1904 lines
46 KiB
C

/*
* drivers/input/touchscreen/gslX680.c
*
* Copyright (c) 2012 Shanghai Basewin
* Guan Yuwei<guanyuwei@basewin.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/async.h>
#include <linux/gpio.h>
#include <asm/irq.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/input/mt.h>
//#include "rockchip_gslX680_rk3168.h"
#include "tp_suspend.h"
#include "gslx680.h"
#include <linux/of_gpio.h>
#include <linux/wakelock.h>
#include <linux/of_platform.h>
#define GSL_DEBUG
/*
struct fw_data
{
u32 offset : 8;
u32 : 0;
u32 val;
};
*/
#define RK_GEAR_TOUCH
#define REPORT_DATA_ANDROID_4_0
#define HAVE_TOUCH_KEY
//#define SLEEP_CLEAR_POINT
//#define FILTER_POINT
#ifdef FILTER_POINT
#define FILTER_MAX 9 //6
#endif
#define GSLX680_I2C_NAME "gslX680"
#define GSLX680_I2C_ADDR 0x40
//#define IRQ_PORT RK2928_PIN1_PB0//RK30_PIN1_PB7
//#define WAKE_PORT RK30_PIN0_PA1//RK30_PIN0_PB6
#define GSL_DATA_REG 0x80
#define GSL_STATUS_REG 0xe0
#define GSL_PAGE_REG 0xf0
#define TPD_PROC_DEBUG
#ifdef TPD_PROC_DEBUG
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
//static struct proc_dir_entry *gsl_config_proc = NULL;
#define GSL_CONFIG_PROC_FILE "gsl_config"
#define CONFIG_LEN 31
static char gsl_read[CONFIG_LEN];
static u8 gsl_data_proc[8] = { 0 };
static u8 gsl_proc_flag = 0;
static struct i2c_client *i2c_client = NULL;
#endif
#define GSL_MONITOR
#define PRESS_MAX 255
#define MAX_FINGERS 10
#define MAX_CONTACTS 10
#define DMA_TRANS_LEN 0x20
#ifdef GSL_MONITOR
#ifdef RK_GEAR_TOUCH
static int g_istouch=0;
#endif
static struct workqueue_struct *gsl_monitor_workqueue = NULL;
static u8 int_1st[4] = { 0 };
static u8 int_2nd[4] = { 0 };
//static char dac_counter = 0;
static char b0_counter = 0;
static char bc_counter = 0;
static char i2c_lock_flag = 0;
#endif
#define WRITE_I2C_SPEED (350*1000)
#define I2C_SPEED (200*1000)
#define CLOSE_TP_POWER 0
//add by yuandan
//#define HAVE_CLICK_TIMER
#ifdef HAVE_CLICK_TIMER
static struct workqueue_struct *gsl_timer_workqueue = NULL;
bool send_key = false;
struct semaphore my_sem;
#endif
#ifdef HAVE_TOUCH_KEY
static u16 key = 0;
static int key_state_flag = 0;
struct key_data {
u16 key;
u16 x_min;
u16 x_max;
u16 y_min;
u16 y_max;
};
const u16 key_array[] = {
KEY_LEFT,
KEY_RIGHT,
KEY_UP,
KEY_DOWN,
KEY_ENTER,
};
#define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0]))
//add by yuandan
static int key_x[512];
static int key_y[512];
static int key_count;
#ifdef SLEEP_CLEAR_POINT
static const struct key_data gsl_key_data[MAX_KEY_NUM] = {
{KEY_BACK, 550, 650, 1400, 1600},
{KEY_HOMEPAGE, 350, 450, 1400, 1600},
{KEY_MENU, 150, 250, 1400, 1600},
{KEY_SEARCH, 2048, 2048, 2048, 2048},
};
#endif
#endif
struct gsl_ts_data {
u8 x_index;
u8 y_index;
u8 z_index;
u8 id_index;
u8 touch_index;
u8 data_reg;
u8 status_reg;
u8 data_size;
u8 touch_bytes;
u8 update_data;
u8 touch_meta_data;
u8 finger_size;
};
static struct gsl_ts_data devices[] = {
{
.x_index = 6,
.y_index = 4,
.z_index = 5,
.id_index = 7,
.data_reg = GSL_DATA_REG,
.status_reg = GSL_STATUS_REG,
.update_data = 0x4,
.touch_bytes = 4,
.touch_meta_data = 4,
.finger_size = 70,
},
};
struct gsl_ts_cfg {
struct fw_data *fw_ptr;
unsigned int fw_size;
enum gsl_quirk quirks;
unsigned int *cfg_id;
int max_x;
int max_y;
bool x_pol;
bool y_pol;
};
struct gsl_ts {
struct i2c_client *client;
struct input_dev *input;
struct work_struct work;
struct workqueue_struct *wq;
struct gsl_ts_data *dd;
int flag_irq_is_disable;
spinlock_t irq_lock;
u8 *touch_data;
u8 device_id;
int irq;
int rst;
struct delayed_work gsl_monitor_work;
#if defined(CONFIG_HAS_EARLYSUSPEND)
struct early_suspend early_suspend;
#endif
#if defined (HAVE_CLICK_TIMER)
struct work_struct click_work;
#endif
struct tp_device tp;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct pinctrl_state *pins_inactive;
const struct gsl_ts_cfg *ts_cfg;
};
#ifdef GSL_DEBUG
#define print_info(fmt, args...) printk(fmt, ##args);
#else
#define print_info(fmt, args...)
