1679 lines
40 KiB
C

/*
* drivers/input/touchscreen/gslx6801.c
*
* Copyright (c) 2012 Shanghai Basewin
* Guan Yuwei<guanyuwei@basewin.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/async.h>
#include <linux/gpio.h>
#include <asm/irq.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/input/mt.h>
#include "tp_suspend.h"
#include "gslx6801.h"
#include <linux/of_gpio.h>
#include <linux/wakelock.h>
#include <linux/regulator/consumer.h>
#define GSL_DEBUG
#define REPORT_DATA_ANDROID_4_0
#define HAVE_TOUCH_KEY
#ifdef FILTER_POINT
#define FILTER_MAX 9
#endif
#define GSLX680_I2C_NAME "gslX6801"
#define GSLX680_I2C_ADDR 0x40
#define GSL_DATA_REG 0x80
#define GSL_STATUS_REG 0xe0
#define GSL_PAGE_REG 0xf0
#define GSL_MONITOR
#define PRESS_MAX 255
#define MAX_FINGERS 5
#define MAX_CONTACTS 10
#define DMA_TRANS_LEN 0x20
#ifdef GSL_MONITOR
#define TPD_PROC_DEBUG
#ifdef TPD_PROC_DEBUG
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#define GSL_CONFIG_PROC_FILE "gsl_config"
#define CONFIG_LEN 31
static char gsl_read[CONFIG_LEN];
static u8 gsl_data_proc[8] = { 0 };
static u8 gsl_proc_flag;
static struct i2c_client *i2c_client;
#endif
#ifdef RK_GEAR_TOUCH
static int g_istouch;
#endif
static struct workqueue_struct *gsl_monitor_workqueue;
static u8 int_1st[4] = { 0 };
static u8 int_2nd[4] = { 0 };
static char b0_counter;
static char bc_counter;
static char i2c_lock_flag;
#endif
#define WRITE_I2C_SPEED (350 * 1000)
#define I2C_SPEED (200 * 1000)
#define CLOSE_TP_POWER 0
#ifdef HAVE_CLICK_TIMER
static struct workqueue_struct *gsl_timer_workqueue;
bool send_key;
struct semaphore my_sem;
#endif
#ifdef HAVE_TOUCH_KEY
static u16 key;
static int key_state_flag;
struct key_data {
u16 key;
u16 x_min;
u16 x_max;
u16 y_min;
u16 y_max;
};
static const u16 key_array[] = {
KEY_LEFT,
KEY_RIGHT,
KEY_UP,
KEY_DOWN,
KEY_ENTER,
};
#define MAX_KEY_NUM ARRAY_SIZE(key_array)
static int key_x[512];
static int key_y[512];
static int key_count;
static const struct key_data gsl_key_data[MAX_KEY_NUM] = {
{KEY_BACK, 550, 650, 1400, 1600},
{KEY_HOMEPAGE, 350, 450, 1400, 1600},
{KEY_MENU, 150, 250, 1400, 1600},
{KEY_SEARCH, 2048, 2048, 2048, 2048},
};
#endif
struct gsl_ts_data {
u8 x_index;
u8 y_index;
u8 z_index;
u8 id_index;
u8 touch_index;
u8 data_reg;
u8 status_reg;
u8 data_size;
u8 touch_bytes;
u8 update_data;
u8 touch_meta_data;
u8 finger_size;
};
static struct gsl_ts_data devices[] = {
{
.x_index = 6,
.y_index = 4,
.z_index = 5,
.id_index = 7,
.data_reg = GSL_DATA_REG,
.status_reg = GSL_STATUS_REG,
.update_data = 0x4,
.touch_bytes = 4,
.touch_meta_data = 4,
.finger_size = 70,
},
};
struct gsl_ts {
struct i2c_client *client;
struct input_dev *input;
struct work_struct work;
struct workqueue_struct *wq;
struct gsl_ts_data *dd;
struct regulator *regulator;
int flag_irq_is_disable;
spinlock_t irq_lock;
u8 *touch_data;
u8 device_id;
struct regulator *tp_regulator;
int irq;
int rst;
struct delayed_work gsl_monitor_work;
#if defined(CONFIG_HAS_EARLYSUSPEND)
struct early_suspend early_suspend;
#endif
#if defined(HAVE_CLICK_TIMER)
struct work_struct click_work;
#endif
struct tp_device tp;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct pinctrl_state *pins_inactive;
};
static u32 id_sign[MAX_CONTACTS + 1] = { 0 };
static u8 id_state_flag[MAX_CONTACTS + 1] = { 0 };
static u8 id_state_old_flag[MAX_CONTACTS + 1] = { 0 };
static u16 x_old[MAX_CONTACTS + 1] = { 0 };
static u16 y_old[MAX_CONTACTS + 1] = { 0 };
static u16 x_new;
static u16 y_new;
static int gslx680_set_pinctrl_state(struct gsl_ts *ts,
struct pinctrl_state *state)
{
int ret = 0;
if (!IS_ERR(ts->pinctrl))
return PTR_ERR(ts->pinctrl);
if (!IS_ERR(state)) {
ret = pinctrl_select_state(ts->pinctrl, state);
if (ret)
pr_err("could not set pins\n");
}
return ret;
}
static int gslX680_init(struct gsl_ts *ts)
{
struct device_node *np = ts->client->dev.of_node;
int err = 0;
ts->irq = of_get_named_gpio_flags(np, "touch-gpio", 0, NULL);
ts->rst = of_get_named_gpio_flags(np, "reset-gpio", 0, NULL);
/* pinctrl */
ts->pinctrl = devm_pinctrl_get(&ts->client->dev);
if (!IS_ERR(ts->pinctrl)) {
ts->pins_default =
pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_DEFAULT);
ts->pins_sleep =
pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_SLEEP);
ts->pins_inactive =
pinctrl_lookup_state(ts->pinctrl, "inactive");
gslx680_set_pinctrl_state(ts, ts->pins_default);
}
err = gpio_request(ts->rst, "tp reset");
