2596 lines
67 KiB
C
2596 lines
67 KiB
C
/*
|
|
*
|
|
* (C) COPYRIGHT 2010-2017 ARM Limited. All rights reserved.
|
|
*
|
|
* This program is free software and is provided to you under the terms of the
|
|
* GNU General Public License version 2 as published by the Free Software
|
|
* Foundation, and any use by you of this program is subject to the terms
|
|
* of such GNU licence.
|
|
*
|
|
* A copy of the licence is included with the program, and can also be obtained
|
|
* from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* @file mali_kbase_mem_linux.c
|
|
* Base kernel memory APIs, Linux implementation.
|
|
*/
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/version.h>
|
|
#include <linux/dma-mapping.h>
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)) && \
|
|
(LINUX_VERSION_CODE < KERNEL_VERSION(4, 8, 0))
|
|
#include <linux/dma-attrs.h>
|
|
#endif /* LINUX_VERSION_CODE >= 3.5.0 && < 4.8.0 */
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
#include <linux/dma-buf.h>
|
|
#endif /* defined(CONFIG_DMA_SHARED_BUFFER) */
|
|
#include <linux/shrinker.h>
|
|
#include <linux/cache.h>
|
|
|
|
#include <mali_kbase.h>
|
|
#include <mali_kbase_mem_linux.h>
|
|
#include <mali_kbase_config_defaults.h>
|
|
#include <mali_kbase_hwaccess_time.h>
|
|
#include <mali_kbase_tlstream.h>
|
|
|
|
static int kbase_tracking_page_setup(struct kbase_context *kctx, struct vm_area_struct *vma);
|
|
|
|
/**
|
|
* kbase_mem_shrink_cpu_mapping - Shrink the CPU mapping(s) of an allocation
|
|
* @kctx: Context the region belongs to
|
|
* @reg: The GPU region
|
|
* @new_pages: The number of pages after the shrink
|
|
* @old_pages: The number of pages before the shrink
|
|
*
|
|
* Shrink (or completely remove) all CPU mappings which reference the shrunk
|
|
* part of the allocation.
|
|
*
|
|
* Note: Caller must be holding the processes mmap_lock lock.
|
|
*/
|
|
static void kbase_mem_shrink_cpu_mapping(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg,
|
|
u64 new_pages, u64 old_pages);
|
|
|
|
/**
|
|
* kbase_mem_shrink_gpu_mapping - Shrink the GPU mapping of an allocation
|
|
* @kctx: Context the region belongs to
|
|
* @reg: The GPU region or NULL if there isn't one
|
|
* @new_pages: The number of pages after the shrink
|
|
* @old_pages: The number of pages before the shrink
|
|
*
|
|
* Return: 0 on success, negative -errno on error
|
|
*
|
|
* Unmap the shrunk pages from the GPU mapping. Note that the size of the region
|
|
* itself is unmodified as we still need to reserve the VA, only the page tables
|
|
* will be modified by this function.
|
|
*/
|
|
static int kbase_mem_shrink_gpu_mapping(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg,
|
|
u64 new_pages, u64 old_pages);
|
|
|
|
struct kbase_va_region *kbase_mem_alloc(struct kbase_context *kctx,
|
|
u64 va_pages, u64 commit_pages, u64 extent, u64 *flags,
|
|
u64 *gpu_va)
|
|
{
|
|
int zone;
|
|
int gpu_pc_bits;
|
|
int cpu_va_bits;
|
|
struct kbase_va_region *reg;
|
|
struct device *dev;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(flags);
|
|
KBASE_DEBUG_ASSERT(gpu_va);
|
|
|
|
dev = kctx->kbdev->dev;
|
|
*gpu_va = 0; /* return 0 on failure */
|
|
|
|
gpu_pc_bits = kctx->kbdev->gpu_props.props.core_props.log2_program_counter_size;
|
|
cpu_va_bits = BITS_PER_LONG;
|
|
|
|
if (0 == va_pages) {
|
|
dev_warn(dev, "kbase_mem_alloc called with 0 va_pages!");
|
|
goto bad_size;
|
|
}
|
|
|
|
if (va_pages > (U64_MAX / PAGE_SIZE))
|
|
/* 64-bit address range is the max */
|
|
goto bad_size;
|
|
|
|
#if defined(CONFIG_64BIT)
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT))
|
|
cpu_va_bits = 32;
|
|
#endif
|
|
|
|
if (!kbase_check_alloc_flags(*flags)) {
|
|
dev_warn(dev,
|
|
"kbase_mem_alloc called with bad flags (%llx)",
|
|
(unsigned long long)*flags);
|
|
goto bad_flags;
|
|
}
|
|
|
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0 &&
|
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
|
dev_warn(dev, "kbase_mem_alloc call required coherent mem when unavailable");
|
|
goto bad_flags;
|
|
}
|
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM) != 0 &&
|
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
|
/* Remove COHERENT_SYSTEM flag if coherent mem is unavailable */
|
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM;
|
|
}
|
|
|
|
/* Limit GPU executable allocs to GPU PC size */
|
|
if ((*flags & BASE_MEM_PROT_GPU_EX) &&
|
|
(va_pages > (1ULL << gpu_pc_bits >> PAGE_SHIFT)))
|
|
goto bad_ex_size;
|
|
|
|
/* find out which VA zone to use */
|
|
if (*flags & BASE_MEM_SAME_VA)
|
|
zone = KBASE_REG_ZONE_SAME_VA;
|
|
else if (*flags & BASE_MEM_PROT_GPU_EX)
|
|
zone = KBASE_REG_ZONE_EXEC;
|
|
else
|
|
zone = KBASE_REG_ZONE_CUSTOM_VA;
|
|
|
|
reg = kbase_alloc_free_region(kctx, 0, va_pages, zone);
|
|
if (!reg) {
|
|
dev_err(dev, "Failed to allocate free region");
|
|
goto no_region;
|
|
}
|
|
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
|
goto invalid_flags;
|
|
|
|
if (kbase_reg_prepare_native(reg, kctx) != 0) {
|
|
dev_err(dev, "Failed to prepare region");
|
|
goto prepare_failed;
|
|
}
|
|
|
|
if (*flags & BASE_MEM_GROW_ON_GPF)
|
|
reg->extent = extent;
|
|
else
|
|
reg->extent = 0;
|
|
|
|
if (kbase_alloc_phy_pages(reg, va_pages, commit_pages) != 0) {
|
|
dev_warn(dev, "Failed to allocate %lld pages (va_pages=%lld)",
|
|
(unsigned long long)commit_pages,
|
|
(unsigned long long)va_pages);
|
|
goto no_mem;
|
|
}
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* mmap needed to setup VA? */
|
|
if (*flags & BASE_MEM_SAME_VA) {
|
|
unsigned long prot = PROT_NONE;
|
|
unsigned long va_size = va_pages << PAGE_SHIFT;
|
|
unsigned long va_map = va_size;
|
|
unsigned long cookie, cookie_nr;
|
|
unsigned long cpu_addr;
|
|
|
|
/* Bind to a cookie */
|
|
if (!kctx->cookies) {
|
|
dev_err(dev, "No cookies available for allocation!");
|
|
kbase_gpu_vm_unlock(kctx);
|
|
goto no_cookie;
|
|
}
|
|
/* return a cookie */
|
|
cookie_nr = __ffs(kctx->cookies);
|
|
kctx->cookies &= ~(1UL << cookie_nr);
|
|
BUG_ON(kctx->pending_regions[cookie_nr]);
|
|
kctx->pending_regions[cookie_nr] = reg;
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
|
|
/* relocate to correct base */
|
|
cookie = cookie_nr + PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
|
cookie <<= PAGE_SHIFT;
|
|
|
|
/*
|
|
* 10.1-10.4 UKU userland relies on the kernel to call mmap.
