clk_rate) + capture_res->duty_cycle;
if (!capture_res->duty_cycle || !capture_res->period)
return -EINVAL;
writel_relaxed(0, pc->base + PWM_PERIOD_HPR);
writel_relaxed(0, pc->base + PWM_DUTY_LPR);
return 0;
}
static void rockchip_pwm_set_capture_v4(struct pwm_chip *chip, struct pwm_device *pwm,
bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 channel_sel = 0;
if (enable)
channel_sel = pc->channel_id;
pc->capture_cnt = 0;
/*
* The PWM io input/output state is controlled by PWM mode
* configuration. In order to avoid the antagonistic drive
* state between the PWM pin and the external pin, keep the
* PWM mode fixed in capture mode although PWM is disabled.
*/
writel_relaxed(PWM_MODE(CAPTURE_MODE), pc->base + CTRL_V4);
writel_relaxed(CAP_LPR_INT_EN(enable) | CAP_HPR_INT_EN(enable) | PWM_IN_SEL(channel_sel),
pc->base + INT_EN);
}
static int rockchip_pwm_get_capture_result_v4(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *capture_res)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 tmp;
tmp = readl_relaxed(pc->base + HPC);
tmp *= pc->data->prescaler * NSEC_PER_SEC;
capture_res->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, pc->clk_rate);
tmp = readl_relaxed(pc->base + LPC);
tmp *= pc->data->prescaler * NSEC_PER_SEC;
capture_res->period = DIV_ROUND_CLOSEST_ULL(tmp, pc->clk_rate) + capture_res->duty_cycle;
if (!capture_res->duty_cycle || !capture_res->period)
return -EINVAL;
writel_relaxed(0, pc->base + HPC);
writel_relaxed(0, pc->base + LPC);
return 0;
}
static int rockchip_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *capture_res, unsigned long timeout_ms)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
struct pwm_state curstate;
int ret = 0;
if (!pc->data->funcs.set_capture || !pc->data->funcs.get_capture_result) {
dev_err(chip->dev, "Unsupported capture mode\n");
return -EINVAL;
}
pwm_get_state(pwm, &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to enable capture mode because PWM%d is busy\n",
pc->channel_id);
return -EBUSY;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
goto err_disable_pclk;
}
pc->data->funcs.set_capture(chip, pwm, true);
ret = pc->data->funcs.enable(chip, pwm, true);
if (ret) {
dev_err(chip->dev, "Failed to enable capture mode\n");
goto err_disable_pclk;
}
usleep_range(timeout_ms * USEC_PER_MSEC, timeout_ms * USEC_PER_MSEC);
if (pc->capture_cnt > 3) {
ret = pc->data->funcs.get_capture_result(chip, pwm, capture_res);
if (ret)
dev_err(chip->dev, "Failed to get capture result\n");
} else {
dev_err(chip->dev, "Failed to wait for LPR/HPR interrupt\n");
ret = -ETIMEDOUT;
}
pc->data->funcs.enable(chip, pwm, false);
pc->data->funcs.set_capture(chip, pwm, false);
err_disable_pclk:
clk_disable(pc->pclk);
return ret;
}
static int rockchip_pwm_set_counter_v4(struct pwm_chip *chip, struct pwm_device *pwm,
enum rockchip_pwm_counter_input_sel input_sel,
bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 arbiter = 0;
u32 channel_sel = 0;
u32 val;
int ret;
if (enable) {
arbiter = BIT(pc->channel_id) << COUNTER_READ_LOCK_SHIFT |
BIT(pc->channel_id) << COUNTER_GRANT_SHIFT,
channel_sel = pc->channel_id;
}
writel_relaxed(arbiter, pc->base + COUNTER_ARBITER);
if (enable) {
val = readl_relaxed(pc->base + COUNTER_ARBITER);
if (!(val & arbiter))
return -EINVAL;
}
if (enable) {
ret = clk_enable(pc->clk);
if (ret)
return ret;
}
writel_relaxed(COUNTER_EN(enable) | COUNTER_CLK_SEL(input_sel) |
COUNTER_CHANNEL_SEL(channel_sel),
pc->base + COUNTER_CTRL);
if (!enable)
clk_disable(pc->clk);
return 0;
}
int rockchip_pwm_set_counter(struct pwm_device *pwm,
enum rockchip_pwm_counter_input_sel input_sel,
bool enable)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
struct pwm_state curstate;
int ret = 0;
if (!pwm)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->counter_support ||
!pc->data->funcs.set_counter || !pc->data->funcs.get_counter_result) {
dev_err(chip->dev, "Unsupported counter mode\n");
return -EINVAL;
}
pwm_get_state(pwm, &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to enable counter mode because PWM%d is busy\n",
pc->channel_id);
return -EBUSY;
}
if (enable) {
ret = clk_enable(pc->pclk);
if (ret)
return ret;
}
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
goto err_disable_pclk;
}
ret = pc->data->funcs.set_counter(chip, pwm, input_sel, enable);
if (ret) {
dev_err(chip->dev, "Failed to abtain counter arbitration for PWM%d\n",
pc->channel_id);
goto err_disable_pclk;
}
if (!enable)
clk_disable(pc->pclk);
return ret;
err_disable_pclk:
if (enable)
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_set_counter);
static int rockchip_pwm_get_counter_result_v4(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long *counter_res, bool is_clear)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 low, high;
low = readl_relaxed(pc->base + COUNTER_LOW);
high = readl_relaxed(pc->base + COUNTER_HIGH);
*counter_res = (high << 32) | low;