#endif
static u32 id_sign[MAX_CONTACTS + 1] = { 0 };
static u8 id_state_flag[MAX_CONTACTS + 1] = { 0 };
static u8 id_state_old_flag[MAX_CONTACTS + 1] = { 0 };
static u16 x_old[MAX_CONTACTS + 1] = { 0 };
static u16 y_old[MAX_CONTACTS + 1] = { 0 };
static u16 x_new = 0;
static u16 y_new = 0;
static const struct gsl_ts_cfg gslx680_vr_cfg = {
.fw_ptr = GSLX680_FW,
.fw_size = ARRAY_SIZE(GSLX680_FW),
.quirks = GSL_QUIRK_VR,
.cfg_id = gsl_config_data_id,
.max_x = SCREEN_MAX_X,
.max_y = SCREEN_MAX_Y,
.x_pol = false,
.y_pol = false,
};
static const struct gsl_ts_cfg gslx680_tve_cfg = {
.fw_ptr = GSLX680_FW_TVE,
.fw_size = ARRAY_SIZE(GSLX680_FW_TVE),
.quirks = GSL_QUIRK_TVE,
.cfg_id = gsl_tve_cfg_id,
.max_x = SCREEN_MAX_X_TVE,
.max_y = SCREEN_MAX_Y_TVE,
.x_pol = true,
.y_pol = true,
};
int gslx680_set_pinctrl_state(struct gsl_ts *ts, struct pinctrl_state *state)
{
int ret = 0;
if (!IS_ERR(state)) {
ret = pinctrl_select_state(ts->pinctrl, state);
if (ret)
printk("could not set pins \n");
}
return ret;
}
static int gslX680_init(struct gsl_ts *ts)
{
struct device_node *np = ts->client->dev.of_node;
int err = 0;
int ret = 0;
ts->irq = of_get_named_gpio_flags(np, "touch-gpio", 0, NULL);
ts->rst = of_get_named_gpio_flags(np, "reset-gpio", 0, NULL);
//msleep(20);
#if 0 //#if defined (CONFIG_BOARD_ZM71C)||defined (CONFIG_BOARD_ZM72CP) ||
defined(CONFIG_BOARD_ZM726C) || defined(CONFIG_BOARD_ZM726CE)
if (gpio_request(ts->rst, NULL) != 0) {
gpio_free(ts->rst);
printk("gslX680_init gpio_request error\n");
return -EIO;
}
#endif
/* pinctrl */
ts->pinctrl = devm_pinctrl_get(&ts->client->dev);
if (IS_ERR(ts->pinctrl)) {
ret = PTR_ERR(ts->pinctrl);
//goto out;
}
ts->pins_default =
pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_DEFAULT);
//if (IS_ERR(ts->pins_default))
// dev_err(&client->dev, "could not get default pinstate\n");
ts->pins_sleep = pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_SLEEP);
//if (IS_ERR(ts->pins_sleep))
// dev_err(&client->dev, "could not get sleep pinstate\n");
ts->pins_inactive = pinctrl_lookup_state(ts->pinctrl, "inactive");
//if (IS_ERR(ts->pins_inactive))
// dev_err(&client->dev, "could not get inactive pinstate\n");
err = gpio_request(ts->rst, "tp reset");
if (err) {
printk("gslx680 reset gpio request failed.\n");
return -1;
}
gslx680_set_pinctrl_state(ts, ts->pins_default);
gpio_direction_output(ts->rst, 1);
gpio_set_value(ts->rst, 1);
return 0;
}
static int gslX680_shutdown_low(struct gsl_ts *ts)
{
printk("gsl gslX680_shutdown_low\n");
gpio_direction_output(ts->rst, 0);
gpio_set_value(ts->rst, 0);
return 0;
}
static int gslX680_shutdown_high(struct gsl_ts *ts)
{
printk("gsl gslX680_shutdown_high\n");
gpio_direction_output(ts->rst, 1);
gpio_set_value(ts->rst, 1);
return 0;
}
static inline u16 join_bytes(u8 a, u8 b)
{
u16 ab = 0;
ab = ab | a;
ab = ab << 8 | b;
return ab;
}
/*
static u32 gsl_read_interface(struct i2c_client *client,
u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[2];
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = &reg;
xfer_msg[0].scl_rate=300*1000;
xfer_msg[1].addr = client->addr;
xfer_msg[1].len = num;
xfer_msg[1].flags |= I2C_M_RD;
xfer_msg[1].buf = buf;
xfer_msg[1].scl_rate=300*1000;
if (reg < 0x80) {
i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg));
msleep(5);
}
return i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)) \
== ARRAY_SIZE(xfer_msg) ? 0 : -EFAULT;
}
*/
static u32 gsl_write_interface(struct i2c_client *client,
const u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[1];
buf[0] = reg;
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = num + 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = buf;
//xfer_msg[0].scl_rate = 100 * 1000;
return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT;
}
static int gsl_ts_write(struct i2c_client *client,
u8 addr, u8 *pdata, int datalen)
{
int ret = 0;
u8 tmp_buf[128];
unsigned int bytelen = 0;
if (datalen > 125) {
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
tmp_buf[0] = addr;
bytelen++;
if (datalen != 0 && pdata != NULL) {
memcpy(&tmp_buf[bytelen], pdata, datalen);
bytelen += datalen;
}
ret = i2c_master_send(client, tmp_buf, bytelen);
return ret;
}
static int gsl_ts_read(struct i2c_client *client, u8 addr,
u8 *pdata, unsigned int datalen)
{
int ret = 0;
if (datalen > 126) {
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
ret = gsl_ts_write(client, addr, NULL, 0);
if (ret < 0) {
printk("%s set data address fail!\n", __func__);
return ret;
}
return i2c_master_recv(client, pdata, datalen);
}
static __inline__ void fw2buf(u8 *buf, const u32 *fw)
{
u32 *u32_buf = (int *)buf;
*u32_buf = *fw;
}
static void gsl_load_fw(struct i2c_client *client)
{
u8 buf[DMA_TRANS_LEN * 4 + 1] = { 0 };
u8 send_flag = 1;
u8 *cur = buf + 1;
u32 source_line = 0;
u32 source_len;
//u8 read_buf[4] = {0};
struct gsl_ts *ts =
(struct gsl_ts *)i2c_get_clientdata(client);
struct fw_data const *ptr_fw = ts->ts_cfg->fw_ptr;
source_len = ts->ts_cfg->fw_size;
for (source_line = 0; source_line < source_len; source_line++) {
/* init page trans, set the page val */
if (GSL_PAGE_REG == ptr_fw[source_line].offset) {
fw2buf(cur, &ptr_fw[source_line].val);
gsl_write_interface(client, GSL_PAGE_REG, buf, 4);
send_flag = 1;
} else {
if (1 ==
send_flag % (DMA_TRANS_LEN <
0x20 ? DMA_TRANS_LEN : 0x20))