|
|
* For all other versions we can just return the cookie
|
|
*/
|
|
if (kctx->api_version < KBASE_API_VERSION(10, 1) ||
|
|
kctx->api_version > KBASE_API_VERSION(10, 4)) {
|
|
*gpu_va = (u64) cookie;
|
|
return reg;
|
|
}
|
|
if (*flags & BASE_MEM_PROT_CPU_RD)
|
|
prot |= PROT_READ;
|
|
if (*flags & BASE_MEM_PROT_CPU_WR)
|
|
prot |= PROT_WRITE;
|
|
|
|
cpu_addr = vm_mmap(kctx->filp, 0, va_map, prot,
|
|
MAP_SHARED, cookie);
|
|
|
|
if (IS_ERR_VALUE(cpu_addr)) {
|
|
kbase_gpu_vm_lock(kctx);
|
|
kctx->pending_regions[cookie_nr] = NULL;
|
|
kctx->cookies |= (1UL << cookie_nr);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
goto no_mmap;
|
|
}
|
|
|
|
*gpu_va = (u64) cpu_addr;
|
|
} else /* we control the VA */ {
|
|
if (kbase_gpu_mmap(kctx, reg, 0, va_pages, 1) != 0) {
|
|
dev_warn(dev, "Failed to map memory on GPU");
|
|
kbase_gpu_vm_unlock(kctx);
|
|
goto no_mmap;
|
|
}
|
|
/* return real GPU VA */
|
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
}
|
|
|
|
return reg;
|
|
|
|
no_mmap:
|
|
no_cookie:
|
|
no_mem:
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
invalid_flags:
|
|
prepare_failed:
|
|
kfree(reg);
|
|
no_region:
|
|
bad_ex_size:
|
|
bad_flags:
|
|
bad_size:
|
|
return NULL;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_mem_alloc);
|
|
|
|
int kbase_mem_query(struct kbase_context *kctx, u64 gpu_addr, int query, u64 * const out)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
int ret = -EINVAL;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(out);
|
|
|
|
if (gpu_addr & ~PAGE_MASK) {
|
|
dev_warn(kctx->kbdev->dev, "mem_query: gpu_addr: passed parameter is invalid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* Validate the region */
|
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
|
if (!reg || (reg->flags & KBASE_REG_FREE))
|
|
goto out_unlock;
|
|
|
|
switch (query) {
|
|
case KBASE_MEM_QUERY_COMMIT_SIZE:
|
|
if (reg->cpu_alloc->type != KBASE_MEM_TYPE_ALIAS) {
|
|
*out = kbase_reg_current_backed_size(reg);
|
|
} else {
|
|
size_t i;
|
|
struct kbase_aliased *aliased;
|
|
*out = 0;
|
|
aliased = reg->cpu_alloc->imported.alias.aliased;
|
|
for (i = 0; i < reg->cpu_alloc->imported.alias.nents; i++)
|
|
*out += aliased[i].length;
|
|
}
|
|
break;
|
|
case KBASE_MEM_QUERY_VA_SIZE:
|
|
*out = reg->nr_pages;
|
|
break;
|
|
case KBASE_MEM_QUERY_FLAGS:
|
|
{
|
|
*out = 0;
|
|
if (KBASE_REG_CPU_WR & reg->flags)
|
|
*out |= BASE_MEM_PROT_CPU_WR;
|
|
if (KBASE_REG_CPU_RD & reg->flags)
|
|
*out |= BASE_MEM_PROT_CPU_RD;
|
|
if (KBASE_REG_CPU_CACHED & reg->flags)
|
|
*out |= BASE_MEM_CACHED_CPU;
|
|
if (KBASE_REG_GPU_WR & reg->flags)
|
|
*out |= BASE_MEM_PROT_GPU_WR;
|
|
if (KBASE_REG_GPU_RD & reg->flags)
|
|
*out |= BASE_MEM_PROT_GPU_RD;
|
|
if (!(KBASE_REG_GPU_NX & reg->flags))
|
|
*out |= BASE_MEM_PROT_GPU_EX;
|
|
if (KBASE_REG_SHARE_BOTH & reg->flags)
|
|
*out |= BASE_MEM_COHERENT_SYSTEM;
|
|
if (KBASE_REG_SHARE_IN & reg->flags)
|
|
*out |= BASE_MEM_COHERENT_LOCAL;
|
|
break;
|
|
}
|
|
default:
|
|
*out = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kbase_mem_evictable_reclaim_count_objects - Count number of pages in the
|
|
* Ephemeral memory eviction list.
|
|
* @s: Shrinker
|
|
* @sc: Shrinker control
|
|
*
|
|
* Return: Number of pages which can be freed.
|
|
*/
|
|
static
|
|
unsigned long kbase_mem_evictable_reclaim_count_objects(struct shrinker *s,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct kbase_context *kctx;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
unsigned long pages = 0;
|
|
|
|
kctx = container_of(s, struct kbase_context, reclaim);
|
|
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
|
|
list_for_each_entry(alloc, &kctx->evict_list, evict_node)
|
|
pages += alloc->nents;
|
|
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* kbase_mem_evictable_reclaim_scan_objects - Scan the Ephemeral memory eviction
|
|
* list for pages and try to reclaim them.
|
|
* @s: Shrinker
|
|
* @sc: Shrinker control
|
|
*
|
|
* Return: Number of pages freed (can be less then requested) or -1 if the
|
|
* shrinker failed to free pages in its pool.
|
|
*
|
|
* Note:
|
|
* This function accesses region structures without taking the region lock,
|
|
* this is required as the OOM killer can call the shrinker after the region
|
|
* lock has already been held.
|
|
* This is safe as we can guarantee that a region on the eviction list will
|
|
* not be freed (kbase_mem_free_region removes the allocation from the list
|
|
* before destroying it), or modified by other parts of the driver.
|
|
* The eviction list itself is guarded by the eviction lock and the MMU updates
|
|
* are protected by their own lock.
|
|
*/
|
|
static
|
|
unsigned long kbase_mem_evictable_reclaim_scan_objects(struct shrinker *s,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct kbase_context *kctx;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
struct kbase_mem_phy_alloc *tmp;
|
|
unsigned long freed = 0;
|
|
|
|
kctx = container_of(s, struct kbase_context, reclaim);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
|
|
list_for_each_entry_safe(alloc, tmp, &kctx->evict_list, evict_node) {
|
|
int err;
|
|
|
|
err = kbase_mem_shrink_gpu_mapping(kctx, alloc->reg,
|
|
0, alloc->nents);
|
|
if (err != 0) {
|
|
/*
|
|
* Failed to remove GPU mapping, tell the shrinker
|
|
* to stop trying to shrink our slab even though we
|
|
* have pages in it.