if (!*counter_res)
return -EINVAL;
if (is_clear)
writel_relaxed(COUNTER_CLR(true), pc->base + COUNTER_CTRL);
return 0;
}
int rockchip_pwm_get_counter_result(struct pwm_device *pwm,
unsigned long *counter_res, bool is_clear)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
int ret = 0;
if (!pwm || !counter_res)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->counter_support ||
!pc->data->funcs.set_counter || !pc->data->funcs.get_counter_result) {
dev_err(chip->dev, "Unsupported counter mode\n");
return -EINVAL;
}
ret = pc->data->funcs.get_counter_result(chip, pwm, counter_res, is_clear);
if (ret) {
dev_err(chip->dev, "Failed to get counter result for PWM%d\n",
pc->channel_id);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_get_counter_result);
static int rockchip_pwm_set_freq_meter_v4(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long delay_ms,
enum rockchip_pwm_freq_meter_input_sel input_sel,
bool enable)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 div = 0;
u64 timer_val = 0;
u32 arbiter = 0;
u32 channel_sel = 0;
u32 val;
int ret;
if (enable) {
pc->freq_res_valid = false;
arbiter = BIT(pc->channel_id) << FREQ_READ_LOCK_SHIFT |
BIT(pc->channel_id) << FREQ_GRANT_SHIFT;
channel_sel = pc->channel_id;
div = (u64)pc->clk_rate * delay_ms;
timer_val = DIV_ROUND_CLOSEST_ULL(div, MSEC_PER_SEC);
}
writel_relaxed(arbiter, pc->base + FREQ_ARBITER);
if (enable) {
val = readl_relaxed(pc->base + FREQ_ARBITER);
if (!(val & arbiter))
return -EINVAL;
}
if (enable) {
ret = clk_enable(pc->clk);
if (ret)
return ret;
}
writel_relaxed(FREQ_INT_EN(enable), pc->base + INT_EN);
writel_relaxed(timer_val, pc->base + FREQ_TIMER_VALUE);
writel_relaxed(FREQ_EN(enable) | FREQ_CLK_SEL(input_sel) | FREQ_CHANNEL_SEL(channel_sel),
pc->base + FREQ_CTRL);
if (!enable)
clk_disable(pc->clk);
return 0;
}
static int rockchip_pwm_get_freq_meter_result_v4(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long delay_ms, unsigned long *freq_hz)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 freq_res;
u32 freq_timer;
usleep_range(delay_ms * USEC_PER_MSEC, delay_ms * USEC_PER_MSEC);
if (pc->freq_res_valid) {
freq_res = readl_relaxed(pc->base + FREQ_RESULT_VALUE);
freq_timer = readl_relaxed(pc->base + FREQ_TIMER_VALUE);
*freq_hz = DIV_ROUND_CLOSEST_ULL((u64)pc->clk_rate * freq_res, freq_timer);
if (!*freq_hz)
return -EINVAL;
pc->freq_res_valid = false;
} else {
dev_err(chip->dev, "failed to wait for freq_meter interrupt\n");
return -ETIMEDOUT;
}
return 0;
}
int rockchip_pwm_set_freq_meter(struct pwm_device *pwm, unsigned long delay_ms,
enum rockchip_pwm_freq_meter_input_sel input_sel,
unsigned long *freq_hz)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
struct pwm_state curstate;
int ret = 0;
if (!pwm || !freq_hz)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->freq_meter_support ||
!pc->data->funcs.set_freq_meter || !pc->data->funcs.get_freq_meter_result) {
dev_err(chip->dev, "Unsupported frequency meter mode\n");
return -EINVAL;
}
pwm_get_state(pwm, &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to enable frequency meter mode because PWM%d is busy\n",
pc->channel_id);
return -EBUSY;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
goto err_disable_pclk;
}
ret = pc->data->funcs.set_freq_meter(chip, pwm, delay_ms, input_sel, true);
if (ret) {
dev_err(chip->dev, "Failed to abtain frequency meter arbitration for PWM%d\n",
pc->channel_id);
} else {
ret = pc->data->funcs.get_freq_meter_result(chip, pwm, delay_ms, freq_hz);
if (ret) {
dev_err(chip->dev, "Failed to get frequency meter result for PWM%d\n",
pc->channel_id);
}
}
pc->data->funcs.set_freq_meter(chip, pwm, 0, 0, false);
err_disable_pclk:
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_set_freq_meter);
static int rockchip_pwm_global_ctrl_v4(struct pwm_chip *chip, struct pwm_device *pwm,
enum rockchip_pwm_global_ctrl_cmd cmd)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 arbiter = 0;
u32 val = 0;
int ret = 0;
switch (cmd) {
case PWM_GLOBAL_CTRL_JOIN:
writel_relaxed(PWM_GLOBAL_JOIN_EN(true), pc->base + ENABLE);
writel_relaxed(CLK_GLOBAL_SEL(true), pc->base + CLK_CTRL);
break;
case PWM_GLOBAL_CTRL_EXIT:
writel_relaxed(PWM_GLOBAL_JOIN_EN(false), pc->base + ENABLE);
writel_relaxed(CLK_GLOBAL_SEL(false), pc->base + CLK_CTRL);
break;
case PWM_GLOBAL_CTRL_GRANT:
arbiter = BIT(pc->channel_id) << GLOBAL_READ_LOCK_SHIFT |
BIT(pc->channel_id) << GLOBAL_GRANT_SHIFT;
writel_relaxed(arbiter, pc->base + GLOBAL_ARBITER);
val = readl_relaxed(pc->base + GLOBAL_ARBITER);
if (!(val & arbiter)) {
dev_err(chip->dev, "Failed to abtain global ctrl arbitration for PWM%d\n",
pc->channel_id);
return -EINVAL;
}
pc->global_ctrl_grant = true;
break;
case PWM_GLOBAL_CTRL_RECLAIM:
writel_relaxed(0, pc->base + GLOBAL_ARBITER);
pc->global_ctrl_grant = false;
break;
case PWM_GLOBAL_CTRL_UPDATE:
if (!pc->global_ctrl_grant) {