if (err) {
pr_err("gslx680 reset gpio request failed.\n");
return -1;
}
gpio_direction_output(ts->rst, 1);
gpio_set_value(ts->rst, 1);
return 0;
}
static int gslX680_shutdown_low(struct gsl_ts *ts)
{
pr_info("gsl gslX680_shutdown_low\n");
gpio_direction_output(ts->rst, 0);
gpio_set_value(ts->rst, 0);
return 0;
}
static int gslX680_shutdown_high(struct gsl_ts *ts)
{
pr_info("gsl gslX680_shutdown_high\n");
gpio_direction_output(ts->rst, 1);
gpio_set_value(ts->rst, 1);
return 0;
}
static inline u16 join_bytes(u8 a, u8 b)
{
u16 ab = 0;
ab = ab | a;
ab = ab << 8 | b;
return ab;
}
static u32 gsl_write_interface(struct i2c_client *client,
const u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[1];
buf[0] = reg;
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = num + 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = buf;
return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT;
}
static int gsl_ts_write(struct i2c_client *client,
u8 addr, u8 *pdata, int datalen)
{
int ret = 0;
u8 tmp_buf[128];
unsigned int bytelen = 0;
if (datalen > 125) {
dev_err(&client->dev, "%s big datalen = %d!\n",
__func__, datalen);
return -1;
}
tmp_buf[0] = addr;
bytelen++;
if (datalen != 0 && pdata != NULL) {
memcpy(&tmp_buf[bytelen], pdata, datalen);
bytelen += datalen;
}
ret = i2c_master_send(client, tmp_buf, bytelen);
return ret;
}
static int gsl_ts_read(struct i2c_client *client, u8 addr,
u8 *pdata, unsigned int datalen)
{
int ret = 0;
if (datalen > 126) {
dev_err(&client->dev, "%s too big datalen = %d!\n",
__func__, datalen);
return -1;
}
ret = gsl_ts_write(client, addr, NULL, 0);
if (ret < 0) {
dev_err(&client->dev, "%s set data address fail!\n", __func__);
return ret;
}
return i2c_master_recv(client, pdata, datalen);
}
static void fw2buf(u8 *buf, const u32 *fw)
{
u32 *u32_buf = (int *)buf;
*u32_buf = *fw;
}
static void gsl_load_fw(struct i2c_client *client)
{
u8 buf[DMA_TRANS_LEN * 4 + 1] = { 0 };
u8 send_flag = 1;
u8 *cur = buf + 1;
u32 source_line = 0;
u32 source_len;
struct fw_data const *ptr_fw;
ptr_fw = GSLX680_FW;
source_len = ARRAY_SIZE(GSLX680_FW);
for (source_line = 0; source_line < source_len; source_line++) {
/* init page trans, set the page val */
if (ptr_fw[source_line].offset == GSL_PAGE_REG) {
fw2buf(cur, &ptr_fw[source_line].val);
gsl_write_interface(client, GSL_PAGE_REG, buf, 4);
send_flag = 1;
} else {
if (1 ==
send_flag % (DMA_TRANS_LEN <
0x20 ? DMA_TRANS_LEN : 0x20))
buf[0] = (u8)ptr_fw[source_line].offset;
fw2buf(cur, &ptr_fw[source_line].val);
cur += 4;
if (0 ==
send_flag % (DMA_TRANS_LEN <
0x20 ? DMA_TRANS_LEN : 0x20)) {
gsl_write_interface(client, buf[0], buf,
cur - buf - 1);
cur = buf + 1;
}
send_flag++;
}
}
}
static int test_i2c(struct i2c_client *client)
{
u8 read_buf = 0;
u8 write_buf = 0x12;
int ret, rc = 1;
ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
if (ret < 0)
rc--;
else
dev_info(&client->dev, "gsl I read reg 0xf0 is %x\n", read_buf);
usleep_range(2000, 3000);
ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf));
if (ret >= 0)
dev_info(&client->dev, "gsl I write reg 0xf0 0x12\n");
usleep_range(2000, 3000);
ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
if (ret < 0)
rc--;
else
dev_info(&client->dev,
"gsl I read reg 0xf0 is 0x%x\n", read_buf);
return rc;
}
static void startup_chip(struct i2c_client *client)
{
u8 tmp = 0x00;
#ifdef GSL_NOID_VERSION
gsl_DataInit(gsl_config_data_id);
#endif
gsl_ts_write(client, 0xe0, &tmp, 1);
mdelay(10);
}
static void reset_chip(struct i2c_client *client)
{
u8 tmp = 0x88;
u8 buf[4] = { 0x00 };
gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp));
mdelay(20);
tmp = 0x04;
gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp));
mdelay(10);
gsl_ts_write(client, 0xbc, buf, sizeof(buf));
mdelay(10);
}
static void clr_reg(struct i2c_client *client)
{
u8 write_buf[4] = { 0 };
write_buf[0] = 0x88;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
mdelay(20);
write_buf[0] = 0x03;
gsl_ts_write(client, 0x80, &write_buf[0], 1);
mdelay(5);
write_buf[0] = 0x04;
gsl_ts_write(client, 0xe4, &write_buf[0], 1);
mdelay(5);
write_buf[0] = 0x00;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
mdelay(20);
}
#ifdef PEN_ADJUST_FREQ
static int gsl_adjust_freq(struct i2c_client *client)
{
static u32 cpu_start, cpu_end, ret, real_time;
u8 buf[4];
struct timeval time_start, time_end;
dev_info(&client->dev, "gsl pen test\n");
buf[3] = 0x01;
buf[2] = 0xfe;