buf[0] = (u8) ptr_fw[source_line].offset;
fw2buf(cur, &ptr_fw[source_line].val);
cur += 4;
if (0 ==
send_flag % (DMA_TRANS_LEN <
0x20 ? DMA_TRANS_LEN : 0x20)) {
gsl_write_interface(client, buf[0], buf,
cur - buf - 1);
cur = buf + 1;
}
send_flag++;
}
}
}
static int test_i2c(struct i2c_client *client)
{
u8 read_buf = 0;
u8 write_buf = 0x12;
int ret, rc = 1;
ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
if (ret < 0)
rc--;
else
printk("gsl I read reg 0xf0 is %x\n", read_buf);
msleep(2);
ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf));
if (ret >= 0)
printk("gsl I write reg 0xf0 0x12\n");
msleep(2);
ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
if (ret < 0)
rc--;
else
printk("gsl I read reg 0xf0 is 0x%x\n", read_buf);
return rc;
}
static void startup_chip(struct i2c_client *client)
{
struct gsl_ts *ts =
(struct gsl_ts *)i2c_get_clientdata(client);
u8 tmp = 0x00;
printk("gsl startup_chip\n");
#ifdef GSL_NOID_VERSION
gsl_DataInit(ts->ts_cfg->cfg_id);
#endif
gsl_ts_write(client, 0xe0, &tmp, 1);
mdelay(10);
}
static void reset_chip(struct i2c_client *client)
{
u8 tmp = 0x88;
u8 buf[4] = { 0x00 };
printk("gsl reset_chip\n");
gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp));
mdelay(20);
tmp = 0x04;
gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp));
mdelay(10);
gsl_ts_write(client, 0xbc, buf, sizeof(buf));
mdelay(10);
}
static void clr_reg(struct i2c_client *client)
{
u8 write_buf[4] = { 0 };
write_buf[0] = 0x88;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
mdelay(20);
write_buf[0] = 0x03;
gsl_ts_write(client, 0x80, &write_buf[0], 1);
mdelay(5);
write_buf[0] = 0x04;
gsl_ts_write(client, 0xe4, &write_buf[0], 1);
mdelay(5);
write_buf[0] = 0x00;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
mdelay(20);
}
static void init_chip(struct i2c_client *client, struct gsl_ts *ts)
{
int rc;
printk("gsl init_chip\n");
gslX680_shutdown_low(ts);
mdelay(20);
gslX680_shutdown_high(ts);
mdelay(20);
rc = test_i2c(client);
if (rc < 0) {
printk("gslX680 test_i2c error\n");
return;
}
clr_reg(client);
reset_chip(client);
gsl_load_fw(client);
startup_chip(client);
reset_chip(client);
startup_chip(client);
}
static void check_mem_data(struct i2c_client *client, struct gsl_ts *ts)
{
u8 read_buf[4] = { 0 };
mdelay(30);
gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf));
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a ||
read_buf[1] != 0x5a || read_buf[0] != 0x5a) {
init_chip(client, ts);
}
}
#ifdef TPD_PROC_DEBUG
static int char_to_int(char ch)
{
if (ch >= '0' && ch <= '9')
return (ch - '0');
else
return (ch - 'a' + 10);
}
static int gsl_config_read_proc(struct seq_file *m, void *v)
{
//char *ptr = page;
char temp_data[5] = { 0 };
unsigned int tmp = 0;
//unsigned int *ptr_fw;
struct gsl_ts *ts =
(struct gsl_ts *)i2c_get_clientdata(i2c_client);
if ('v' == gsl_read[0] && 's' == gsl_read[1]) {
#ifdef GSL_NOID_VERSION
tmp = gsl_version_id();
#else
tmp = 0x20121215;
#endif
seq_printf(m, "version:%x\n", tmp);
} else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) {
if ('i' == gsl_read[3]) {
#ifdef GSL_NOID_VERSION
/* tmp=(gsl_data_proc[5]<<8) | gsl_data_proc[4];
seq_printf(m,"gsl_config_data_id[%d] = ",tmp);
if(tmp>=0&&tmp<gsl_cfg_table[gsl_cfg_index].data_size)
seq_printf(m,"%d\n",gsl_cfg_table[gsl_cfg_index].data_id[tmp]); */
tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4];
seq_printf(m, "gsl_config_data_id[%d] = ", tmp);
if (tmp >= 0 && tmp < 512)
seq_printf(m, "%d\n", ts->ts_cfg->cfg_id[tmp]);
#endif
} else {
i2c_smbus_write_i2c_block_data(i2c_client, 0xf0, 4,
&gsl_data_proc[4]);
if (gsl_data_proc[0] < 0x80)
i2c_smbus_read_i2c_block_data(i2c_client,
gsl_data_proc[0],
4, temp_data);
i2c_smbus_read_i2c_block_data(i2c_client,
gsl_data_proc[0], 4,
temp_data);
seq_printf(m, "offset : {0x%02x,0x", gsl_data_proc[0]);
seq_printf(m, "%02x", temp_data[3]);
seq_printf(m, "%02x", temp_data[2]);
seq_printf(m, "%02x", temp_data[1]);
seq_printf(m, "%02x};\n", temp_data[0]);
}
}
return 0;
}
static ssize_t gsl_config_write_proc(struct file *file, const char *buffer,
size_t count, loff_t *data)
{
u8 buf[8] = { 0 };
char temp_buf[CONFIG_LEN];
char *path_buf;
int tmp = 0;
int tmp1 = 0;
struct gsl_ts *ts =
(struct gsl_ts *)i2c_get_clientdata(i2c_client);
print_info("[tp-gsl][%s] \n", __func__);
if (count > 512) {
//print_info("size not match [%d:%d]\n", CONFIG_LEN, count);
return -EFAULT;
}
path_buf = kzalloc(count, GFP_KERNEL);
if (!path_buf) {
printk("alloc path_buf memory error \n");
}
if (copy_from_user(path_buf, buffer, count)) {
print_info("copy from user fail\n");
goto exit_write_proc_out;
}
memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN));
print_info("[tp-gsl][%s][%s]\n", __func__, temp_buf);
buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]);
buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]);
buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]);
buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]);
buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]);
buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]);
buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]);
buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]);
if ('v' == temp_buf[0] && 's' == temp_buf[1]) {
//version //vs
memcpy(gsl_read, temp_buf, 4);
printk("gsl version\n");