dev_err(chip->dev, "CMD %d: get global ctrl arbitration first for PWM%d\n",
cmd, pc->channel_id);
return -EINVAL;
}
writel_relaxed(GLOBAL_PWM_UPDATE_EN(true), pc->base + GLOBAL_CTRL);
break;
case PWM_GLOBAL_CTRL_ENABLE:
if (!pc->global_ctrl_grant) {
dev_err(chip->dev, "CMD %d: get global ctrl arbitration first for PWM%d\n",
cmd, pc->channel_id);
return -EINVAL;
}
if (!test_and_set_bit(0, &pc->is_clk_enabled)) {
ret = clk_enable(pc->clk);
if (ret)
return ret;
}
writel_relaxed(PWM_CLK_EN(true), pc->base + ENABLE);
writel_relaxed(GLOBAL_PWM_EN(true), pc->base + GLOBAL_CTRL);
break;
case PWM_GLOBAL_CTRL_DISABLE:
if (!pc->global_ctrl_grant) {
dev_err(chip->dev, "CMD %d: get global ctrl arbitration first for PWM%d\n",
cmd, pc->channel_id);
return -EINVAL;
}
writel_relaxed(PWM_CLK_EN(false), pc->base + ENABLE);
writel_relaxed(GLOBAL_PWM_EN(false), pc->base + GLOBAL_CTRL);
if (test_and_clear_bit(0, &pc->is_clk_enabled))
clk_disable(pc->clk);
break;
default:
dev_err(chip->dev, "Unsupported global ctrl cmd %d\n", cmd);
return -EINVAL;
}
return 0;
}
int rockchip_pwm_global_ctrl(struct pwm_device *pwm, enum rockchip_pwm_global_ctrl_cmd cmd)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
struct pwm_state curstate;
int ret = 0;
if (!pwm)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->data->funcs.global_ctrl) {
dev_err(chip->dev, "Unsupported global control\n");
return -EINVAL;
}
pwm_get_state(pwm, &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to execute global ctrl cmd %d because PWM%d is busy\n",
cmd, pc->channel_id);
return -EBUSY;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
goto err_disable_pclk;
}
ret = pc->data->funcs.global_ctrl(chip, pwm, cmd);
if (ret) {
dev_err(chip->dev, "Failed to execute global ctrl cmd %d for PWM%d\n",
cmd, pc->channel_id);
goto err_disable_pclk;
}
err_disable_pclk:
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_global_ctrl);
static int rockchip_pwm_set_wave_table_v4(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_wave_table *table_config,
enum rockchip_pwm_wave_table_width_mode width_mode)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 table_val = 0;
u64 clk_rate_kHz = pc->clk_rate / 1000;
u64 div = 0;
u64 tmp = 0;
u32 scaler = pc->scaler ? pc->scaler * 2 : 1;
u32 arbiter = 0;
u32 val;
u16 table_max;
int i;
if (width_mode == PWM_WAVE_TABLE_16BITS_WIDTH)
table_max = pc->data->wave_table_max / 2;
else
table_max = pc->data->wave_table_max;
if (!table_config->table ||
table_config->offset > table_max || table_config->len > table_max) {
dev_err(chip->dev, "The wave table to set is out of range for PWM%d\n",
pc->channel_id);
return -EINVAL;
}
arbiter = BIT(pc->channel_id) << WAVE_MEM_GRANT_SHIFT |
BIT(pc->channel_id) << WAVE_MEM_READ_LOCK_SHIFT;
writel_relaxed(arbiter, pc->base + WAVE_MEM_ARBITER);
val = readl_relaxed(pc->base + WAVE_MEM_ARBITER);
if (!(val & arbiter)) {
dev_err(chip->dev, "Failed to abtain wave memory arbitration for PWM%d\n",
pc->channel_id);
return -EINVAL;
}
if (width_mode == PWM_WAVE_TABLE_16BITS_WIDTH) {
for (i = 0; i < table_config->len; i++) {
div = (u64)clk_rate_kHz * table_config->table[i];
tmp = (u64)pc->data->prescaler * scaler * USEC_PER_SEC;
table_val = DIV_ROUND_CLOSEST_ULL(div, tmp);
writel_relaxed(table_val & 0xff,
pc->base + WAVE_MEM + (table_config->offset + i) * 2 * 4);
if (readl_poll_timeout(pc->base + WAVE_MEM_STATUS,
val, (val & BIT(WAVE_MEM_STATUS_SHIFT)),
1000, 10 * 1000)) {
dev_err(chip->dev,
"Wait for wave mem(offset 0x%08x) to update failed\n",
(table_config->offset + i) * 2 * 4);
return -ETIMEDOUT;
}
writel_relaxed((table_val >> 8) & 0xff,
pc->base + WAVE_MEM +
((table_config->offset + i) * 2 + 1) * 4);
if (readl_poll_timeout(pc->base + WAVE_MEM_STATUS,
val, (val & BIT(WAVE_MEM_STATUS_SHIFT)),
1000, 10 * 1000)) {
dev_err(chip->dev,
"Wait for wave mem(offset 0x%08x) to update failed\n",
((table_config->offset + i) * 2 + 1) * 4);
return -ETIMEDOUT;
}
}
} else {
for (i = 0; i < table_config->len; i++) {
div = (u64)clk_rate_kHz * table_config->table[i];
tmp = (u64)pc->data->prescaler * scaler * USEC_PER_SEC;
table_val = DIV_ROUND_CLOSEST_ULL(div, tmp);
writel_relaxed(table_val,
pc->base + WAVE_MEM + (table_config->offset + i) * 4);
if (readl_poll_timeout(pc->base + WAVE_MEM_STATUS,
val, (val & BIT(WAVE_MEM_STATUS_SHIFT)),
1000, 10 * 1000)) {
dev_err(chip->dev,
"Wait for wave mem(offset 0x%08x) to update failed\n",
(table_config->offset + i) * 4);
return -ETIMEDOUT;
}
}
}
writel_relaxed(0, pc->base + WAVE_MEM_ARBITER);
return 0;
}
static int rockchip_pwm_set_wave_v4(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_wave_config *config)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 ctrl = 0;
u32 max_val = 0;
u32 min_val = 0;
u32 offset = 0;
u32 middle = 0;
u32 rpt = 0;
u8 factor = 0;
if (config->enable) {
/*
* If the width mode is 16-bits mode, two 8-bits table units
* are combined into one 16-bits unit.