buf[1] = 0x02;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf);
buf[3] = 0x00;
buf[2] = 0x00;
buf[1] = 0x00;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0x0c, 4, buf);
buf[3] = 0x01;
buf[2] = 0xfe;
buf[1] = 0x02;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf);
buf[3] = 0xff;
buf[2] = 0xff;
buf[1] = 0xff;
buf[0] = 0xff;
i2c_smbus_write_i2c_block_data(client, 0x04, 4, buf);
buf[3] = 0x01;
buf[2] = 0xfe;
buf[1] = 0x02;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf);
buf[3] = 0x00;
buf[2] = 0x00;
buf[1] = 0x00;
buf[0] = 0x09;
i2c_smbus_write_i2c_block_data(client, 0x08, 4, buf);
mdelay(200);
buf[3] = 0x01;
buf[2] = 0xfe;
buf[1] = 0x02;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf);
i2c_smbus_read_i2c_block_data(client, 0, 4, buf);
i2c_smbus_read_i2c_block_data(client, 0, 4, buf);
cpu_start = (buf[3] << 24) + (buf[2] << 16) +
(buf[1] << 8) + buf[0];
do_gettimeofday(&time_start);
/* start count time */
mdelay(1200);
buf[3] = 0x01;
buf[2] = 0xfe;
buf[1] = 0x02;
buf[0] = 0x00;
i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf);
i2c_smbus_read_i2c_block_data(client, 0, 4, buf);
i2c_smbus_read_i2c_block_data(client, 0, 4, buf);
cpu_end = (buf[3] << 24) +
(buf[2] << 16) + (buf[1] << 8) + buf[0];
do_gettimeofday(&time_end);
real_time = ((time_end.tv_sec - time_start.tv_sec) * 10000 +
(time_end.tv_usec - time_start.tv_usec) / 100);
if (real_time > 10000) {
ret = (u32)((cpu_start - cpu_end) * 100 / real_time)
* 0x1000 / 9245;
if (ret >= 0x1000 / 2 && ret <= 0x1000 * 2) {
buf[3] = 0x00;
buf[2] = 0x00;
buf[1] = 0x00;
buf[0] = 0x03;
i2c_smbus_write_i2c_block_data(client,
0xf0, 4, buf);
buf[3] = (u8)((ret >> 24) & 0xff);
buf[2] = (u8)((ret >> 16) & 0xff);
buf[1] = (u8)((ret >> 8) & 0xff);
buf[0] = (u8)(ret & 0xff);
i2c_smbus_write_i2c_block_data(client,
0x7c, 4, buf);
} else {
return -1;
}
}
return 0;
}
#endif
static void init_chip(struct i2c_client *client, struct gsl_ts *ts)
{
int rc;
#ifdef PEN_ADJUST_FREQ
int rc1;
#endif
dev_info(&client->dev, "gsl init_chip\n");
gslX680_shutdown_low(ts);
mdelay(20);
gslX680_shutdown_high(ts);
mdelay(20);
rc = test_i2c(client);
if (rc < 0) {
dev_err(&client->dev, "gslX680 test_i2c error\n");
return;
}
clr_reg(client);
reset_chip(client);
gsl_load_fw(client);
startup_chip(client);
#ifdef PEN_ADJUST_FREQ
rc1 = gsl_adjust_freq(client);
if (rc1 < 0) {
dev_info(&client->dev, "SL_Adjust_Freq error\n");
gsl_adjust_freq(client);
}
#endif
reset_chip(client);
startup_chip(client);
}
static void check_mem_data(struct i2c_client *client, struct gsl_ts *ts)
{
u8 read_buf[4] = { 0 };
mdelay(30);
gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf));
dev_info(&client->dev, "check mem read 0xb0 = %x %x %x %x\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a ||
read_buf[1] != 0x5a || read_buf[0] != 0x5a) {
init_chip(client, ts);
}
}
#ifdef TPD_PROC_DEBUG
static int char_to_int(char ch)
{
if (ch >= '0' && ch <= '9')
return (ch - '0');
else
return (ch - 'a' + 10);
}
static int gsl_config_read_proc(struct seq_file *m, void *v)
{
char temp_data[5] = { 0 };
unsigned int tmp = 0;
if ('v' == gsl_read[0] && 's' == gsl_read[1]) {
#ifdef GSL_NOID_VERSION
tmp = gsl_version_id();
#else
tmp = 0x20121215;
#endif
seq_printf(m, "version:%x\n", tmp);
} else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) {
if ('i' == gsl_read[3]) {
#ifdef GSL_NOID_VERSION
tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4];
seq_printf(m, "gsl_config_data_id[%d] = ", tmp);
if (tmp >= 0 && tmp < 512)
seq_printf(m, "%d\n", gsl_config_data_id[tmp]);
#endif
} else {
i2c_smbus_write_i2c_block_data(i2c_client, 0xf0, 4,
&gsl_data_proc[4]);
if (gsl_data_proc[0] < 0x80)
i2c_smbus_read_i2c_block_data(i2c_client,
gsl_data_proc[0],
4, temp_data);
i2c_smbus_read_i2c_block_data(i2c_client,
gsl_data_proc[0],
4, temp_data);
seq_printf(m, "offset : {0x%02x,0x", gsl_data_proc[0]);
seq_printf(m, "%02x", temp_data[3]);
seq_printf(m, "%02x", temp_data[2]);
seq_printf(m, "%02x", temp_data[1]);
seq_printf(m, "%02x};\n", temp_data[0]);
}
}
return 0;
}
static ssize_t gsl_config_write_proc(struct file *file, const char *buffer,
size_t count, loff_t *data)
{
u8 buf[8] = { 0 };
char temp_buf[CONFIG_LEN];
char *path_buf;
int tmp = 0;
int tmp1 = 0;
if (count > 512)
return -EFAULT;
path_buf = kzalloc(count, GFP_KERNEL);
if (!path_buf) {
pr_err("alloc path_buf memory error\n");
return -ENOMEM;
}
if (copy_from_user(path_buf, buffer, count)) {