} else if ('s' == temp_buf[0] && 't' == temp_buf[1]) {
//start //st
gsl_proc_flag = 1;
reset_chip(i2c_client);
} else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) {
//end //en
mdelay(20);
reset_chip(i2c_client);
startup_chip(i2c_client);
gsl_proc_flag = 0;
} else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) {
//read buf //
memcpy(gsl_read, temp_buf, 4);
memcpy(gsl_data_proc, buf, 8);
} else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) {
//write buf
i2c_smbus_write_i2c_block_data(i2c_client, buf[4], 4, buf);
}
#ifdef GSL_NOID_VERSION
else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) {
//write id config //
tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4];
tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
if (tmp1 >= 0 && tmp1 < 512) {
ts->ts_cfg->cfg_id[tmp1] = tmp;
}
}
#endif
exit_write_proc_out:
kfree(path_buf);
return count;
}
static int gsl_server_list_open(struct inode *inode, struct file *file)
{
return single_open(file, gsl_config_read_proc, NULL);
}
static const struct file_operations gsl_seq_fops = {
.open = gsl_server_list_open,
.read = seq_read,
.release = single_release,
.write = gsl_config_write_proc,
.owner = THIS_MODULE,
};
#endif
#ifdef FILTER_POINT
static void filter_point(u16 x, u16 y, u8 id)
{
u16 x_err = 0;
u16 y_err = 0;
u16 filter_step_x = 0, filter_step_y = 0;
id_sign[id] = id_sign[id] + 1;
if (id_sign[id] == 1) {
x_old[id] = x;
y_old[id] = y;
}
x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x);
y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y);
if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) ||
(x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) {
filter_step_x = x_err;
filter_step_y = y_err;
} else {
if (x_err > FILTER_MAX)
filter_step_x = x_err;
if (y_err > FILTER_MAX)
filter_step_y = y_err;
}
if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) {
filter_step_x >>= 2;
filter_step_y >>= 2;
} else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) {
filter_step_x >>= 1;
filter_step_y >>= 1;
} else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) {
filter_step_x = filter_step_x * 3 / 4;
filter_step_y = filter_step_y * 3 / 4;
}
x_new =
x >
x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] -
filter_step_x);
y_new =
y >
y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] -
filter_step_y);
x_old[id] = x_new;
y_old[id] = y_new;
}
#else
static void record_point(u16 x, u16 y, u8 id)
{
u16 x_err = 0;
u16 y_err = 0;
id_sign[id] = id_sign[id] + 1;
if (id_sign[id] == 1) {
x_old[id] = x;
y_old[id] = y;
}
x = (x_old[id] + x) / 2;
y = (y_old[id] + y) / 2;
if (x > x_old[id]) {
x_err = x - x_old[id];
} else {
x_err = x_old[id] - x;
}
if (y > y_old[id]) {
y_err = y - y_old[id];
} else {
y_err = y_old[id] - y;
}
if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) {
x_new = x;
x_old[id] = x;
y_new = y;
y_old[id] = y;
} else {
if (x_err > 3) {
x_new = x;
x_old[id] = x;
} else {
x_new = x_old[id];
}
if (y_err > 3) {
y_new = y;
y_old[id] = y;
} else {
y_new = y_old[id];
}
}
if (id_sign[id] == 1) {
x_new = x_old[id];
y_new = y_old[id];
}
}
#endif
#ifdef SLEEP_CLEAR_POINT
#ifdef HAVE_TOUCH_KEY
static void report_key(struct gsl_ts *ts, u16 x, u16 y)
{
u16 i = 0;
for (i = 0; i < MAX_KEY_NUM; i++) {
if ((gsl_key_data[i].x_min < x)
&& (x < gsl_key_data[i].x_max)
&& (gsl_key_data[i].y_min < y)
&& (y < gsl_key_data[i].y_max)) {
key = gsl_key_data[i].key;
input_report_key(ts->input, key, 1);
input_sync(ts->input);
key_state_flag = 1;
break;
}
}
}
#endif
#endif
#ifdef RK_GEAR_TOUCH
static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id)
{
#ifdef RK_GEAR_TOUCH
int delt_x,delt_y;
static int old_x=0, old_y=0;
#endif
int max_x = ts->ts_cfg->max_x;
int max_y = ts->ts_cfg->max_y;
//#ifndef SWAP_XY
// swap(x, y);
//#endif
//printk("#####id=%d,x=%d,y=%d######\n",id,x,y);
if (x > max_x || y > max_y) {
#ifdef HAVE_TOUCH_KEY
//report_key(ts, x, y);
//printk("#####report_key x=%d,y=%d######\n",x,y);
#endif
return;
}
/*
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
*/
#ifdef RK_GEAR_TOUCH
if (ts->ts_cfg->quirks == GSL_QUIRK_VR) {
if (g_istouch == 0) {
g_istouch = 1;
input_event(ts->input, EV_MSC, MSC_SCAN, 0x90001);
input_report_key(ts->input, 0x110, 1);
input_sync(ts->input);
}
delt_x = (int)x - old_x;
delt_y = (int)y - old_y;
delt_x /= 10;
delt_y /= 10;
input_report_rel(ts->input, REL_Y, -delt_x);
input_report_rel(ts->input, REL_X, -delt_y);
input_sync(ts->input);
old_x = x;
old_y = y;
return;
}
#endif
#ifdef REPORT_DATA_ANDROID_4_0
//printk("#####REPORT_DATA_ANDROID_4_0######\n");
input_mt_slot(ts->input, id);
//input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, 1);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
if (ts->ts_cfg->x_pol)
input_report_abs(ts->input, ABS_MT_POSITION_X, max_x - x);
else
input_report_abs(ts->input, ABS_MT_POSITION_X, x);
if (ts->ts_cfg->y_pol)
input_report_abs(ts->input, ABS_MT_POSITION_Y, (max_y - y));
else
input_report_abs(ts->input, ABS_MT_POSITION_Y, (y));
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
#else
//printk("#####nonono REPORT_DATA_ANDROID_4_0######\n");
input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input, ABS_MT_POSITION_X, x);
input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
input_mt_sync(ts->input);
#endif
}
#endif
void glsx680_ts_irq_disable(struct gsl_ts *ts)