*/
if (config->width_mode == PWM_WAVE_TABLE_16BITS_WIDTH)
factor = 2;
else
factor = 1;
ctrl = WAVE_DUTY_EN(config->duty_en) |
WAVE_PERIOD_EN(config->period_en) |
WAVE_WIDTH_MODE(config->width_mode) |
WAVE_UPDATE_MODE(config->update_mode);
max_val = config->duty_max * factor << WAVE_DUTY_MAX_SHIFT |
config->period_max * factor << WAVE_PERIOD_MAX_SHIFT;
min_val = config->duty_min * factor << WAVE_DUTY_MIN_SHIFT |
config->period_min * factor << WAVE_PERIOD_MIN_SHIFT;
offset = config->offset * factor << WAVE_OFFSET_SHIFT;
middle = config->middle * factor << WAVE_MIDDLE_SHIFT;
rpt = config->rpt << FIRST_DIMENSIONAL_SHIFT;
} else {
pc->scaler = 0;
ctrl = WAVE_DUTY_EN(false) | WAVE_PERIOD_EN(false);
}
writel_relaxed(CLK_SCALE(pc->scaler), pc->base + CLK_CTRL);
writel_relaxed(ctrl, pc->base + WAVE_CTRL);
writel_relaxed(max_val, pc->base + WAVE_MAX);
writel_relaxed(min_val, pc->base + WAVE_MIN);
writel_relaxed(offset, pc->base + WAVE_OFFSET);
writel_relaxed(middle, pc->base + WAVE_MIDDLE);
writel_relaxed(rpt, pc->base + RPT);
writel_relaxed(WAVE_MAX_INT_EN(config->enable) | WAVE_MIDDLE_INT_EN(config->enable),
pc->base + INT_EN);
pc->wave_en = config->enable;
return 0;
}
int rockchip_pwm_set_wave(struct pwm_device *pwm, struct rockchip_pwm_wave_config *config)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
int ret = 0;
if (!pwm || !config)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->wave_support ||
!pc->data->funcs.set_wave_table || !pc->data->funcs.set_wave) {
dev_err(chip->dev, "Unsupported wave generator mode\n");
return -EINVAL;
}
if (!config->clk_rate) {
dev_err(chip->dev, "clk rate can not be 0\n");
return -EINVAL;
}
pc->scaler = DIV_ROUND_CLOSEST_ULL(pc->clk_rate, config->clk_rate * 2);
if (pc->scaler > 256) {
dev_err(chip->dev, "Unsupported scale factor %d(max: 512) for PWM%d\n",
pc->scaler * 2, pc->channel_id);
return -EINVAL;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
if (config->enable) {
ret = clk_enable(pc->clk_osc);
if (ret) {
dev_err(chip->dev, "Failed to enable OSC clk for PWM%d\n", pc->channel_id);
goto err_disable_pclk;
}
}
if (config->duty_table) {
ret = pc->data->funcs.set_wave_table(chip, pwm, config->duty_table,
config->width_mode);
if (ret) {
dev_err(chip->dev, "Failed to set wave duty table for PWM%d\n",
pc->channel_id);
goto err_disable_clk_osc;
}
}
if (config->period_table) {
ret = pc->data->funcs.set_wave_table(chip, pwm, config->period_table,
config->width_mode);
if (ret) {
dev_err(chip->dev, "Failed to set wave period table for PWM%d\n",
pc->channel_id);
goto err_disable_clk_osc;
}
}
ret = pc->data->funcs.set_wave(chip, pwm, config);
if (ret) {
dev_err(chip->dev, "Failed to set wave generator for PWM%d\n", pc->channel_id);
goto err_disable_clk_osc;
}
if (!config->enable)
clk_disable(pc->clk_osc);
clk_disable(pc->pclk);
return ret;
err_disable_clk_osc:
if (config->enable)
clk_disable(pc->clk_osc);
err_disable_pclk:
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_set_wave);
static int rockchip_pwm_set_biphasic_v4(struct pwm_chip *chip, struct pwm_device *pwm,
struct rockchip_pwm_biphasic_config *config)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u64 div = 0;
u32 ctrl = 0;
u32 timer_val = 0;
int ret = 0;
if (config->enable) {
if (!config->is_continuous && !config->delay_ms) {
dev_err(chip->dev, "The delay_ms can not be 0 in normal mode for PWM%d\n",
pc->channel_id);
return -EINVAL;
}
ret = clk_enable(pc->clk);
if (ret)
return ret;
pc->biphasic_res_valid = false;
ctrl = BIPHASIC_EN(true) |
BIPHASIC_CONTINOUS_MODE_EN(config->is_continuous) |
BIPHASIC_MODE(config->mode == PWM_BIPHASIC_COUNTER_MODE0_FREQ ?