pr_err("copy from user fail\n");
goto exit_write_proc_out;
}
memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN));
pr_debug("[tp-gsl][%s][%s]\n", __func__, temp_buf);
buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]);
buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]);
buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]);
buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]);
buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]);
buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]);
buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]);
buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]);
if ('v' == temp_buf[0] && 's' == temp_buf[1]) {
memcpy(gsl_read, temp_buf, 4);
pr_info("gsl version\n");
} else if ('s' == temp_buf[0] && 't' == temp_buf[1]) {
gsl_proc_flag = 1;
reset_chip(i2c_client);
} else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) {
mdelay(20);
reset_chip(i2c_client);
startup_chip(i2c_client);
gsl_proc_flag = 0;
} else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) {
memcpy(gsl_read, temp_buf, 4);
memcpy(gsl_data_proc, buf, 8);
} else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) {
i2c_smbus_write_i2c_block_data(i2c_client, buf[4], 4, buf);
}
#ifdef GSL_NOID_VERSION
else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) {
tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4];
tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
if (tmp1 >= 0 && tmp1 < 512)
gsl_config_data_id[tmp1] = tmp;
}
#endif
exit_write_proc_out:
kfree(path_buf);
return count;
}
static int gsl_server_list_open(struct inode *inode, struct file *file)
{
return single_open(file, gsl_config_read_proc, NULL);
}
static const struct file_operations gsl_seq_fops = {
.open = gsl_server_list_open,
.read = seq_read,
.release = single_release,
.write = gsl_config_write_proc,
.owner = THIS_MODULE,
};
#endif
#ifdef FILTER_POINT
static void filter_point(u16 x, u16 y, u8 id)
{
u16 x_err = 0;
u16 y_err = 0;
u16 filter_step_x = 0, filter_step_y = 0;
id_sign[id] = id_sign[id] + 1;
if (id_sign[id] == 1) {
x_old[id] = x;
y_old[id] = y;
}
x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x);
y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y);
if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) ||
(x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) {
filter_step_x = x_err;
filter_step_y = y_err;
} else {
if (x_err > FILTER_MAX)
filter_step_x = x_err;
if (y_err > FILTER_MAX)
filter_step_y = y_err;
}
if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) {
filter_step_x >>= 2;
filter_step_y >>= 2;
} else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) {
filter_step_x >>= 1;
filter_step_y >>= 1;
} else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) {
filter_step_x = filter_step_x * 3 / 4;
filter_step_y = filter_step_y * 3 / 4;
}
x_new =
x >
x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] -
filter_step_x);
y_new =
y >
y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] -
filter_step_y);
x_old[id] = x_new;
y_old[id] = y_new;
}
#else
static void record_point(u16 x, u16 y, u8 id)
{
u16 x_err = 0;
u16 y_err = 0;
id_sign[id] = id_sign[id] + 1;
if (id_sign[id] == 1) {
x_old[id] = x;
y_old[id] = y;
}
x = (x_old[id] + x) / 2;
y = (y_old[id] + y) / 2;
if (x > x_old[id])
x_err = x - x_old[id];
else
x_err = x_old[id] - x;
if (y > y_old[id])
y_err = y - y_old[id];
else
y_err = y_old[id] - y;
if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) {
x_new = x;
x_old[id] = x;
y_new = y;
y_old[id] = y;
} else {
if (x_err > 3) {
x_new = x;
x_old[id] = x;
} else {
x_new = x_old[id];
}
if (y_err > 3) {
y_new = y;
y_old[id] = y;
} else {
y_new = y_old[id];
}
}
if (id_sign[id] == 1) {
x_new = x_old[id];
y_new = y_old[id];
}
}
#endif
#ifdef SLEEP_CLEAR_POINT
#ifdef HAVE_TOUCH_KEY
static void report_key(struct gsl_ts *ts, u16 x, u16 y)
{
u16 i = 0;
for (i = 0; i < MAX_KEY_NUM; i++) {
if ((gsl_key_data[i].x_min < x) &&
(x < gsl_key_data[i].x_max) &&
(gsl_key_data[i].y_min < y) &&
(y < gsl_key_data[i].y_max)) {
key = gsl_key_data[i].key;
input_report_key(ts->input, key, 1);
input_sync(ts->input);
key_state_flag = 1;
break;
}
}
}
#endif
#endif
static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id)
{
#ifdef RK_GEAR_TOUCH
int delt_x;
int delt_y;
static int old_x;
static int old_y;
#endif
#ifdef RK_GEAR_TOUCH
if (g_istouch == 0) {
g_istouch = 1;