|
|
*/
|
|
freed = -1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Update alloc->evicted before freeing the backing so the
|
|
* helper can determine that it needs to bypass the accounting
|
|
* and memory pool.
|
|
*/
|
|
alloc->evicted = alloc->nents;
|
|
|
|
kbase_free_phy_pages_helper(alloc, alloc->evicted);
|
|
freed += alloc->evicted;
|
|
list_del_init(&alloc->evict_node);
|
|
|
|
/*
|
|
* Inform the JIT allocator this region has lost backing
|
|
* as it might need to free the allocation.
|
|
*/
|
|
kbase_jit_backing_lost(alloc->reg);
|
|
|
|
/* Enough pages have been freed so stop now */
|
|
if (freed > sc->nr_to_scan)
|
|
break;
|
|
}
|
|
out_unlock:
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
|
|
return freed;
|
|
}
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
|
|
static int kbase_mem_evictable_reclaim_shrink(struct shrinker *s,
|
|
struct shrink_control *sc)
|
|
{
|
|
if (sc->nr_to_scan == 0)
|
|
return kbase_mem_evictable_reclaim_count_objects(s, sc);
|
|
|
|
return kbase_mem_evictable_reclaim_scan_objects(s, sc);
|
|
}
|
|
#endif
|
|
|
|
int kbase_mem_evictable_init(struct kbase_context *kctx)
|
|
{
|
|
INIT_LIST_HEAD(&kctx->evict_list);
|
|
mutex_init(&kctx->jit_evict_lock);
|
|
|
|
/* Register shrinker */
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
|
|
kctx->reclaim.shrink = kbase_mem_evictable_reclaim_shrink;
|
|
#else
|
|
kctx->reclaim.count_objects = kbase_mem_evictable_reclaim_count_objects;
|
|
kctx->reclaim.scan_objects = kbase_mem_evictable_reclaim_scan_objects;
|
|
#endif
|
|
kctx->reclaim.seeks = DEFAULT_SEEKS;
|
|
/* Kernel versions prior to 3.1 :
|
|
* struct shrinker does not define batch */
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0)
|
|
kctx->reclaim.batch = 0;
|
|
#endif
|
|
register_shrinker(&kctx->reclaim, "mali-mem");
|
|
return 0;
|
|
}
|
|
|
|
void kbase_mem_evictable_deinit(struct kbase_context *kctx)
|
|
{
|
|
unregister_shrinker(&kctx->reclaim);
|
|
}
|
|
|
|
/**
|
|
* kbase_mem_evictable_mark_reclaim - Mark the pages as reclaimable.
|
|
* @alloc: The physical allocation
|
|
*/
|
|
static void kbase_mem_evictable_mark_reclaim(struct kbase_mem_phy_alloc *alloc)
|
|
{
|
|
struct kbase_context *kctx = alloc->imported.kctx;
|
|
int __maybe_unused new_page_count;
|
|
|
|
kbase_process_page_usage_dec(kctx, alloc->nents);
|
|
new_page_count = kbase_atomic_sub_pages(alloc->nents,
|
|
&kctx->used_pages);
|
|
kbase_atomic_sub_pages(alloc->nents, &kctx->kbdev->memdev.used_pages);
|
|
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
|
(u32)kctx->id,
|
|
(u64)new_page_count);
|
|
}
|
|
|
|
/**
|
|
* kbase_mem_evictable_unmark_reclaim - Mark the pages as no longer reclaimable.
|
|
* @alloc: The physical allocation
|
|
*/
|
|
static
|
|
void kbase_mem_evictable_unmark_reclaim(struct kbase_mem_phy_alloc *alloc)
|
|
{
|
|
struct kbase_context *kctx = alloc->imported.kctx;
|
|
int __maybe_unused new_page_count;
|
|
|
|
new_page_count = kbase_atomic_add_pages(alloc->nents,
|
|
&kctx->used_pages);
|
|
kbase_atomic_add_pages(alloc->nents, &kctx->kbdev->memdev.used_pages);
|
|
|
|
/* Increase mm counters so that the allocation is accounted for
|
|
* against the process and thus is visible to the OOM killer.
|
|
*/
|
|
kbase_process_page_usage_inc(kctx, alloc->nents);
|
|
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
|
(u32)kctx->id,
|
|
(u64)new_page_count);
|
|
}
|
|
|
|
int kbase_mem_evictable_make(struct kbase_mem_phy_alloc *gpu_alloc)
|
|
{
|
|
struct kbase_context *kctx = gpu_alloc->imported.kctx;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/* This alloction can't already be on a list. */
|
|
WARN_ON(!list_empty(&gpu_alloc->evict_node));
|
|
|
|
kbase_mem_shrink_cpu_mapping(kctx, gpu_alloc->reg,
|
|
0, gpu_alloc->nents);
|
|
|
|
/*
|
|
* Add the allocation to the eviction list, after this point the shrink
|
|
* can reclaim it.
|
|
*/
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_add(&gpu_alloc->evict_node, &kctx->evict_list);
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kbase_mem_evictable_mark_reclaim(gpu_alloc);
|
|
|
|
gpu_alloc->reg->flags |= KBASE_REG_DONT_NEED;
|
|
return 0;
|
|
}
|
|
|
|
bool kbase_mem_evictable_unmake(struct kbase_mem_phy_alloc *gpu_alloc)
|
|
{
|
|
struct kbase_context *kctx = gpu_alloc->imported.kctx;
|
|
int err = 0;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/*
|
|
* First remove the allocation from the eviction list as it's no
|
|
* longer eligible for eviction.
|
|
*/
|
|
list_del_init(&gpu_alloc->evict_node);
|
|
|
|
if (gpu_alloc->evicted == 0) {
|
|
/*
|
|
* The backing is still present, update the VM stats as it's
|
|
* in use again.
|
|
*/
|
|
kbase_mem_evictable_unmark_reclaim(gpu_alloc);
|
|
} else {
|
|
/* If the region is still alive ... */
|
|
if (gpu_alloc->reg) {
|
|
/* ... allocate replacement backing ... */
|
|
err = kbase_alloc_phy_pages_helper(gpu_alloc,
|
|
gpu_alloc->evicted);
|
|
|
|
/*
|
|
* ... and grow the mapping back to its
|
|
* pre-eviction size.