PWM_BIPHASIC_COUNTER_MODE0 : config->mode) |
BIPHASIC_SYNC_EN(config->is_continuous);
div = (u64)pc->clk_rate * config->delay_ms;
timer_val = DIV_ROUND_CLOSEST_ULL(div, MSEC_PER_SEC);
pc->biphasic_config = config;
} else {
ctrl = BIPHASIC_EN(false);
pc->biphasic_config = NULL;
}
writel_relaxed(BIPHASIC_INT_EN(config->enable), pc->base + INT_EN);
writel_relaxed(ctrl, pc->base + BIPHASIC_CTRL0);
writel_relaxed(timer_val, pc->base + BIPHASIC_TIMER_VALUE);
if (!config->enable)
clk_disable(pc->clk);
return 0;
}
int rockchip_pwm_set_biphasic(struct pwm_device *pwm, struct rockchip_pwm_biphasic_config *config,
unsigned long *biphasic_res)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
struct pwm_state curstate;
int ret = 0;
if (!pwm)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->biphasic_support ||
!pc->data->funcs.set_biphasic || !pc->data->funcs.get_biphasic_result) {
dev_err(chip->dev, "Unsupported biphasic counter mode\n");
return -EINVAL;
}
pwm_get_state(pwm, &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to enable biphasic counter mode because PWM%d is busy\n",
pc->channel_id);
return -EBUSY;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
goto err_disable_pclk;
}
ret = pc->data->funcs.set_biphasic(chip, pwm, config);
if (ret) {
dev_err(chip->dev, "Failed to setup biphasic counter mode for PWM%d\n",
pc->channel_id);
} else {
if (pc->biphasic_config->enable && !config->is_continuous) {
ret = pc->data->funcs.get_biphasic_result(chip, pwm, biphasic_res);
if (ret) {
dev_err(chip->dev,
"Failed to get biphasic counter result for PWM%d\n",
pc->channel_id);
}
config->enable = false;
pc->data->funcs.set_biphasic(chip, pwm, config);
}
}
err_disable_pclk:
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_set_biphasic);
static int rockchip_pwm_get_biphasic_result_v4(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long *biphasic_res)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
const struct rockchip_pwm_biphasic_config *config = pc->biphasic_config;
u32 val;
u32 biphasic_timer;
if (!config->is_continuous) {
usleep_range(config->delay_ms * USEC_PER_MSEC, config->delay_ms * USEC_PER_MSEC);
if (pc->biphasic_res_valid) {
*biphasic_res = readl_relaxed(pc->base + BIPHASIC_RESULT_VALUE);
if (!*biphasic_res)
return -EINVAL;
if (pc->biphasic_config->mode == PWM_BIPHASIC_COUNTER_MODE0_FREQ) {
val = *biphasic_res;
biphasic_timer = readl_relaxed(pc->base + BIPHASIC_TIMER_VALUE);
*biphasic_res = DIV_ROUND_CLOSEST_ULL((u64)pc->clk_rate * val,
biphasic_timer);
}
pc->biphasic_res_valid = false;
} else {
dev_err(chip->dev, "failed to wait for biphasic counter interrupt\n");
return -ETIMEDOUT;
}
} else {
*biphasic_res = readl_relaxed(pc->base + BIPHASIC_RESULT_VALUE_SYNC);
}
return 0;
}
int rockchip_pwm_get_biphasic_result(struct pwm_device *pwm, unsigned long *biphasic_res)
{
struct pwm_chip *chip;
struct rockchip_pwm_chip *pc;
int ret = 0;
if (!pwm)
return -EINVAL;
chip = pwm->chip;
pc = to_rockchip_pwm_chip(chip);
if (!pc->biphasic_support ||
!pc->data->funcs.set_biphasic || !pc->data->funcs.get_biphasic_result) {
dev_err(chip->dev, "Unsupported biphasic counter mode\n");
return -EINVAL;
}
if (!pc->biphasic_config) {
dev_err(chip->dev, "Failed to parse biphasic counter config\n");
return -EINVAL;
}
if (!pc->biphasic_config->is_continuous || !pc->biphasic_config->enable) {
dev_err(chip->dev, "Unsupported to get result in real time in normal mode\n");
return -EINVAL;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pc->data->funcs.get_biphasic_result(chip, pwm, biphasic_res);
if (ret)
dev_err(chip->dev, "Failed to get biphasic counter result for PWM%d\n",
pc->channel_id);
clk_disable(pc->pclk);
return ret;
}
EXPORT_SYMBOL_GPL(rockchip_pwm_get_biphasic_result);
#ifdef CONFIG_RC_CORE
static int rockchip_pwm_ir_transmit_v4(struct pwm_chip *chip, unsigned int *txbuf,
unsigned int count)
{
struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip);
u32 arbiter;
u32 preload, spreload;
u32 low_period, high_period;
u32 tx_value;
u32 timeout_ms;
u32 val;
int ret = 0;
if (count != PWM_IR_TRANSMIT_BUFFER_SIZE) {
dev_err(chip->dev, "Unsupported ir transmit buf size: %d\n", count);
return -EINVAL;
}
ret = clk_enable(pc->clk);
if (ret)
return ret;
arbiter = BIT(pc->channel_id) << IR_TRANS_READ_LOCK_SHIFT |
BIT(pc->channel_id) << IR_TRANS_GRANT_SHIFT;
writel_relaxed(arbiter, pc->base + IR_TRANS_ARBITER);
val = readl_relaxed(pc->base + IR_TRANS_ARBITER);
if (!(val & arbiter)) {
dev_err(chip->dev, "Failed to abtain ir transmit arbitration for PWM%d\n",
pc->channel_id);
ret = -EINVAL;
goto err_clk;
}
reinit_completion(&pc->ir_trans_completion);
/*
* Each value in the txbuf[] is in microseconds(us).
* txbuf[0]: the low duration of NEC leader code.
* txbuf[1]: the high duration of NEC leader code.
* txbuf[2]: the high duration of NEC repeat code.
* txbuf[3]: the low duration of NEC logic '0' and '1'.
* txbuf[4]: the high duration of NEC logic '0'.
* txbuf[5]: the high duration of NEC logic '1'.