input_event(ts->input, EV_MSC, MSC_SCAN, 0x90001);
input_report_key(ts->input, 0x110, 1);
input_sync(ts->input);
}
delt_x = (int)x - old_x;
delt_y = (int)y - old_y;
delt_x /= 10;
delt_y /= 10;
input_report_rel(ts->input, REL_Y, -delt_x);
input_report_rel(ts->input, REL_X, -delt_y);
input_sync(ts->input);
old_x = x;
old_y = y;
return;
#endif
#ifdef REPORT_DATA_ANDROID_4_0
y = 1920 - y;
swap(x, y);
input_mt_slot(ts->input, id);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input, ABS_MT_POSITION_X, x);
input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
#else
input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input, ABS_MT_POSITION_X, x);
input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
input_mt_sync(ts->input);
#endif
}
static void glsx680_ts_irq_disable(struct gsl_ts *ts)
{
unsigned long irqflags;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->flag_irq_is_disable) {
disable_irq_nosync(ts->client->irq);
ts->flag_irq_is_disable = 1;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
static void glsx680_ts_irq_enable(struct gsl_ts *ts)
{
unsigned long irqflags = 0;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->flag_irq_is_disable) {
enable_irq(ts->client->irq);
ts->flag_irq_is_disable = 0;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
static void gslX680_ts_worker(struct work_struct *work)
{
int rc, i;
u8 id, touches;
u16 x, y;
#ifdef GSL_NOID_VERSION
u32 tmp1;
u8 buf[4] = { 0 };
struct gsl_touch_info cinfo;
#endif
struct gsl_ts *ts = container_of(work, struct gsl_ts, work);
#ifdef TPD_PROC_DEBUG
if (gsl_proc_flag == 1)
goto schedule;
#endif
#ifdef GSL_MONITOR
if (i2c_lock_flag != 0)
goto i2c_lock_schedule;
else
i2c_lock_flag = 1;
#endif
rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size);
if (rc < 0) {
dev_err(&ts->client->dev, "read failed\n");
goto schedule;
}
touches = ts->touch_data[ts->dd->touch_index];
#ifdef GSL_NOID_VERSION
cinfo.finger_num = touches;
for
(i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) {
cinfo.x[i] =
join_bytes((ts->
touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
cinfo.y[i] =
join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i]);
cinfo.id[i] =
((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf0) >> 4);
}
cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16)
| (ts->touch_data[1] << 8) | (ts->touch_data[0]);
gsl_alg_id_main(&cinfo);
tmp1 = gsl_mask_tiaoping();
if (tmp1 > 0 && tmp1 < 0xffffffff) {
buf[0] = 0xa;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
gsl_ts_write(ts->client, 0xf0, buf, 4);
buf[0] = (u8)(tmp1 & 0xff);
buf[1] = (u8)((tmp1 >> 8) & 0xff);
buf[2] = (u8)((tmp1 >> 16) & 0xff);
buf[3] = (u8)((tmp1 >> 24) & 0xff);
gsl_ts_write(ts->client, 0x8, buf, 4);
}
touches = cinfo.finger_num;
#endif
for (i = 1; i <= MAX_CONTACTS; i++) {
if (touches == 0)
id_sign[i] = 0;
id_state_flag[i] = 0;
}
for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) {
#ifdef GSL_NOID_VERSION
id = cinfo.id[i];
x = cinfo.x[i];
y = cinfo.y[i];
#else
x = join_bytes((ts->
touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i]);
id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4;
#endif
if (id >= i && id <= MAX_CONTACTS) {
#ifdef FILTER_POINT
filter_point(x, y, id);
#else
record_point(x, y, id);
#endif
report_data(ts, x, y, 10, id);
if (key_count < 512) {
key_x[key_count] = x_new;
key_y[key_count] = y_new;
key_count++;
}
id_state_flag[id] = 1;
}
}
for (i = 1; i <= MAX_CONTACTS; i++) {
if ((touches == 0) || ((id_state_old_flag[i] != 0) &&
(id_state_flag[i] == 0))) {
#ifdef RK_GEAR_TOUCH
if (g_istouch == 1) {
g_istouch = 0;
input_event(ts->input, EV_MSC,
MSC_SCAN, 0x90001);
input_report_key(ts->input, 0x110, 0);
input_sync(ts->input);
}
g_istouch = 0;
#endif
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input,
MT_TOOL_FINGER, false);
#endif
id_sign[i] = 0;
}
id_state_old_flag[i] = id_state_flag[i];
}
if (touches == 0) {
#ifndef REPORT_DATA_ANDROID_4_0
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 0);
input_mt_sync(ts->input);
int temp_x = 0;
int temp_y = 0;
temp_x =
(((key_x[key_count - 1] - key_x[0]) >
0) ? (key_x[key_count - 1] - key_x[0])
: (key_x[0] - key_x[key_count - 1]));
temp_y =
(((key_y[key_count - 1] - key_y[0]) >
0) ? (key_y[key_count - 1] - key_y[0])
: (key_y[0] - key_y[key_count - 1]));
if (key_count <= 512) {
if (temp_x > temp_y) {
if ((key_x[key_count - 1] - key_x[0]) > 100) {