|
|
*/
|
|
if (!err)
|
|
err = kbase_mem_grow_gpu_mapping(kctx,
|
|
gpu_alloc->reg,
|
|
gpu_alloc->evicted, 0);
|
|
|
|
gpu_alloc->evicted = 0;
|
|
}
|
|
}
|
|
|
|
/* If the region is still alive remove the DONT_NEED attribute. */
|
|
if (gpu_alloc->reg)
|
|
gpu_alloc->reg->flags &= ~KBASE_REG_DONT_NEED;
|
|
|
|
return (err == 0);
|
|
}
|
|
|
|
int kbase_mem_flags_change(struct kbase_context *kctx, u64 gpu_addr, unsigned int flags, unsigned int mask)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
int ret = -EINVAL;
|
|
unsigned int real_flags = 0;
|
|
unsigned int prev_flags = 0;
|
|
bool prev_needed, new_needed;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
|
|
if (!gpu_addr)
|
|
return -EINVAL;
|
|
|
|
if ((gpu_addr & ~PAGE_MASK) && (gpu_addr >= PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
/* nuke other bits */
|
|
flags &= mask;
|
|
|
|
/* check for only supported flags */
|
|
if (flags & ~(BASE_MEM_FLAGS_MODIFIABLE))
|
|
goto out;
|
|
|
|
/* mask covers bits we don't support? */
|
|
if (mask & ~(BASE_MEM_FLAGS_MODIFIABLE))
|
|
goto out;
|
|
|
|
/* convert flags */
|
|
if (BASE_MEM_COHERENT_SYSTEM & flags)
|
|
real_flags |= KBASE_REG_SHARE_BOTH;
|
|
else if (BASE_MEM_COHERENT_LOCAL & flags)
|
|
real_flags |= KBASE_REG_SHARE_IN;
|
|
|
|
/* now we can lock down the context, and find the region */
|
|
down_write(¤t->mm->mmap_lock);
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* Validate the region */
|
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
|
if (!reg || (reg->flags & KBASE_REG_FREE))
|
|
goto out_unlock;
|
|
|
|
/* Is the region being transitioning between not needed and needed? */
|
|
prev_needed = (KBASE_REG_DONT_NEED & reg->flags) == KBASE_REG_DONT_NEED;
|
|
new_needed = (BASE_MEM_DONT_NEED & flags) == BASE_MEM_DONT_NEED;
|
|
if (prev_needed != new_needed) {
|
|
/* Aliased allocations can't be made ephemeral */
|
|
if (atomic_read(®->cpu_alloc->gpu_mappings) > 1)
|
|
goto out_unlock;
|
|
|
|
if (new_needed) {
|
|
/* Only native allocations can be marked not needed */
|
|
if (reg->cpu_alloc->type != KBASE_MEM_TYPE_NATIVE) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
ret = kbase_mem_evictable_make(reg->gpu_alloc);
|
|
if (ret)
|
|
goto out_unlock;
|
|
} else {
|
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
|
}
|
|
}
|
|
|
|
/* limit to imported memory */
|
|
if ((reg->gpu_alloc->type != KBASE_MEM_TYPE_IMPORTED_UMP) &&
|
|
(reg->gpu_alloc->type != KBASE_MEM_TYPE_IMPORTED_UMM))
|
|
goto out_unlock;
|
|
|
|
/* no change? */
|
|
if (real_flags == (reg->flags & (KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH))) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* save for roll back */
|
|
prev_flags = reg->flags;
|
|
reg->flags &= ~(KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH);
|
|
reg->flags |= real_flags;
|
|
|
|
/* Currently supporting only imported memory */
|
|
switch (reg->gpu_alloc->type) {
|
|
#ifdef CONFIG_UMP
|
|
case KBASE_MEM_TYPE_IMPORTED_UMP:
|
|
ret = kbase_mmu_update_pages(kctx, reg->start_pfn, kbase_get_cpu_phy_pages(reg), reg->gpu_alloc->nents, reg->flags);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
case KBASE_MEM_TYPE_IMPORTED_UMM:
|
|
/* Future use will use the new flags, existing mapping will NOT be updated
|
|
* as memory should not be in use by the GPU when updating the flags.
|
|
*/
|
|
ret = 0;
|
|
WARN_ON(reg->gpu_alloc->imported.umm.current_mapping_usage_count);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* roll back on error, i.e. not UMP */
|
|
if (ret)
|
|
reg->flags = prev_flags;
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
up_write(¤t->mm->mmap_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#define KBASE_MEM_IMPORT_HAVE_PAGES (1UL << BASE_MEM_FLAGS_NR_BITS)
|
|
|
|
#ifdef CONFIG_UMP
|
|
static struct kbase_va_region *kbase_mem_from_ump(struct kbase_context *kctx, ump_secure_id id, u64 *va_pages, u64 *flags)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
ump_dd_handle umph;
|
|
u64 block_count;
|
|
const ump_dd_physical_block_64 *block_array;
|
|
u64 i, j;
|
|
int page = 0;
|
|
ump_alloc_flags ump_flags;
|
|
ump_alloc_flags cpu_flags;
|
|
ump_alloc_flags gpu_flags;
|
|
|
|
if (*flags & BASE_MEM_SECURE)
|
|
goto bad_flags;
|
|
|
|
umph = ump_dd_from_secure_id(id);
|
|
if (UMP_DD_INVALID_MEMORY_HANDLE == umph)
|
|
goto bad_id;
|
|
|
|
ump_flags = ump_dd_allocation_flags_get(umph);
|
|
cpu_flags = (ump_flags >> UMP_DEVICE_CPU_SHIFT) & UMP_DEVICE_MASK;
|
|
gpu_flags = (ump_flags >> DEFAULT_UMP_GPU_DEVICE_SHIFT) &
|
|
UMP_DEVICE_MASK;
|
|
|
|
*va_pages = ump_dd_size_get_64(umph);
|
|
*va_pages >>= PAGE_SHIFT;
|
|
|
|
if (!*va_pages)
|
|
goto bad_size;
|
|
|
|
if (*va_pages > (U64_MAX / PAGE_SIZE))
|
|
/* 64-bit address range is the max */
|
|
goto bad_size;
|
|
|
|
if (*flags & BASE_MEM_SAME_VA)
|
|
reg = kbase_alloc_free_region(kctx, 0, *va_pages, KBASE_REG_ZONE_SAME_VA);
|
|
else
|
|
reg = kbase_alloc_free_region(kctx, 0, *va_pages, KBASE_REG_ZONE_CUSTOM_VA);
|
|
|
|
if (!reg)
|
|
goto no_region;
|
|
|
|
/* we've got pages to map now, and support SAME_VA */
|
|