* txbuf[6]:
* For 8-bit address code:
* bit[31:24] bit[23:16] bit[15:8] bit[7:0]
* command inverted code command code address inverted code address code
*
* For 16-bit address code:
* bit[31:24] bit[23:16] bit[15:8] bit[7:0]
* command inverted code command code address code bit[15:8] address code bit[7:0]
*/
preload = txbuf[0] << IR_TRANS_OUT_LOW_PRELOAD_SHIFT |
txbuf[1] << IR_TRANS_OUT_HIGH_PRELOAD_SHIFT;
spreload = txbuf[2] << IR_TRANS_OUT_HIGH_SIMPLE_PRELOAD_SHIFT;
low_period = txbuf[3] << IR_TRANS_OUT_DATA_LOW_PERIOD_SHIFT;
high_period = txbuf[4] << IR_TRANS_OUT_HIGH_PERIOD_FOR_ZERO_SHIFT |
txbuf[5] << IR_TRANS_OUT_HIGH_PERIOD_FOR_ONE_SHIFT;
tx_value = txbuf[6] << IR_TRANS_OUT_VALUE_SHIFT;
/* Set the dclk to 1M */
writel_relaxed(CLK_SCALE(0x32), pc->base + CLK_CTRL);
writel_relaxed(PWM_CLK_EN(true), pc->base + ENABLE);
writel_relaxed(IR_TRANS_END_INT_EN(true), pc->base + INT_EN);
writel_relaxed(preload, pc->base + IR_TRANS_PRE);
writel_relaxed(spreload, pc->base + IR_TRANS_SPRE);
writel_relaxed(low_period, pc->base + IR_TRANS_LD);
writel_relaxed(high_period, pc->base + IR_TRANS_HD);
writel_relaxed(tx_value, pc->base + IR_TRANS_DATA_VALUE);
val = readl_relaxed(pc->base + IR_TRANS_BURST_FRAME);
timeout_ms = ((val & IR_TRANS_OUT_FRAME_PERIOD_MASK) >>
IR_TRANS_OUT_FRAME_PERIOD_SHIFT) / 1000;
writel_relaxed(IR_TRANS_INACTIVE_POL(true) | IR_TRANS_OUT_ENABLE(true),
pc->base + IR_TRANS_CTRL0);
ret = wait_for_completion_timeout(&pc->ir_trans_completion,
msecs_to_jiffies(timeout_ms * 3 / 2));
if (!ret) {
dev_err(chip->dev, "Failed to wait for PWM%d ir transmit to complete\n",
pc->channel_id);
ret = -ETIMEDOUT;
}
writel_relaxed(IR_TRANS_OUT_ENABLE(false), pc->base + IR_TRANS_CTRL0);
writel_relaxed(IR_TRANS_END_INT_EN(false), pc->base + INT_EN);
writel_relaxed(PWM_CLK_EN(false), pc->base + ENABLE);
writel_relaxed(0, pc->base + IR_TRANS_ARBITER);
err_clk:
clk_disable(pc->clk);
return ret ? ret : count;
}
static int rockchip_pwm_ir_transmit(struct rc_dev *dev, unsigned int *txbuf, unsigned int count)
{
struct rockchip_pwm_chip *pc = dev->priv;
struct pwm_chip *chip = &pc->chip;
struct pwm_state curstate;
int ret;
if (!pc->data->funcs.ir_transmit) {
dev_err(chip->dev, "Unsupported ir transmit mode\n");
return -EINVAL;
}
pwm_get_state(&pc->chip.pwms[0], &curstate);
if (curstate.enabled) {
dev_err(chip->dev, "Failed to enable ir transmit mode because PWM%d is busy\n",
pc->channel_id);
return -EBUSY;
}
ret = pinctrl_select_state(pc->pinctrl, pc->active_state);
if (ret) {
dev_err(chip->dev, "Failed to select pinctrl state\n");
return ret;
}
ret = clk_enable(pc->pclk);
if (ret)
return ret;
ret = pc->data->funcs.ir_transmit(chip, txbuf, count);
if (ret < 0)
dev_err(chip->dev, "Failed to transmit ir buf\n");
clk_disable(pc->pclk);
return ret;
}
#else
static int rockchip_pwm_ir_transmit_v4(struct pwm_chip *chip, unsigned int *txbuf,
unsigned int count)
{
return count;
}
#endif
#ifdef CONFIG_DEBUG_FS
static int rockchip_pwm_debugfs_show(struct seq_file *s, void *data)
{
struct rockchip_pwm_chip *pc = s->private;
u32 regs_start;
int i;
int ret = 0;
if (!pc->oneshot_en) {
ret = clk_enable(pc->pclk);
if (ret)
return ret;
}
if (pc->main_version >= 4) {
regs_start = (u32)pc->res->start;
for (i = 0; i < 0x90; i += 4) {
seq_printf(s, "%08x: %08x %08x %08x %08x\n", regs_start + i * 4,
readl_relaxed(pc->base + (4 * i)),
readl_relaxed(pc->base + (4 * (i + 1))),
readl_relaxed(pc->base + (4 * (i + 2))),
readl_relaxed(pc->base + (4 * (i + 3))));
}
} else {
regs_start = (u32)pc->res->start - pc->channel_id * 0x10;
for (i = 0; i < 0x40; i += 4) {
seq_printf(s, "%08x: %08x %08x %08x %08x\n", regs_start + i * 4,
readl_relaxed(pc->base + (4 * i)),
readl_relaxed(pc->base + (4 * (i + 1))),
readl_relaxed(pc->base + (4 * (i + 2))),
readl_relaxed(pc->base + (4 * (i + 3))));
}
}
if (!pc->oneshot_en)
clk_disable(pc->pclk);
return ret;
}
DEFINE_SHOW_ATTRIBUTE(rockchip_pwm_debugfs);
static inline void rockchip_pwm_debugfs_init(struct rockchip_pwm_chip *pc)
{
pc->debugfs = debugfs_create_file(dev_name(pc->chip.dev),
S_IFREG | 0444, NULL, pc,
&rockchip_pwm_debugfs_fops);
}
static inline void rockchip_pwm_debugfs_deinit(struct rockchip_pwm_chip *pc)
{
debugfs_remove(pc->debugfs);
}
#else
static inline void rockchip_pwm_debugfs_init(struct rockchip_pwm_chip *pc)
{
}
static inline void rockchip_pwm_debugfs_deinit(struct rockchip_pwm_chip *pc)
{
}
#endif
static const struct pwm_ops rockchip_pwm_ops = {
.capture = rockchip_pwm_capture,
.apply = rockchip_pwm_apply,
.get_state = rockchip_pwm_get_state,
.owner = THIS_MODULE,
};
static const struct rockchip_pwm_data pwm_data_v1 = {
.main_version = 0x01,
.regs = {
.version = 0x5c,
.duty = 0x04,
.period = 0x08,
.ctrl = 0x0c,
},
.prescaler = 2,
.supports_polarity = false,
.supports_lock = false,
.vop_pwm = false,
.enable_conf = PWM_CTRL_OUTPUT_EN | PWM_CTRL_TIMER_EN,
.enable_conf_mask = BIT(1) | BIT(3),
.oneshot_cnt_max = 0x100,