{
unsigned long irqflags;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->flag_irq_is_disable) {
disable_irq_nosync(ts->client->irq);
ts->flag_irq_is_disable = 1;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
void glsx680_ts_irq_enable(struct gsl_ts *ts)
{
unsigned long irqflags = 0;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->flag_irq_is_disable) {
enable_irq(ts->client->irq);
ts->flag_irq_is_disable = 0;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
static void gslX680_ts_worker(struct work_struct *work)
{
int rc, i;
u8 id, touches;
u16 x, y;
#ifdef GSL_NOID_VERSION
u32 tmp1;
u8 buf[4] = { 0 };
struct gsl_touch_info cinfo;
#endif
struct gsl_ts *ts = container_of(work, struct gsl_ts, work);
#ifdef TPD_PROC_DEBUG
if (gsl_proc_flag == 1)
goto schedule;
#endif
#ifdef GSL_MONITOR
if (i2c_lock_flag != 0)
goto i2c_lock_schedule;
else
i2c_lock_flag = 1;
#endif
rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size);
if (rc < 0) {
dev_err(&ts->client->dev, "read failed\n");
goto schedule;
}
touches = ts->touch_data[ts->dd->touch_index];
//print_info("-----touches: %d -----\n", touches);
#ifdef GSL_NOID_VERSION
cinfo.finger_num = touches;
//print_info("tp-gsl finger_num = %d\n",cinfo.finger_num);
for (i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) {
cinfo.x[i] =
join_bytes((ts->
touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
cinfo.y[i] =
join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i]);
cinfo.id[i] =
((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf0) >> 4);
/*print_info("tp-gsl before: x[%d] = %d, y[%d] = %d,
id[%d] = %d \n",i,cinfo.x[i],i,cinfo.y[i],i,cinfo.id[i]);*/
}
cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16)
| (ts->touch_data[1] << 8) | (ts->touch_data[0]);
gsl_alg_id_main(&cinfo);
tmp1 = gsl_mask_tiaoping();
//print_info("[tp-gsl] tmp1 = %x\n", tmp1);
if (tmp1 > 0 && tmp1 < 0xffffffff) {
buf[0] = 0xa;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
gsl_ts_write(ts->client, 0xf0, buf, 4);
buf[0] = (u8) (tmp1 & 0xff);
buf[1] = (u8) ((tmp1 >> 8) & 0xff);
buf[2] = (u8) ((tmp1 >> 16) & 0xff);
buf[3] = (u8) ((tmp1 >> 24) & 0xff);
print_info("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x, \
buf[3]=%02x\n", tmp1, buf[0], buf[1], buf[2], buf[3]);
gsl_ts_write(ts->client, 0x8, buf, 4);
}
touches = cinfo.finger_num;
#endif
for (i = 1; i <= MAX_CONTACTS; i++) {
if (touches == 0)
id_sign[i] = 0;
id_state_flag[i] = 0;
}
for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) {
#ifdef GSL_NOID_VERSION
id = cinfo.id[i];
x = cinfo.x[i];
y = cinfo.y[i];
#else
x = join_bytes((ts->
touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i]);
id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4;
#endif
if (1 <= id && id <= MAX_CONTACTS) {
#ifdef FILTER_POINT
filter_point(x, y, id);
#else
record_point(x, y, id);
#endif
#ifdef RK_GEAR_TOUCH
report_data(ts, x_new, y_new, 10, id);
#endif
if (key_count < 512) {
key_x[key_count] = x_new;
key_y[key_count] = y_new;
key_count++;
/*printk("test in key store in here,
x_new is %d , y_new is %d ,
key_count is %d \n", x_new ,y_new,key_count);*/
}
id_state_flag[id] = 1;
}
}
for (i = 1; i <= MAX_CONTACTS; i++) {
if ((0 == touches)
|| ((0 != id_state_old_flag[i])
&& (0 == id_state_flag[i]))) {
#ifdef RK_GEAR_TOUCH
if (g_istouch == 1){
g_istouch = 0;
input_event(ts->input, EV_MSC, MSC_SCAN, 0x90001);
input_report_key(ts->input, 0x110, 0);
input_sync(ts->input);
}
g_istouch = 0;
#endif
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input, i);
//input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER,
false);
#endif
id_sign[i] = 0;
}
id_state_old_flag[i] = id_state_flag[i];
}
if (0 == touches) {
#ifdef REPORT_DATA_ANDROID_4_0
#ifndef RK_GEAR_TOUCH
//input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0);
//input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 0);
//input_mt_sync(ts->input);
int temp_x = 0;
int temp_y = 0;
temp_x =
(((key_x[key_count - 1] - key_x[0]) >
0) ? (key_x[key_count - 1] - key_x[0])
: (key_x[0] - key_x[key_count - 1]));
temp_y =
(((key_y[key_count - 1] - key_y[0]) >
0) ? (key_y[key_count - 1] - key_y[0])
: (key_y[0] - key_y[key_count - 1]));
if (key_count <= 512) {
if (temp_x > temp_y) {
if ((key_x[key_count - 1] - key_x[0]) > 100) {
printk(" send up key \n");
input_report_key(ts->input,
key_array[2], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[2], 0);
input_sync(ts->input);
} else if ((key_x[0] - key_x[key_count - 1]) >
100) {
printk(" send down key \n");
input_report_key(ts->input,
key_array[3], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[3], 0);
input_sync(ts->input);
}
} else if (temp_x <= temp_y) {
if ((key_y[key_count - 1] - key_y[0]) > 100) {
printk(" send left key \n");
input_report_key(ts->input,
key_array[0], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[0], 0);
input_sync(ts->input);
} else if ((key_y[0] - key_y[key_count - 1]) >
100) {
printk(" send right key \n");
input_report_key(ts->input,
key_array[1], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[1], 0);
input_sync(ts->input);
}
}
/*printk(" key_x[key_count -1], key_x[0],
key_y[key_count -1], key_y[0] is %d ,%d , %d , %d\n",
key_x[key_count -1], key_x[0], key_y[key_count -1],
key_y[0]);*/
if ((key_x[key_count - 1] - key_x[0] < 50)
&& (key_x[key_count - 1] - key_x[0] >= -50)