*flags |= KBASE_MEM_IMPORT_HAVE_PAGES;
|
|
|
|
reg->gpu_alloc = kbase_alloc_create(*va_pages, KBASE_MEM_TYPE_IMPORTED_UMP);
|
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
|
goto no_alloc_obj;
|
|
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
|
|
reg->gpu_alloc->imported.ump_handle = umph;
|
|
|
|
reg->flags &= ~KBASE_REG_FREE;
|
|
reg->flags |= KBASE_REG_GPU_NX; /* UMP is always No eXecute */
|
|
reg->flags &= ~KBASE_REG_GROWABLE; /* UMP cannot be grown */
|
|
|
|
/* Override import flags based on UMP flags */
|
|
*flags &= ~(BASE_MEM_CACHED_CPU);
|
|
*flags &= ~(BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_CPU_WR);
|
|
*flags &= ~(BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR);
|
|
|
|
if ((cpu_flags & (UMP_HINT_DEVICE_RD | UMP_HINT_DEVICE_WR)) ==
|
|
(UMP_HINT_DEVICE_RD | UMP_HINT_DEVICE_WR)) {
|
|
reg->flags |= KBASE_REG_CPU_CACHED;
|
|
*flags |= BASE_MEM_CACHED_CPU;
|
|
}
|
|
|
|
if (cpu_flags & UMP_PROT_CPU_WR) {
|
|
reg->flags |= KBASE_REG_CPU_WR;
|
|
*flags |= BASE_MEM_PROT_CPU_WR;
|
|
}
|
|
|
|
if (cpu_flags & UMP_PROT_CPU_RD) {
|
|
reg->flags |= KBASE_REG_CPU_RD;
|
|
*flags |= BASE_MEM_PROT_CPU_RD;
|
|
}
|
|
|
|
if ((gpu_flags & (UMP_HINT_DEVICE_RD | UMP_HINT_DEVICE_WR)) ==
|
|
(UMP_HINT_DEVICE_RD | UMP_HINT_DEVICE_WR))
|
|
reg->flags |= KBASE_REG_GPU_CACHED;
|
|
|
|
if (gpu_flags & UMP_PROT_DEVICE_WR) {
|
|
reg->flags |= KBASE_REG_GPU_WR;
|
|
*flags |= BASE_MEM_PROT_GPU_WR;
|
|
}
|
|
|
|
if (gpu_flags & UMP_PROT_DEVICE_RD) {
|
|
reg->flags |= KBASE_REG_GPU_RD;
|
|
*flags |= BASE_MEM_PROT_GPU_RD;
|
|
}
|
|
|
|
/* ump phys block query */
|
|
ump_dd_phys_blocks_get_64(umph, &block_count, &block_array);
|
|
|
|
for (i = 0; i < block_count; i++) {
|
|
for (j = 0; j < (block_array[i].size >> PAGE_SHIFT); j++) {
|
|
reg->gpu_alloc->pages[page] = block_array[i].addr + (j << PAGE_SHIFT);
|
|
page++;
|
|
}
|
|
}
|
|
reg->gpu_alloc->nents = *va_pages;
|
|
reg->extent = 0;
|
|
|
|
return reg;
|
|
|
|
no_alloc_obj:
|
|
kfree(reg);
|
|
no_region:
|
|
bad_size:
|
|
ump_dd_release(umph);
|
|
bad_id:
|
|
bad_flags:
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_UMP */
|
|
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
static struct kbase_va_region *kbase_mem_from_umm(struct kbase_context *kctx,
|
|
int fd, u64 *va_pages, u64 *flags, u32 padding)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
struct dma_buf *dma_buf;
|
|
struct dma_buf_attachment *dma_attachment;
|
|
bool shared_zone = false;
|
|
|
|
dma_buf = dma_buf_get(fd);
|
|
if (IS_ERR_OR_NULL(dma_buf))
|
|
goto no_buf;
|
|
|
|
dma_attachment = dma_buf_attach(dma_buf, kctx->kbdev->dev);
|
|
if (!dma_attachment)
|
|
goto no_attachment;
|
|
|
|
*va_pages = (PAGE_ALIGN(dma_buf->size) >> PAGE_SHIFT) + padding;
|
|
if (!*va_pages)
|
|
goto bad_size;
|
|
|
|
if (*va_pages > (U64_MAX / PAGE_SIZE))
|
|
/* 64-bit address range is the max */
|
|
goto bad_size;
|
|
|
|
/* ignore SAME_VA */
|
|
*flags &= ~BASE_MEM_SAME_VA;
|
|
|
|
if (*flags & BASE_MEM_IMPORT_SHARED)
|
|
shared_zone = true;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
/*
|
|
* 64-bit tasks require us to reserve VA on the CPU that we use
|
|
* on the GPU.
|
|
*/
|
|
shared_zone = true;
|
|
}
|
|
#endif
|
|
|
|
if (shared_zone) {
|
|
*flags |= BASE_MEM_NEED_MMAP;
|
|
reg = kbase_alloc_free_region(kctx, 0, *va_pages, KBASE_REG_ZONE_SAME_VA);
|
|
} else {
|
|
reg = kbase_alloc_free_region(kctx, 0, *va_pages, KBASE_REG_ZONE_CUSTOM_VA);
|
|
}
|
|
|
|
if (!reg)
|
|
goto no_region;
|
|
|
|
reg->gpu_alloc = kbase_alloc_create(*va_pages, KBASE_MEM_TYPE_IMPORTED_UMM);
|
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
|
goto no_alloc_obj;
|
|
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
|
|
/* No pages to map yet */
|
|
reg->gpu_alloc->nents = 0;
|
|
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
|
goto invalid_flags;
|
|
|
|
reg->flags &= ~KBASE_REG_FREE;
|
|
reg->flags |= KBASE_REG_GPU_NX; /* UMM is always No eXecute */
|
|
reg->flags &= ~KBASE_REG_GROWABLE; /* UMM cannot be grown */
|
|
reg->flags |= KBASE_REG_GPU_CACHED;
|
|
|
|
if (*flags & BASE_MEM_SECURE)
|
|
reg->flags |= KBASE_REG_SECURE;
|
|
|
|
if (padding)
|
|
reg->flags |= KBASE_REG_IMPORT_PAD;
|
|
|
|
reg->gpu_alloc->type = KBASE_MEM_TYPE_IMPORTED_UMM;
|
|
reg->gpu_alloc->imported.umm.sgt = NULL;
|
|
reg->gpu_alloc->imported.umm.dma_buf = dma_buf;
|
|
reg->gpu_alloc->imported.umm.dma_attachment = dma_attachment;
|
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count = 0;
|
|
reg->extent = 0;
|
|
|
|
return reg;
|
|
|
|
invalid_flags:
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
no_alloc_obj:
|
|
kfree(reg);
|
|
no_region:
|
|
bad_size:
|
|
dma_buf_detach(dma_buf, dma_attachment);
|
|
no_attachment:
|
|
dma_buf_put(dma_buf);
|
|
no_buf:
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
|
|
static u32 kbase_get_cache_line_alignment(struct kbase_context *kctx)
|
|
{
|
|
u32 cpu_cache_line_size = cache_line_size();
|
|
u32 gpu_cache_line_size =
|
|
(1UL << kctx->kbdev->gpu_props.props.l2_props.log2_line_size);
|
|
|
|
return ((cpu_cache_line_size > gpu_cache_line_size) ?