pr_debug("send up key\n");
input_report_key(ts->input,
key_array[2], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[2], 0);
input_sync(ts->input);
} else if ((key_x[0] - key_x[key_count - 1]) >
100) {
pr_debug("send down key\n");
input_report_key(ts->input,
key_array[3], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[3], 0);
input_sync(ts->input);
}
} else if (temp_x <= temp_y) {
if ((key_y[key_count - 1] - key_y[0]) > 100) {
pr_debug("send left key\n");
input_report_key(ts->input,
key_array[0], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[0], 0);
input_sync(ts->input);
} else if ((key_y[0] - key_y[key_count - 1]) >
100) {
pr_debug("send right key\n");
input_report_key(ts->input,
key_array[1], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[1], 0);
input_sync(ts->input);
}
}
if ((key_x[key_count - 1] - key_x[0] < 50) &&
(key_x[key_count - 1] - key_x[0] >= -50) &&
(key_y[key_count - 1] - key_y[0] < 50) &&
(key_y[key_count - 1] - key_y[0] >= -50) &&
(key_x[0] != 0) && (key_y[0] != 0)) {
queue_work(gsl_timer_workqueue,
&ts->click_work);
pr_debug("send enter2 key by yuandan\n");
if (send_key) {
pr_debug("send enter key\n");
input_report_key(ts->input,
key_array[4], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[4], 0);
input_sync(ts->input);
} else {
down(&my_sem);
send_key = true;
up(&my_sem);
}
}
} else if (key_count > 512) {
if (temp_x > temp_y) {
if ((key_x[511] - key_x[0]) > 100) {
pr_debug("send up key\n");
input_report_key(ts->input,
key_array[2], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[2], 0);
input_sync(ts->input);
} else if ((key_x[0] - key_x[511]) > 100) {
pr_debug("send down key\n");
input_report_key(ts->input,
key_array[3], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[3], 0);
input_sync(ts->input);
}
} else if (temp_x <= temp_y) {
if ((key_y[511] - key_y[0]) > 100) {
pr_debug("send left key\n");
input_report_key(ts->input,
key_array[0], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[0], 0);
input_sync(ts->input);
} else if ((key_y[0] - key_y[511]) > 100) {
pr_debug("send right key\n");
input_report_key(ts->input,
key_array[1], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[1], 0);
input_sync(ts->input);
}
}
}
memset(key_y, 0, sizeof(int) * 512);
memset(key_x, 0, sizeof(int) * 512);
key_count = 0;
#endif
#ifdef HAVE_TOUCH_KEY
if (key_state_flag) {
input_report_key(ts->input, key, 0);
input_sync(ts->input);
key_state_flag = 0;
}
#endif
}
input_sync(ts->input);
schedule:
#ifdef GSL_MONITOR
i2c_lock_flag = 0;
i2c_lock_schedule:
#endif
glsx680_ts_irq_enable(ts);
}
#ifdef HAVE_CLICK_TIMER
static void click_timer_worker(struct work_struct *work)
{
while (true) {
mdelay(500);
send_key = false;
}
}
#endif
#ifdef GSL_MONITOR
static void gsl_monitor_worker(struct work_struct *work)
{
u8 read_buf[4] = { 0 };
char init_chip_flag = 0;
struct gsl_ts *ts =
container_of(work, struct gsl_ts, gsl_monitor_work.work);
if (i2c_lock_flag != 0)
i2c_lock_flag = 1;
else
i2c_lock_flag = 1;
gsl_ts_read(ts->client, 0xb0, read_buf, 4);
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a ||
read_buf[1] != 0x5a || read_buf[0] != 0x5a)
b0_counter++;
else
b0_counter = 0;
if (b0_counter > 1) {
init_chip_flag = 1;
b0_counter = 0;
}
gsl_ts_read(ts->client, 0xb4, read_buf, 4);
int_2nd[3] = int_1st[3];
int_2nd[2] = int_1st[2];
int_2nd[1] = int_1st[1];
int_2nd[0] = int_1st[0];
int_1st[3] = read_buf[3];
int_1st[2] = read_buf[2];
int_1st[1] = read_buf[1];
int_1st[0] = read_buf[0];
if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] &&
int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) {
pr_info("int_1st: %x %x %x %x , int_2nd: %x %x %x %x\n",
int_1st[3], int_1st[2], int_1st[1], int_1st[0],
int_2nd[3], int_2nd[2], int_2nd[1], int_2nd[0]);
init_chip_flag = 1;
}
gsl_ts_read(ts->client, 0xbc, read_buf, 4);
if (read_buf[3] != 0 || read_buf[2] != 0 ||
read_buf[1] != 0 || read_buf[0] != 0)
bc_counter++;
else
bc_counter = 0;
if (bc_counter > 1) {
pr_info("======read 0xbc: %x %x %x %x======\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
init_chip_flag = 1;
bc_counter = 0;
}
if (init_chip_flag)
init_chip(ts->client, ts);
i2c_lock_flag = 0;
}
#endif
static irqreturn_t gsl_ts_irq(int irq, void *dev_id)
{
struct gsl_ts *ts = (struct gsl_ts *)dev_id;
glsx680_ts_irq_disable(ts);
if (!work_pending(&ts->work))
queue_work(ts->wq, &ts->work);
return IRQ_HANDLED;
}