&& (key_y[key_count - 1] - key_y[0] < 50)
&& (key_y[key_count - 1] - key_y[0] >= -50)
&& (key_x[0] != 0) && (key_y[0] != 0)) {
//queue_work(gsl_timer_workqueue,&ts->click_work);
//printk(" send enter2 key by yuandan \n");
//if(send_key)
// {
printk(" send enter key \n");
input_report_key(ts->input, key_array[4], 1);
input_sync(ts->input);
input_report_key(ts->input, key_array[4], 0);
input_sync(ts->input);
// }else
// {
//down(&my_sem);
// send_key = true;
//up(&my_sem);
// }
}
} else if (key_count > 512) {
if (temp_x > temp_y) {
if ((key_x[511] - key_x[0]) > 100) {
printk(" send up key \n");
input_report_key(ts->input,
key_array[2], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[2], 0);
input_sync(ts->input);
} else if ((key_x[0] - key_x[511]) > 100) {
printk(" send down key \n");
input_report_key(ts->input,
key_array[3], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[3], 0);
input_sync(ts->input);
}
} else if (temp_x <= temp_y) {
if ((key_y[511] - key_y[0]) > 100) {
printk(" send left key \n");
input_report_key(ts->input,
key_array[0], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[0], 0);
input_sync(ts->input);
} else if ((key_y[0] - key_y[511]) > 100) {
printk(" send right key \n");
input_report_key(ts->input,
key_array[1], 1);
input_sync(ts->input);
input_report_key(ts->input,
key_array[1], 0);
input_sync(ts->input);
}
}
}
memset(key_y, 0, sizeof(int) * 512);
memset(key_x, 0, sizeof(int) * 512);
key_count = 0;
#endif
#endif
#ifdef HAVE_TOUCH_KEY
if (key_state_flag) {
input_report_key(ts->input, key, 0);
input_sync(ts->input);
key_state_flag = 0;
}
#endif
}
input_sync(ts->input);
schedule:
#ifdef GSL_MONITOR
i2c_lock_flag = 0;
i2c_lock_schedule:
#endif
glsx680_ts_irq_enable(ts);
}
#ifdef HAVE_CLICK_TIMER
static void click_timer_worker(struct work_struct *work)
{
while (true) {
mdelay(500);
//down(&my_sem);
send_key = false;
//up(&my_sem);
}
}
#endif
#ifdef GSL_MONITOR
static void gsl_monitor_worker(struct work_struct *work)
{
//u8 write_buf[4] = {0};
u8 read_buf[4] = { 0 };
char init_chip_flag = 0;
//print_info("gsl_monitor_worker\n");
struct gsl_ts *ts =
container_of(work, struct gsl_ts, gsl_monitor_work.work);
if (i2c_lock_flag != 0) {
i2c_lock_flag = 1;
}
//goto queue_monitor_work;
else
i2c_lock_flag = 1;
//gsl_ts_read(ts->client, 0x80, read_buf, 4);
/*printk("======read 0x80: %x %x %x %x ======tony0geshu\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);*/
gsl_ts_read(ts->client, 0xb0, read_buf, 4);
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a
|| read_buf[0] != 0x5a)
b0_counter++;
else
b0_counter = 0;
if (b0_counter > 1) {
/*printk("======read 0xb0: %x %x %x %x ======\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);*/
init_chip_flag = 1;
b0_counter = 0;
}
gsl_ts_read(ts->client, 0xb4, read_buf, 4);
int_2nd[3] = int_1st[3];
int_2nd[2] = int_1st[2];
int_2nd[1] = int_1st[1];
int_2nd[0] = int_1st[0];
int_1st[3] = read_buf[3];
int_1st[2] = read_buf[2];
int_1st[1] = read_buf[1];
int_1st[0] = read_buf[0];
/*printk("int_1st: %x %x %x %x , int_2nd: %x %x %x %x\n",
int_1st[3], int_1st[2], int_1st[1], int_1st[0],
int_2nd[3], int_2nd[2],int_2nd[1],int_2nd[0]);*/
if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2]
&& int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) {
/*printk("int_1st: %x %x %x %x , int_2nd: %x %x %x %x\n",
int_1st[3], int_1st[2], int_1st[1], int_1st[0],
int_2nd[3], int_2nd[2],int_2nd[1],int_2nd[0]);*/
init_chip_flag = 1;
//goto queue_monitor_init_chip;
}
gsl_ts_read(ts->client, 0xbc, read_buf, 4);
if (read_buf[3] != 0 || read_buf[2] != 0 || read_buf[1] != 0
|| read_buf[0] != 0)
bc_counter++;
else
bc_counter = 0;
if (bc_counter > 1) {
/*printk("======read 0xbc: %x %x %x %x======\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);*/
init_chip_flag = 1;
bc_counter = 0;
}
/*
write_buf[3] = 0x01;
write_buf[2] = 0xfe;
write_buf[1] = 0x10;
write_buf[0] = 0x00;
gsl_ts_write(ts->client, 0xf0, write_buf, 4);
gsl_ts_read(ts->client, 0x10, read_buf, 4);
gsl_ts_read(ts->client, 0x10, read_buf, 4);
if(read_buf[3] < 10
&& read_buf[2] < 10
&& read_buf[1] < 10
&& read_buf[0] < 10)
dac_counter ++;
else
dac_counter = 0;
if(dac_counter > 1)
{
printk("read DAC1_0: %x %x %x %x\n",
read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
init_chip_flag = 1;
dac_counter = 0;
}
*/
//queue_monitor_init_chip:
if (init_chip_flag)
init_chip(ts->client, ts);
i2c_lock_flag = 0;
//queue_monitor_work:
//queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 100);
}
#endif
static irqreturn_t gsl_ts_irq(int irq, void *dev_id)
{
///struct gsl_ts *ts = dev_id;
struct gsl_ts *ts = (struct gsl_ts *)dev_id;
//print_info("========gslX680 Interrupt=========\n");
glsx680_ts_irq_disable(ts);
if (!work_pending(&ts->work)) {
queue_work(ts->wq, &ts->work);
}
return IRQ_HANDLED;
}
static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts)
{
struct input_dev *input_device;
int rc = 0;
int i = 0;
int max_x = ts->ts_cfg->max_x;
int max_y = ts->ts_cfg->max_y;
printk("[GSLX680] Enter %s\n", __func__);
ts->dd = &devices[ts->device_id];
if (ts->device_id == 0) {
ts->dd->data_size =
MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data;
ts->dd->touch_index = 0;
}
ts->touch_data =
devm_kzalloc(&client->dev, ts->dd->data_size, GFP_KERNEL);
if (!ts->touch_data) {