|
|
cpu_cache_line_size :
|
|
gpu_cache_line_size);
|
|
}
|
|
|
|
static struct kbase_va_region *kbase_mem_from_user_buffer(
|
|
struct kbase_context *kctx, unsigned long address,
|
|
unsigned long size, u64 *va_pages, u64 *flags)
|
|
{
|
|
long i;
|
|
struct kbase_va_region *reg;
|
|
long faulted_pages;
|
|
int zone = KBASE_REG_ZONE_CUSTOM_VA;
|
|
bool shared_zone = false;
|
|
u32 cache_line_alignment = kbase_get_cache_line_alignment(kctx);
|
|
struct kbase_alloc_import_user_buf *user_buf;
|
|
struct page **pages = NULL;
|
|
|
|
if ((address & (cache_line_alignment - 1)) != 0 ||
|
|
(size & (cache_line_alignment - 1)) != 0) {
|
|
/* Coherency must be enabled to handle partial cache lines */
|
|
if (*flags & (BASE_MEM_COHERENT_SYSTEM |
|
|
BASE_MEM_COHERENT_SYSTEM_REQUIRED)) {
|
|
/* Force coherent system required flag, import will
|
|
* then fail if coherency isn't available
|
|
*/
|
|
*flags |= BASE_MEM_COHERENT_SYSTEM_REQUIRED;
|
|
} else {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"User buffer is not cache line aligned and no coherency enabled\n");
|
|
goto bad_size;
|
|
}
|
|
}
|
|
|
|
*va_pages = (PAGE_ALIGN(address + size) >> PAGE_SHIFT) -
|
|
PFN_DOWN(address);
|
|
if (!*va_pages)
|
|
goto bad_size;
|
|
|
|
if (*va_pages > (UINT64_MAX / PAGE_SIZE))
|
|
/* 64-bit address range is the max */
|
|
goto bad_size;
|
|
|
|
/* SAME_VA generally not supported with imported memory (no known use cases) */
|
|
*flags &= ~BASE_MEM_SAME_VA;
|
|
|
|
if (*flags & BASE_MEM_IMPORT_SHARED)
|
|
shared_zone = true;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
/*
|
|
* 64-bit tasks require us to reserve VA on the CPU that we use
|
|
* on the GPU.
|
|
*/
|
|
shared_zone = true;
|
|
}
|
|
#endif
|
|
|
|
if (shared_zone) {
|
|
*flags |= BASE_MEM_NEED_MMAP;
|
|
zone = KBASE_REG_ZONE_SAME_VA;
|
|
}
|
|
|
|
reg = kbase_alloc_free_region(kctx, 0, *va_pages, zone);
|
|
|
|
if (!reg)
|
|
goto no_region;
|
|
|
|
reg->gpu_alloc = kbase_alloc_create(*va_pages,
|
|
KBASE_MEM_TYPE_IMPORTED_USER_BUF);
|
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
|
goto no_alloc_obj;
|
|
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
|
goto invalid_flags;
|
|
|
|
reg->flags &= ~KBASE_REG_FREE;
|
|
reg->flags |= KBASE_REG_GPU_NX; /* User-buffers are always No eXecute */
|
|
reg->flags &= ~KBASE_REG_GROWABLE; /* Cannot be grown */
|
|
reg->flags &= ~KBASE_REG_CPU_CACHED;
|
|
|
|
user_buf = ®->gpu_alloc->imported.user_buf;
|
|
|
|
user_buf->size = size;
|
|
user_buf->address = address;
|
|
user_buf->nr_pages = *va_pages;
|
|
user_buf->mm = current->mm;
|
|
user_buf->pages = kmalloc_array(*va_pages, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
|
|
if (!user_buf->pages)
|
|
goto no_page_array;
|
|
|
|
/* If the region is coherent with the CPU then the memory is imported
|
|
* and mapped onto the GPU immediately.
|
|
* Otherwise get_user_pages is called as a sanity check, but with
|
|
* NULL as the pages argument which will fault the pages, but not
|
|
* pin them. The memory will then be pinned only around the jobs that
|
|
* specify the region as an external resource.
|
|
*/
|
|
if (reg->flags & KBASE_REG_SHARE_BOTH) {
|
|
pages = user_buf->pages;
|
|
*flags |= KBASE_MEM_IMPORT_HAVE_PAGES;
|
|
}
|
|
|
|
down_read(¤t->mm->mmap_lock);
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)
|
|
faulted_pages = get_user_pages(current, current->mm, address, *va_pages,
|
|
reg->flags & KBASE_REG_GPU_WR, 0, pages, NULL);
|
|
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
|
|
faulted_pages = get_user_pages(address, *va_pages,
|
|
reg->flags & KBASE_REG_GPU_WR, 0, pages, NULL);
|
|
#else
|
|
faulted_pages = get_user_pages(address, *va_pages,
|
|
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
|
|
pages, NULL);
|
|
#endif
|
|
|
|
up_read(¤t->mm->mmap_lock);
|
|
|
|
if (faulted_pages != *va_pages)
|
|
goto fault_mismatch;
|
|
|
|
atomic_inc(¤t->mm->mm_count);
|
|
|
|
reg->gpu_alloc->nents = 0;
|
|
reg->extent = 0;
|
|
|
|
if (pages) {
|
|
struct device *dev = kctx->kbdev->dev;
|
|
unsigned long local_size = user_buf->size;
|
|
unsigned long offset = user_buf->address & ~PAGE_MASK;
|
|
phys_addr_t *pa = kbase_get_gpu_phy_pages(reg);
|
|
|
|
/* Top bit signifies that this was pinned on import */
|
|
user_buf->current_mapping_usage_count |= PINNED_ON_IMPORT;
|
|
|
|
for (i = 0; i < faulted_pages; i++) {
|
|
dma_addr_t dma_addr;
|
|
unsigned long min;
|
|
|
|
min = MIN(PAGE_SIZE - offset, local_size);
|
|
dma_addr = dma_map_page(dev, pages[i],
|
|
offset, min,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, dma_addr))
|
|
goto unwind_dma_map;
|
|
|
|
user_buf->dma_addrs[i] = dma_addr;
|
|
pa[i] = page_to_phys(pages[i]);
|
|
|
|
local_size -= min;
|
|
offset = 0;
|
|
}
|
|
|
|
reg->gpu_alloc->nents = faulted_pages;
|
|
}
|
|
|
|
return reg;
|
|
|
|
unwind_dma_map:
|
|
while (i--) {
|
|
dma_unmap_page(kctx->kbdev->dev,
|
|
user_buf->dma_addrs[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
}
|
|
fault_mismatch:
|
|
if (pages) {
|
|
for (i = 0; i < faulted_pages; i++)
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(user_buf->pages);
|
|
no_page_array:
|
|
invalid_flags:
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
no_alloc_obj:
|
|
kfree(reg);
|
|
no_region:
|
|
bad_size:
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
u64 kbase_mem_alias(struct kbase_context *kctx, u64 *flags, u64 stride,
|
|
u64 nents, struct base_mem_aliasing_info *ai,
|
|
u64 *num_pages)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
u64 gpu_va;
|
|
size_t i;
|
|
bool coherent;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(flags);
|
|
KBASE_DEBUG_ASSERT(ai);
|
|
KBASE_DEBUG_ASSERT(num_pages);
|
|
|
|
/* mask to only allowed flags */
|
|
*flags &= (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR |
|
|
BASE_MEM_COHERENT_SYSTEM | BASE_MEM_COHERENT_LOCAL |
|
|
BASE_MEM_COHERENT_SYSTEM_REQUIRED);