.funcs = {
.enable = rockchip_pwm_enable_v1,
.config = rockchip_pwm_config_v1,
},
};
static const struct rockchip_pwm_data pwm_data_v2 = {
.main_version = 0x02,
.regs = {
.version = 0x5c,
.duty = 0x08,
.period = 0x04,
.ctrl = 0x0c,
},
.prescaler = 1,
.supports_polarity = true,
.supports_lock = false,
.vop_pwm = false,
.enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE |
PWM_CONTINUOUS,
.enable_conf_mask = GENMASK(2, 0) | BIT(5) | BIT(8),
.oneshot_cnt_max = 0x100,
.funcs = {
.enable = rockchip_pwm_enable_v1,
.config = rockchip_pwm_config_v1,
},
};
static const struct rockchip_pwm_data pwm_data_vop = {
.main_version = 0x02,
.regs = {
.version = 0x5c,
.duty = 0x08,
.period = 0x04,
.ctrl = 0x00,
},
.prescaler = 1,
.supports_polarity = true,
.supports_lock = false,
.vop_pwm = true,
.enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE |
PWM_CONTINUOUS,
.enable_conf_mask = GENMASK(2, 0) | BIT(5) | BIT(8),
.oneshot_cnt_max = 0x100,
.funcs = {
.enable = rockchip_pwm_enable_v1,
.config = rockchip_pwm_config_v1,
},
};
static const struct rockchip_pwm_data pwm_data_v3 = {
.main_version = 0x03,
.regs = {
.version = 0x5c,
.duty = 0x08,
.period = 0x04,
.ctrl = 0x0c,
},
.prescaler = 1,
.supports_polarity = true,
.supports_lock = true,
.vop_pwm = false,
.enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE |
PWM_CONTINUOUS,
.enable_conf_mask = GENMASK(2, 0) | BIT(5) | BIT(8),
.oneshot_cnt_max = 0x100,
.funcs = {
.enable = rockchip_pwm_enable_v1,
.config = rockchip_pwm_config_v1,
.set_capture = rockchip_pwm_set_capture_v1,
.get_capture_result = rockchip_pwm_get_capture_result_v1,
.irq_handler = rockchip_pwm_irq_v1,
},
};
static const struct rockchip_pwm_data pwm_data_v4 = {
.main_version = 0x04,
.regs = {
.version = 0x0,
.enable = 0x4,
.ctrl = 0xc,
.period = 0x10,
.duty = 0x14,
},
.prescaler = 1,
.supports_polarity = true,
.supports_lock = true,
.vop_pwm = false,
.oneshot_cnt_max = 0x10000,
.oneshot_rpt_max = 0x10000,
.wave_table_max = 0x300,
.enable_conf = PWM_ENABLE_V4,
.funcs = {
.enable = rockchip_pwm_enable_v4,
.config = rockchip_pwm_config_v4,
.set_capture = rockchip_pwm_set_capture_v4,
.get_capture_result = rockchip_pwm_get_capture_result_v4,
.set_counter = rockchip_pwm_set_counter_v4,
.get_counter_result = rockchip_pwm_get_counter_result_v4,
.set_freq_meter = rockchip_pwm_set_freq_meter_v4,
.get_freq_meter_result = rockchip_pwm_get_freq_meter_result_v4,
.global_ctrl = rockchip_pwm_global_ctrl_v4,
.set_wave_table = rockchip_pwm_set_wave_table_v4,
.set_wave = rockchip_pwm_set_wave_v4,
.set_biphasic = rockchip_pwm_set_biphasic_v4,
.get_biphasic_result = rockchip_pwm_get_biphasic_result_v4,
.ir_transmit = rockchip_pwm_ir_transmit_v4,
.irq_handler = rockchip_pwm_irq_v4,
},
};
static const struct of_device_id rockchip_pwm_dt_ids[] = {
{ .compatible = "rockchip,rk2928-pwm", .data = &pwm_data_v1},
{ .compatible = "rockchip,rk3288-pwm", .data = &pwm_data_v2},
{ .compatible = "rockchip,vop-pwm", .data = &pwm_data_vop},
{ .compatible = "rockchip,rk3328-pwm", .data = &pwm_data_v3},
{ .compatible = "rockchip,rk3576-pwm", .data = &pwm_data_v4},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rockchip_pwm_dt_ids);
static int rockchip_pwm_get_channel_id(const char *name)
{
int len = strlen(name);
return name[len - 2] - '0';
}
static int rockchip_pwm_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct rockchip_pwm_chip *pc;
struct resource *r;
u32 enable_conf, ctrl, version;
bool enabled;
int ret, count;
id = of_match_device(rockchip_pwm_dt_ids, &pdev->dev);
if (!id)
return -EINVAL;
pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
if (!pc)
return -ENOMEM;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "Failed to get pwm register\n");
return -EINVAL;
}
pc->res = r;
pc->base = devm_ioremap(&pdev->dev, pc->res->start,
resource_size(pc->res));
if (IS_ERR(pc->base))
return PTR_ERR(pc->base);
pc->clk = devm_clk_get(&pdev->dev, "pwm");
if (IS_ERR(pc->clk)) {
pc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pc->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(pc->clk),
"Can't get PWM clk\n");
}
count = of_count_phandle_with_args(pdev->dev.of_node,
"clocks", "#clock-cells");
if (count >= 2) {
pc->pclk = devm_clk_get(&pdev->dev, "pclk");
pc->clk_osc = devm_clk_get_optional(&pdev->dev, "osc");
} else {
pc->pclk = pc->clk;
}
if (IS_ERR(pc->pclk))
return dev_err_probe(&pdev->dev, PTR_ERR(pc->pclk), "Can't get APB clk\n");
ret = clk_prepare_enable(pc->clk);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Can't prepare enable PWM clk\n");
ret = clk_prepare_enable(pc->pclk);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Can't prepare enable APB clk\n");
goto err_clk;
}
pc->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(pc->pinctrl)) {
dev_err(&pdev->dev, "Get pinctrl failed!\n");
ret = PTR_ERR(pc->pinctrl);
goto err_pclk;
}
pc->active_state = pinctrl_lookup_state(pc->pinctrl, "active");