static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts)
{
struct input_dev *input_device;
int rc = 0;
int i = 0;
pr_info("[GSLX680] Enter %s\n", __func__);
ts->dd = &devices[ts->device_id];
if (ts->device_id == 0) {
ts->dd->data_size =
MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data;
ts->dd->touch_index = 0;
}
ts->touch_data =
devm_kzalloc(&client->dev, ts->dd->data_size, GFP_KERNEL);
if (!ts->touch_data) {
pr_err("%s: Unable to allocate memory\n", __func__);
return -ENOMEM;
}
input_device = devm_input_allocate_device(&ts->client->dev);
if (!input_device) {
rc = -ENOMEM;
goto init_err_ret;
}
ts->input = input_device;
input_device->name = GSLX680_I2C_NAME;
input_device->id.bustype = BUS_I2C;
input_device->dev.parent = &client->dev;
input_set_drvdata(input_device, ts);
#ifdef REPORT_DATA_ANDROID_4_0
__set_bit(EV_ABS, input_device->evbit);
__set_bit(EV_KEY, input_device->evbit);
__set_bit(EV_REP, input_device->evbit);
__set_bit(EV_SYN, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
__set_bit(MT_TOOL_FINGER, input_device->keybit);
input_mt_init_slots(input_device, (MAX_CONTACTS + 1), 0);
#else
input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0,
(MAX_CONTACTS + 1), 0, 0);
set_bit(EV_ABS, input_device->evbit);
set_bit(EV_KEY, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#ifdef HAVE_TOUCH_KEY
input_device->evbit[0] = BIT_MASK(EV_KEY);
for (i = 0; i < MAX_KEY_NUM; i++)
set_bit(key_array[i], input_device->keybit);
#endif
#ifdef RK_GEAR_TOUCH
set_bit(EV_REL, input_device->evbit);
input_set_capability(input_device, EV_REL, REL_X);
input_set_capability(input_device, EV_REL, REL_Y);
input_set_capability(input_device, EV_MSC, MSC_SCAN);
input_set_capability(input_device, EV_KEY, 0x110);
#endif
set_bit(ABS_MT_POSITION_X, input_device->absbit);
set_bit(ABS_MT_POSITION_Y, input_device->absbit);
set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit);
set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit);
input_set_abs_params(input_device, ABS_MT_POSITION_X, 0, SCREEN_MAX_X,
0, 0);
input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y,
0, 0);
input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0,
0);
input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0);
/* ts->irq = client->irq; */
ts->wq = create_singlethread_workqueue("kworkqueue_ts");
if (!ts->wq) {
dev_err(&client->dev, "gsl Could not create workqueue\n");
goto init_err_ret;
}
flush_workqueue(ts->wq);
INIT_WORK(&ts->work, gslX680_ts_worker);
rc = input_register_device(input_device);
if (rc)
goto error_unreg_device;
return 0;
error_unreg_device:
destroy_workqueue(ts->wq);
init_err_ret:
return rc;
}
static int gsl_ts_early_suspend(struct tp_device *tp_d)
{
struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);
#ifdef GSL_MONITOR
pr_info("gsl_ts_suspend () : cancel gsl_monitor_work\n");
cancel_delayed_work_sync(&ts->gsl_monitor_work);
int_1st[0] = 0;
int_1st[1] = 0;
int_1st[2] = 0;
int_1st[3] = 0;
#endif
glsx680_ts_irq_disable(ts);
cancel_work_sync(&ts->work);
#ifdef SLEEP_CLEAR_POINT
usleep_range(5000, 10000);
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
usleep_range(5000, 10000);
report_data(ts, 1, 1, 10, 1);
input_sync(ts->input);
#endif
gslX680_shutdown_low(ts);
return 0;
}
static int gsl_ts_late_resume(struct tp_device *tp_d)
{
struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);
pr_debug("I'am in gsl_ts_resume() start\n");
gslX680_shutdown_high(ts);
msleep(20);
reset_chip(ts->client);
startup_chip(ts->client);
check_mem_data(ts->client, ts);
#ifdef SLEEP_CLEAR_POINT
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
pr_info("gsl_ts_resume () : queue gsl_monitor_work\n");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300);
#endif
glsx680_ts_irq_enable(ts);
return 0;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void gsl_ts_early_suspend(struct early_suspend *h)
{
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
#ifdef GSL_MONITOR
pr_info("gsl_ts_suspend () : cancel gsl_monitor_work\n");
cancel_delayed_work_sync(&ts->gsl_monitor_work);
#endif
glsx680_ts_irq_disable(ts);
cancel_work_sync(&ts->work);
#ifdef SLEEP_CLEAR_POINT
usleep_range(5000, 10000);
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
usleep_range(5000, 10000);
report_data(ts, 1, 1, 10, 1);
input_sync(ts->input);
#endif
gslX680_shutdown_low(ts);
msleep(20);
return 0;
}
static void gsl_ts_late_resume(struct early_suspend *h)