|
|
|
|
if (!(*flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR))) {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"kbase_mem_alias called with bad flags (%llx)",
|
|
(unsigned long long)*flags);
|
|
goto bad_flags;
|
|
}
|
|
coherent = (*flags & BASE_MEM_COHERENT_SYSTEM) != 0 ||
|
|
(*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0;
|
|
|
|
if (!stride)
|
|
goto bad_stride;
|
|
|
|
if (!nents)
|
|
goto bad_nents;
|
|
|
|
if ((nents * stride) > (U64_MAX / PAGE_SIZE))
|
|
/* 64-bit address range is the max */
|
|
goto bad_size;
|
|
|
|
/* calculate the number of pages this alias will cover */
|
|
*num_pages = nents * stride;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
/* 64-bit tasks must MMAP anyway, but not expose this address to
|
|
* clients */
|
|
*flags |= BASE_MEM_NEED_MMAP;
|
|
reg = kbase_alloc_free_region(kctx, 0, *num_pages,
|
|
KBASE_REG_ZONE_SAME_VA);
|
|
} else {
|
|
#else
|
|
if (1) {
|
|
#endif
|
|
reg = kbase_alloc_free_region(kctx, 0, *num_pages,
|
|
KBASE_REG_ZONE_CUSTOM_VA);
|
|
}
|
|
|
|
if (!reg)
|
|
goto no_reg;
|
|
|
|
/* zero-sized page array, as we don't need one/can support one */
|
|
reg->gpu_alloc = kbase_alloc_create(0, KBASE_MEM_TYPE_ALIAS);
|
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
|
goto no_alloc_obj;
|
|
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
|
goto invalid_flags;
|
|
|
|
reg->gpu_alloc->imported.alias.nents = nents;
|
|
reg->gpu_alloc->imported.alias.stride = stride;
|
|
reg->gpu_alloc->imported.alias.aliased = vzalloc(sizeof(*reg->gpu_alloc->imported.alias.aliased) * nents);
|
|
if (!reg->gpu_alloc->imported.alias.aliased)
|
|
goto no_aliased_array;
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* validate and add src handles */
|
|
for (i = 0; i < nents; i++) {
|
|
if (ai[i].handle.basep.handle < BASE_MEM_FIRST_FREE_ADDRESS) {
|
|
if (ai[i].handle.basep.handle !=
|
|
BASEP_MEM_WRITE_ALLOC_PAGES_HANDLE)
|
|
goto bad_handle; /* unsupported magic handle */
|
|
if (!ai[i].length)
|
|
goto bad_handle; /* must be > 0 */
|
|
if (ai[i].length > stride)
|
|
goto bad_handle; /* can't be larger than the
|
|
stride */
|
|
reg->gpu_alloc->imported.alias.aliased[i].length = ai[i].length;
|
|
} else {
|
|
struct kbase_va_region *aliasing_reg;
|
|
struct kbase_mem_phy_alloc *alloc;
|
|
|
|
aliasing_reg = kbase_region_tracker_find_region_base_address(
|
|
kctx,
|
|
(ai[i].handle.basep.handle >> PAGE_SHIFT) << PAGE_SHIFT);
|
|
|
|
/* validate found region */
|
|
if (!aliasing_reg)
|
|
goto bad_handle; /* Not found */
|
|
if (aliasing_reg->flags & KBASE_REG_FREE)
|
|
goto bad_handle; /* Free region */
|
|
if (aliasing_reg->flags & KBASE_REG_DONT_NEED)
|
|
goto bad_handle; /* Ephemeral region */
|
|
if (!aliasing_reg->gpu_alloc)
|
|
goto bad_handle; /* No alloc */
|
|
if (aliasing_reg->gpu_alloc->type != KBASE_MEM_TYPE_NATIVE)
|
|
goto bad_handle; /* Not a native alloc */
|
|
if (coherent != ((aliasing_reg->flags & KBASE_REG_SHARE_BOTH) != 0))
|
|
goto bad_handle;
|
|
/* Non-coherent memory cannot alias
|
|
coherent memory, and vice versa.*/
|
|
|
|
/* check size against stride */
|
|
if (!ai[i].length)
|
|
goto bad_handle; /* must be > 0 */
|
|
if (ai[i].length > stride)
|
|
goto bad_handle; /* can't be larger than the
|
|
stride */
|
|
|
|
alloc = aliasing_reg->gpu_alloc;
|
|
|
|
/* check against the alloc's size */
|
|
if (ai[i].offset > alloc->nents)
|
|
goto bad_handle; /* beyond end */
|
|
if (ai[i].offset + ai[i].length > alloc->nents)
|
|
goto bad_handle; /* beyond end */
|
|
|
|
reg->gpu_alloc->imported.alias.aliased[i].alloc = kbase_mem_phy_alloc_get(alloc);
|
|
reg->gpu_alloc->imported.alias.aliased[i].length = ai[i].length;
|
|
reg->gpu_alloc->imported.alias.aliased[i].offset = ai[i].offset;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
|
/* Bind to a cookie */
|
|
if (!kctx->cookies) {
|
|
dev_err(kctx->kbdev->dev, "No cookies available for allocation!");
|
|
goto no_cookie;
|
|
}
|
|
/* return a cookie */
|
|
gpu_va = __ffs(kctx->cookies);
|
|
kctx->cookies &= ~(1UL << gpu_va);
|
|
BUG_ON(kctx->pending_regions[gpu_va]);
|
|
kctx->pending_regions[gpu_va] = reg;
|
|
|
|
/* relocate to correct base */
|
|
gpu_va += PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
|
gpu_va <<= PAGE_SHIFT;
|
|
} else /* we control the VA */ {
|
|
#else
|
|
if (1) {
|
|
#endif
|
|
if (kbase_gpu_mmap(kctx, reg, 0, *num_pages, 1) != 0) {
|
|
dev_warn(kctx->kbdev->dev, "Failed to map memory on GPU");
|
|
goto no_mmap;
|
|
}
|
|
/* return real GPU VA */
|
|
gpu_va = reg->start_pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
reg->flags &= ~KBASE_REG_FREE;
|
|
reg->flags &= ~KBASE_REG_GROWABLE;
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
|
|
return gpu_va;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
no_cookie:
|
|
#endif
|
|
no_mmap:
|
|
bad_handle:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
no_aliased_array:
|
|
invalid_flags:
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
no_alloc_obj:
|
|
kfree(reg);
|
|
no_reg:
|
|
bad_size:
|
|
bad_nents:
|
|
bad_stride:
|
|
bad_flags:
|
|
return 0;
|
|
}
|
|
|
|
int kbase_mem_import(struct kbase_context *kctx, enum base_mem_import_type type,
|
|
void __user *phandle, u32 padding, u64 *gpu_va, u64 *va_pages,
|
|
u64 *flags)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(gpu_va);
|
|
KBASE_DEBUG_ASSERT(va_pages);
|
|
KBASE_DEBUG_ASSERT(flags);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT))
|
|
*flags |= BASE_MEM_SAME_VA;
|
|
#endif
|
|
|
|
if (!kbase_check_import_flags(*flags)) {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"kbase_mem_import called with bad flags (%llx)",
|
|
(unsigned long long)*flags);
|
|
goto bad_flags;
|
|
}
|
|
|
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0 &&
|
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"kbase_mem_import call required coherent mem when unavailable");
|
|