pr_err("%s: Unable to allocate memory\n", __func__);
return -ENOMEM;
}
input_device = devm_input_allocate_device(&ts->client->dev);
if (!input_device) {
rc = -ENOMEM;
goto init_err_ret;
}
ts->input = input_device;
input_device->name = GSLX680_I2C_NAME;
input_device->id.bustype = BUS_I2C;
input_device->dev.parent = &client->dev;
input_set_drvdata(input_device, ts);
#ifdef REPORT_DATA_ANDROID_4_0
__set_bit(EV_ABS, input_device->evbit);
__set_bit(EV_KEY, input_device->evbit);
__set_bit(EV_REP, input_device->evbit);
__set_bit(EV_SYN, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
__set_bit(MT_TOOL_FINGER, input_device->keybit);
input_mt_init_slots(input_device, (MAX_CONTACTS + 1), 0);
#else
input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0,
(MAX_CONTACTS + 1), 0, 0);
set_bit(EV_ABS, input_device->evbit);
set_bit(EV_KEY, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#ifdef HAVE_TOUCH_KEY
input_device->evbit[0] = BIT_MASK(EV_KEY);
/*input_device->evbit[0] = BIT_MASK(EV_SYN)
| BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);*/
for (i = 0; i < MAX_KEY_NUM; i++)
set_bit(key_array[i], input_device->keybit);
#endif
#ifdef RK_GEAR_TOUCH
set_bit(EV_REL, input_device->evbit);
input_set_capability(input_device, EV_REL, REL_X);
input_set_capability(input_device, EV_REL, REL_Y);
input_set_capability(input_device, EV_MSC, MSC_SCAN);
input_set_capability(input_device, EV_KEY, 0x110);
#endif
set_bit(ABS_MT_POSITION_X, input_device->absbit);
set_bit(ABS_MT_POSITION_Y, input_device->absbit);
set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit);
set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit);
input_set_abs_params(input_device, ABS_MT_POSITION_X, 0, max_x,
0, 0);
input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0, max_y,
0, 0);
input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0,
0);
input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0);
//client->irq = IRQ_PORT;
//ts->irq = client->irq;
ts->wq = create_singlethread_workqueue("kworkqueue_ts");
if (!ts->wq) {
dev_err(&client->dev, "gsl Could not create workqueue\n");
goto init_err_ret;
}
flush_workqueue(ts->wq);
INIT_WORK(&ts->work, gslX680_ts_worker);
rc = input_register_device(input_device);
if (rc)
goto error_unreg_device;
return 0;
error_unreg_device:
destroy_workqueue(ts->wq);
init_err_ret:
return rc;
}
#if 0
static int gsl_ts_suspend(struct i2c_client *dev, pm_message_t mesg)
{
#if 0
struct gsl_ts *ts = dev_get_drvdata(dev);
printk("I'am in gsl_ts_suspend() start\n");
#ifdef GSL_MONITOR
printk("gsl_ts_suspend () : cancel gsl_monitor_work\n");
cancel_delayed_work_sync(&ts->gsl_monitor_work);
#endif
#ifdef HAVE_CLICK_TIMER
//cancel_work_sync(&ts->click_work);
#endif
disable_irq_nosync(ts->irq);
gslX680_shutdown_low(ts);
#ifdef SLEEP_CLEAR_POINT
mdelay(10);
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
mdelay(10);
report_data(ts, 1, 1, 10, 1);
input_sync(ts->input);
#endif
#endif
return 0;
}
#endif
#if 0
static int gsl_ts_resume(struct i2c_client *dev)
{
#if 0
struct gsl_ts *ts = dev_get_drvdata(dev);
printk("I'am in gsl_ts_resume() start\n");
gslX680_shutdown_high(ts);
msleep(20);
reset_chip(ts->client);
startup_chip(ts->client);
check_mem_data(ts->client, ts);
#ifdef SLEEP_CLEAR_POINT
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
printk("gsl_ts_resume () : queue gsl_monitor_work\n");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300);
#endif
#ifdef HAVE_CLICK_TIMER
//queue_work(gsl_timer_workqueue,&ts->click_work);
#endif
disable_irq_nosync(ts->irq);
enable_irq(ts->irq);
#endif
return 0;
}
#endif
static int gsl_ts_early_suspend(struct tp_device *tp_d)
{
struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);
printk("[GSLX680] Enter %s\n", __func__);
//gsl_ts_suspend(&ts->client->dev);
#ifdef GSL_MONITOR
printk("gsl_ts_suspend () : cancel gsl_monitor_work\n");
cancel_delayed_work_sync(&ts->gsl_monitor_work);
#endif
glsx680_ts_irq_disable(ts);
cancel_work_sync(&ts->work);
#ifdef SLEEP_CLEAR_POINT
msleep(10);
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
msleep(10);
report_data(ts, 1, 1, 10, 1);
input_sync(ts->input);
#endif
gslX680_shutdown_low(ts);
return 0;
}
static int gsl_ts_late_resume(struct tp_device *tp_d)
{
struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);
printk("[GSLX680] Enter %s\n", __func__);
//gsl_ts_resume(&ts->client->dev);
printk("I'am in gsl_ts_resume() start\n");
gslX680_shutdown_high(ts);
msleep(20);
reset_chip(ts->client);
startup_chip(ts->client);
check_mem_data(ts->client, ts);
#ifdef SLEEP_CLEAR_POINT
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
printk("gsl_ts_resume () : queue gsl_monitor_work\n");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300);
#endif
glsx680_ts_irq_enable(ts);
return 0;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void gsl_ts_early_suspend(struct early_suspend *h)
{
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
printk("[GSLX680] Enter %s\n", __func__);
//gsl_ts_suspend(&ts->client->dev);
#ifdef GSL_MONITOR
printk("gsl_ts_suspend () : cancel gsl_monitor_work\n");
cancel_delayed_work_sync(&ts->gsl_monitor_work);
#endif
glsx680_ts_irq_disable(ts);
cancel_work_sync(&ts->work);
#ifdef SLEEP_CLEAR_POINT
msleep(10);
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
msleep(10);
report_data(ts, 1, 1, 10, 1);