{
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
int i;
pr_debug("I'am in gsl_ts_resume() start\n");
gslX680_shutdown_high(ts);
msleep(20);
reset_chip(ts->client);
startup_chip(ts->client);
check_mem_data(ts->client, ts);
#ifdef SLEEP_CLEAR_POINT
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
pr_info("gsl_ts_resume () : queue gsl_monitor_work\n");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300);
#endif
glsx680_ts_irq_enable(ts);
}
#endif
static void gsl_ts_power_on(struct gsl_ts *ts, bool enable)
{
int ret = 0;
if (enable) {
ret = regulator_enable(ts->regulator);
if (ret)
dev_err(&ts->client->dev,
"%s failed to enable touch regulator\n",
__func__);
} else {
ret = regulator_disable(ts->regulator);
if (ret)
dev_err(&ts->client->dev,
"%s failed to disable touch regulator",
__func__);
}
}
static int gsl_ts_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct gsl_ts *ts;
int rc;
pr_info("GSLX680 Enter %s\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "gsl I2C functionality not supported\n");
return -ENODEV;
}
ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
msleep(20);
/* get touch for regulator */
ts->regulator = devm_regulator_get_optional(&client->dev, "power");
if (IS_ERR(ts->regulator)) {
if (PTR_ERR(ts->regulator) == -EPROBE_DEFER)
dev_err(&client->dev,
"get touch regulator is fail, may no need.\n");
ts->regulator = NULL;
} else {
gsl_ts_power_on(ts, true);
}
ts->tp.tp_suspend = gsl_ts_early_suspend;
ts->tp.tp_resume = gsl_ts_late_resume;
tp_register_fb(&ts->tp);
ts->client = client;
i2c_set_clientdata(client, ts);
/* ts->device_id = id->driver_data; */
gslX680_init(ts);
rc = gslX680_ts_init(client, ts);
if (rc < 0) {
dev_err(&client->dev, "gsl GSLX680 init failed\n");
goto porbe_err_ret;
}
init_chip(ts->client, ts);
check_mem_data(ts->client, ts);
spin_lock_init(&ts->irq_lock);
client->irq = gpio_to_irq(ts->irq);
rc = request_irq(client->irq, gsl_ts_irq, IRQF_TRIGGER_RISING,
client->name, ts);
if (rc < 0) {
pr_err("gsl_probe: request irq failed\n");
goto porbe_err_ret;
}
glsx680_ts_irq_enable(ts);
#ifdef CONFIG_HAS_EARLYSUSPEND
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
ts->early_suspend.suspend = gsl_ts_early_suspend;
ts->early_suspend.resume = gsl_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
#ifdef GSL_MONITOR
INIT_DELAYED_WORK(&ts->gsl_monitor_work, gsl_monitor_worker);
gsl_monitor_workqueue =
create_singlethread_workqueue("gsl_monitor_workqueue");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 1000);
#endif
#ifdef HAVE_CLICK_TIMER
sema_init(&my_sem, 1);
INIT_WORK(&ts->click_work, click_timer_worker);
gsl_timer_workqueue = create_singlethread_workqueue("click_timer");
queue_work(gsl_timer_workqueue, &ts->click_work);
#endif
#ifdef TPD_PROC_DEBUG
i2c_client = client;
/* proc_create(GSL_CONFIG_PROC_FILE, 0666, NULL, &gsl_seq_fops); */
#endif
gsl_proc_flag = 0;
pr_info("[GSLX680] End %s\n", __func__);
return 0;
porbe_err_ret:
return rc;
}
static void gsl_ts_remove(struct i2c_client *client)
{
struct gsl_ts *ts = i2c_get_clientdata(client);
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&ts->early_suspend);
#endif
#ifdef GSL_MONITOR
cancel_delayed_work_sync(&ts->gsl_monitor_work);
destroy_workqueue(gsl_monitor_workqueue);
#endif
#ifdef HAVE_CLICK_TIMER
cancel_work_sync(&ts->click_work);
destroy_workqueue(gsl_timer_workqueue);
#endif
device_init_wakeup(&client->dev, 0);
cancel_work_sync(&ts->work);
free_irq(ts->client->irq, ts);
destroy_workqueue(ts->wq);
gsl_ts_power_on(ts, false);
}
static const struct of_device_id gsl_ts_ids[] = {
{.compatible = "gslX6801"},
{}
};
static const struct i2c_device_id gsl_ts_id[] = {
{GSLX680_I2C_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, gsl_ts_id);
static struct i2c_driver gsl_ts_driver = {
.driver = {
.name = GSLX680_I2C_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(gsl_ts_ids),
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = gsl_ts_probe,
.remove = gsl_ts_remove,
.id_table = gsl_ts_id,
};
static int __init gsl_ts_init(void)
{
int ret;
ret = i2c_add_driver(&gsl_ts_driver);
return ret;
}
static void __exit gsl_ts_exit(void)
{
i2c_del_driver(&gsl_ts_driver);
}
module_init(gsl_ts_init);
module_exit(gsl_ts_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GSLX680 touchscreen controller driver");
MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com");
MODULE_ALIAS("platform:gsl_ts");