if (IS_ERR(pc->active_state)) {
dev_err(&pdev->dev, "No active pinctrl state\n");
ret = PTR_ERR(pc->active_state);
goto err_pclk;
}
platform_set_drvdata(pdev, pc);
pc->data = id->data;
pc->chip.dev = &pdev->dev;
pc->chip.ops = &rockchip_pwm_ops;
pc->chip.base = of_alias_get_id(pdev->dev.of_node, "pwm");
pc->chip.npwm = 1;
pc->clk_rate = clk_get_rate(pc->clk);
pc->main_version = pc->data->main_version;
if (pc->main_version >= 4) {
version = readl_relaxed(pc->base + pc->data->regs.version);
pc->channel_id = (version & CHANNLE_INDEX_MASK) >> CHANNLE_INDEX_SHIFT;
pc->ir_trans_support = !!(version & IR_TRANS_SUPPORT);
pc->freq_meter_support = !!(version & FREQ_METER_SUPPORT);
pc->counter_support = !!(version & COUNTER_SUPPORT);
pc->wave_support = !!(version & WAVE_SUPPORT);
pc->biphasic_support = !!(version & BIPHASIC_SUPPORT);
} else {
pc->channel_id = rockchip_pwm_get_channel_id(pdev->dev.of_node->full_name);
}
if (pc->channel_id < 0 || pc->channel_id >= PWM_MAX_CHANNEL_NUM) {
dev_err(&pdev->dev, "Channel id is out of range: %d\n", pc->channel_id);
ret = -EINVAL;
goto err_pclk;
}
if (pc->data->funcs.irq_handler) {
if (pc->main_version >= 4) {
pc->irq = platform_get_irq(pdev, 0);
if (pc->irq < 0) {
dev_err(&pdev->dev, "Get irq failed\n");
ret = pc->irq;
goto err_pclk;
}
ret = devm_request_irq(&pdev->dev, pc->irq, pc->data->funcs.irq_handler,
IRQF_NO_SUSPEND, "rk_pwm_irq", pc);
if (ret) {
dev_err(&pdev->dev, "Claim IRQ failed\n");
goto err_pclk;
}
} else {
if (IS_ENABLED(CONFIG_PWM_ROCKCHIP_ONESHOT)) {
pc->irq = platform_get_irq_optional(pdev, 0);
if (pc->irq < 0) {
dev_warn(&pdev->dev,
"Can't get oneshot mode irq and oneshot interrupt is unsupported\n");
} else {
ret = devm_request_irq(&pdev->dev, pc->irq,
pc->data->funcs.irq_handler,
IRQF_NO_SUSPEND | IRQF_SHARED,
"rk_pwm_oneshot_irq", pc);
if (ret) {
dev_err(&pdev->dev, "Claim oneshot IRQ failed\n");
goto err_pclk;
}
}
}
}
}
enable_conf = pc->data->enable_conf;
if (pc->main_version >= 4)
ctrl = readl_relaxed(pc->base + pc->data->regs.enable);
else
ctrl = readl_relaxed(pc->base + pc->data->regs.ctrl);
enabled = (ctrl & enable_conf) == enable_conf;
pc->center_aligned =
device_property_read_bool(&pdev->dev, "center-aligned");
ret = devm_pwmchip_add(&pdev->dev, &pc->chip);
if (ret < 0) {
dev_err_probe(&pdev->dev, ret, "pwmchip_add() failed\n");
goto err_pclk;
}
if (pc->wave_support) {
if (!pc->clk_osc) {
dev_err(&pdev->dev, "Can't find OSC clk for wave generator mode\n");
ret = -EINVAL;
goto err_pclk;
}
ret = clk_prepare(pc->clk_osc);
if (ret) {
dev_err(&pdev->dev, "Can't prepare OSC clk for wave generator mode\n");
goto err_pclk;
}
}
#ifdef CONFIG_RC_CORE
if (pc->ir_trans_support &&
device_property_present(&pdev->dev, "rockchip,pwm-ir-transmit")) {
struct rc_dev *rcdev;
init_completion(&pc->ir_trans_completion);
rcdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW_TX);
if (!rcdev)
goto err_pclk;
rcdev->priv = pc;
rcdev->driver_name = "rockchip-pwm-ir-tx";
rcdev->device_name = "Rockchip IR TX";
rcdev->tx_ir = rockchip_pwm_ir_transmit;
ret = devm_rc_register_device(&pdev->dev, rcdev);
if (ret < 0)
goto err_pclk;
}
#endif
rockchip_pwm_debugfs_init(pc);
/* Keep the PWM clk enabled if the PWM appears to be up and running. */
if (!enabled)
clk_disable(pc->clk);
clk_disable(pc->pclk);
return 0;
err_pclk:
clk_disable_unprepare(pc->pclk);
err_clk:
clk_disable_unprepare(pc->clk);
return ret;
}
static int rockchip_pwm_remove(struct platform_device *pdev)
{
struct rockchip_pwm_chip *pc = platform_get_drvdata(pdev);
struct pwm_state state;
u32 val;
rockchip_pwm_debugfs_deinit(pc);
/*
* For oneshot mode, it is needed to wait for bit PWM_ENABLE
* to 0, which is automatic if all periods have been sent.
*/
pwm_get_state(&pc->chip.pwms[0], &state);
if (state.enabled) {
if (pc->oneshot_en) {
if (readl_poll_timeout(pc->base + pc->data->regs.ctrl,
val, !(val & PWM_ENABLE), 1000, 10 * 1000))
dev_err(&pdev->dev, "Wait for oneshot to complete failed\n");
} else {
state.enabled = false;
pwm_apply_state(&pc->chip.pwms[0], &state);
}
}
pwmchip_remove(&pc->chip);
if (pc->oneshot_en)
clk_disable(pc->pclk);
clk_unprepare(pc->clk_osc);
clk_unprepare(pc->pclk);
clk_unprepare(pc->clk);
return 0;
}
static struct platform_driver rockchip_pwm_driver = {
.driver = {
.name = "rockchip-pwm",
.of_match_table = rockchip_pwm_dt_ids,
},
.probe = rockchip_pwm_probe,
.remove = rockchip_pwm_remove,
};
#ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
static int __init rockchip_pwm_driver_init(void)
{
return platform_driver_register(&rockchip_pwm_driver);
}
subsys_initcall(rockchip_pwm_driver_init);
static void __exit rockchip_pwm_driver_exit(void)
{
platform_driver_unregister(&rockchip_pwm_driver);
}
module_exit(rockchip_pwm_driver_exit);
#else
module_platform_driver(rockchip_pwm_driver);
#endif
MODULE_AUTHOR("Beniamino Galvani <b.galvani@gmail.com>");
MODULE_DESCRIPTION("Rockchip SoC PWM driver");
MODULE_LICENSE("GPL v2");