input_sync(ts->input);
#endif
gslX680_shutdown_low(ts);
return 0;
}
static void gsl_ts_late_resume(struct early_suspend *h)
{
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
printk("[GSLX680] Enter %s\n", __func__);
//gsl_ts_resume(&ts->client->dev);
int i;
printk("I'am in gsl_ts_resume() start\n");
gslX680_shutdown_high(ts);
msleep(20);
reset_chip(ts->client);
startup_chip(ts->client);
check_mem_data(ts->client, ts);
#ifdef SLEEP_CLEAR_POINT
#ifdef REPORT_DATA_ANDROID_4_0
for (i = 1; i <= MAX_CONTACTS; i++) {
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
}
#else
input_mt_sync(ts->input);
#endif
input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
printk("gsl_ts_resume () : queue gsl_monitor_work\n");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300);
#endif
glsx680_ts_irq_enable(ts);
}
#endif
//static struct wake_lock touch_wakelock;
static const struct of_device_id gsl_ts_ids[] = {
{ .compatible = "gslX680", .data = &gslx680_vr_cfg },
{ .compatible = "gslX680_tve", .data = &gslx680_tve_cfg },
{}
};
static int gsl_ts_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
const struct of_device_id *match;
struct gsl_ts *ts;
int rc;
printk("GSLX680 Enter %s\n", __func__);
//wake_lock_init(&touch_wakelock, WAKE_LOCK_SUSPEND, "touch");
//wake_lock(&touch_wakelock); //system do not enter deep sleep
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "gsl I2C functionality not supported\n");
return -ENODEV;
}
ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
match = of_match_device(of_match_ptr(gsl_ts_ids), &client->dev);
if (!match)
return -EINVAL;
ts->ts_cfg = (const struct gsl_ts_cfg *)match->data;
ts->tp.tp_suspend = gsl_ts_early_suspend;
ts->tp.tp_resume = gsl_ts_late_resume;
tp_register_fb(&ts->tp);
ts->client = client;
i2c_set_clientdata(client, ts);
//ts->device_id = id->driver_data;
gslX680_init(ts);
rc = gslX680_ts_init(client, ts);
if (rc < 0) {
dev_err(&client->dev, "gsl GSLX680 init failed\n");
goto porbe_err_ret;
}
//#ifdef GSLX680_COMPATIBLE
// judge_chip_type(client);
//#endif
//printk("##################### probe [2]chip_type=%c .\n",chip_type);
init_chip(ts->client, ts);
check_mem_data(ts->client, ts);
spin_lock_init(&ts->irq_lock);
client->irq = gpio_to_irq(ts->irq);
rc = request_irq(client->irq, gsl_ts_irq, IRQF_TRIGGER_RISING,
client->name, ts);
if (rc < 0) {
printk("gsl_probe: request irq failed\n");
goto porbe_err_ret;
}
/* create debug attribute */
//rc = device_create_file(&ts->input->dev, &dev_attr_debug_enable);
#ifdef CONFIG_HAS_EARLYSUSPEND
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
//ts->early_suspend.level = EARLY_SUSPEND_LEVEL_DISABLE_FB + 1;
ts->early_suspend.suspend = gsl_ts_early_suspend;
ts->early_suspend.resume = gsl_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
#ifdef GSL_MONITOR
INIT_DELAYED_WORK(&ts->gsl_monitor_work, gsl_monitor_worker);
gsl_monitor_workqueue =
create_singlethread_workqueue("gsl_monitor_workqueue");
queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 1000);
#endif
#ifdef HAVE_CLICK_TIMER
sema_init(&my_sem, 1);
INIT_WORK(&ts->click_work, click_timer_worker);
gsl_timer_workqueue = create_singlethread_workqueue("click_timer");
queue_work(gsl_timer_workqueue, &ts->click_work);
#endif
#ifdef TPD_PROC_DEBUG
#if 0
gsl_config_proc = create_proc_entry(GSL_CONFIG_PROC_FILE, 0666, NULL);
printk("[tp-gsl] [%s] gsl_config_proc = %x \n", __func__,
gsl_config_proc);
if (gsl_config_proc == NULL) {
print_info("create_proc_entry %s failed\n",
GSL_CONFIG_PROC_FILE);
} else {
gsl_config_proc->read_proc = gsl_config_read_proc;
gsl_config_proc->write_proc = gsl_config_write_proc;
}
#else
i2c_client = client;
proc_create(GSL_CONFIG_PROC_FILE, 0666, NULL, &gsl_seq_fops);
#endif
gsl_proc_flag = 0;
#endif
//disable_irq_nosync(->irq);
printk("[GSLX680] End %s\n", __func__);
return 0;
porbe_err_ret:
return rc;
}
static void gsl_ts_remove(struct i2c_client *client)
{
struct gsl_ts *ts = i2c_get_clientdata(client);
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&ts->early_suspend);
#endif
#ifdef GSL_MONITOR
cancel_delayed_work_sync(&ts->gsl_monitor_work);
destroy_workqueue(gsl_monitor_workqueue);
#endif
#ifdef HAVE_CLICK_TIMER
cancel_work_sync(&ts->click_work);
destroy_workqueue(gsl_timer_workqueue);
#endif
device_init_wakeup(&client->dev, 0);
cancel_work_sync(&ts->work);
free_irq(ts->client->irq, ts);
destroy_workqueue(ts->wq);
//device_remove_file(&ts->input->dev, &dev_attr_debug_enable);
}
static const struct i2c_device_id gsl_ts_id[] = {
{GSLX680_I2C_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, gsl_ts_id);
static struct i2c_driver gsl_ts_driver = {
.driver = {
.name = GSLX680_I2C_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(gsl_ts_ids),
},
#if 0 //ndef CONFIG_HAS_EARLYSUSPEND
.suspend = gsl_ts_suspend,
.resume = gsl_ts_resume,
#endif
.probe = gsl_ts_probe,
.remove = gsl_ts_remove,
.id_table = gsl_ts_id,
};
static int __init gsl_ts_init(void)
{
int ret;
ret = i2c_add_driver(&gsl_ts_driver);
return ret;
}
static void __exit gsl_ts_exit(void)
{
i2c_del_driver(&gsl_ts_driver);
return;
}
module_init(gsl_ts_init);
module_exit(gsl_ts_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GSLX680 touchscreen controller driver");
MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com");
MODULE_ALIAS("platform:gsl_ts");