goto bad_flags;
|
|
}
|
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM) != 0 &&
|
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
|
/* Remove COHERENT_SYSTEM flag if coherent mem is unavailable */
|
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM;
|
|
}
|
|
|
|
if ((padding != 0) && (type != BASE_MEM_IMPORT_TYPE_UMM)) {
|
|
dev_warn(kctx->kbdev->dev,
|
|
"padding is only supported for UMM");
|
|
goto bad_flags;
|
|
}
|
|
|
|
switch (type) {
|
|
#ifdef CONFIG_UMP
|
|
case BASE_MEM_IMPORT_TYPE_UMP: {
|
|
ump_secure_id id;
|
|
|
|
if (get_user(id, (ump_secure_id __user *)phandle))
|
|
reg = NULL;
|
|
else
|
|
reg = kbase_mem_from_ump(kctx, id, va_pages, flags);
|
|
}
|
|
break;
|
|
#endif /* CONFIG_UMP */
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
case BASE_MEM_IMPORT_TYPE_UMM: {
|
|
int fd;
|
|
|
|
if (get_user(fd, (int __user *)phandle))
|
|
reg = NULL;
|
|
else
|
|
reg = kbase_mem_from_umm(kctx, fd, va_pages, flags,
|
|
padding);
|
|
}
|
|
break;
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
case BASE_MEM_IMPORT_TYPE_USER_BUFFER: {
|
|
struct base_mem_import_user_buffer user_buffer;
|
|
void __user *uptr;
|
|
|
|
if (copy_from_user(&user_buffer, phandle,
|
|
sizeof(user_buffer))) {
|
|
reg = NULL;
|
|
} else {
|
|
#ifdef CONFIG_COMPAT
|
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT))
|
|
uptr = compat_ptr(user_buffer.ptr.compat_value);
|
|
else
|
|
#endif
|
|
uptr = user_buffer.ptr.value;
|
|
|
|
reg = kbase_mem_from_user_buffer(kctx,
|
|
(unsigned long)uptr, user_buffer.length,
|
|
va_pages, flags);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
reg = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!reg)
|
|
goto no_reg;
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* mmap needed to setup VA? */
|
|
if (*flags & (BASE_MEM_SAME_VA | BASE_MEM_NEED_MMAP)) {
|
|
/* Bind to a cookie */
|
|
if (!kctx->cookies)
|
|
goto no_cookie;
|
|
/* return a cookie */
|
|
*gpu_va = __ffs(kctx->cookies);
|
|
kctx->cookies &= ~(1UL << *gpu_va);
|
|
BUG_ON(kctx->pending_regions[*gpu_va]);
|
|
kctx->pending_regions[*gpu_va] = reg;
|
|
|
|
/* relocate to correct base */
|
|
*gpu_va += PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
|
*gpu_va <<= PAGE_SHIFT;
|
|
|
|
} else if (*flags & KBASE_MEM_IMPORT_HAVE_PAGES) {
|
|
/* we control the VA, mmap now to the GPU */
|
|
if (kbase_gpu_mmap(kctx, reg, 0, *va_pages, 1) != 0)
|
|
goto no_gpu_va;
|
|
/* return real GPU VA */
|
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
|
} else {
|
|
/* we control the VA, but nothing to mmap yet */
|
|
if (kbase_add_va_region(kctx, reg, 0, *va_pages, 1) != 0)
|
|
goto no_gpu_va;
|
|
/* return real GPU VA */
|
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
/* clear out private flags */
|
|
*flags &= ((1UL << BASE_MEM_FLAGS_NR_BITS) - 1);
|
|
|
|
kbase_gpu_vm_unlock(kctx);
|
|
|
|
return 0;
|
|
|
|
no_gpu_va:
|
|
no_cookie:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
kfree(reg);
|
|
no_reg:
|
|
bad_flags:
|
|
*gpu_va = 0;
|
|
*va_pages = 0;
|
|
*flags = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int kbase_mem_grow_gpu_mapping(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg,
|
|
u64 new_pages, u64 old_pages)
|
|
{
|
|
phys_addr_t *phy_pages;
|
|
u64 delta = new_pages - old_pages;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
|
|
/* Map the new pages into the GPU */
|
|
phy_pages = kbase_get_gpu_phy_pages(reg);
|
|
ret = kbase_mmu_insert_pages(kctx, reg->start_pfn + old_pages,
|
|
phy_pages + old_pages, delta, reg->flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kbase_mem_shrink_cpu_mapping(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg,
|
|
u64 new_pages, u64 old_pages)
|
|
{
|
|
u64 gpu_va_start = reg->start_pfn;
|
|
|
|
if (new_pages == old_pages)
|
|
/* Nothing to do */
|
|
return;
|
|
|
|
unmap_mapping_range(kctx->filp->f_inode->i_mapping,
|
|
(gpu_va_start + new_pages)<<PAGE_SHIFT,
|
|
(old_pages - new_pages)<<PAGE_SHIFT, 1);
|
|
}
|
|
|
|
static int kbase_mem_shrink_gpu_mapping(struct kbase_context *kctx,
|
|
struct kbase_va_region *reg,
|
|
u64 new_pages, u64 old_pages)
|
|
{
|
|
u64 delta = old_pages - new_pages;
|
|
int ret = 0;
|
|
|
|
ret = kbase_mmu_teardown_pages(kctx,
|
|
reg->start_pfn + new_pages, delta);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kbase_mem_commit(struct kbase_context *kctx, u64 gpu_addr, u64 new_pages)
|
|
{
|
|
u64 old_pages;
|
|
u64 delta;
|
|
int res = -EINVAL;
|
|
struct kbase_va_region *reg;
|
|
bool read_locked = false;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
KBASE_DEBUG_ASSERT(gpu_addr != 0);
|
|
|
|
if (gpu_addr & ~PAGE_MASK) {
|
|
dev_warn(kctx->kbdev->dev, "kbase:mem_commit: gpu_addr: passed parameter is invalid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
down_write(¤t->mm->mmap_lock);
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
/* Validate the region */
|
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
|
if (!reg || (reg->flags & KBASE_REG_FREE))
|
|
goto out_unlock;
|
|
|
|
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
|
|
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
|
|
|
|
if (reg->gpu_alloc->type != KBASE_MEM_TYPE_NATIVE)
|
|
goto out_unlock;
|
|
|
|
if (0 == (reg->flags & KBASE_REG_GROWABLE))
|
|
goto out_unlock;
|
|
|
|
/* Would overflow the VA region */
|
|
if (new_pages > reg->nr_pages)
|
|
goto out_unlock;
|
|
|
|
/* can't be mapped more than once on the GPU */
|
|
if (atomic_read(®->gpu_alloc->gpu_mappings) > 1)
|
|
goto out_unlock;
|
|
/* can't grow regions which are ephemeral */
|
|
if (reg->flags & KBASE_REG_DONT_NEED)
|
|
goto out_unlock;
|
|
|
|
if (new_pages == reg->gpu_alloc->nents) {
|
|
/* no change */
|
|
res = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
old_pages = kbase_reg_current_backed_size(reg);
|
|
if (new_pages > old_pages) {
|
|
delta = new_pages - old_pages;
|
|
|
|
/*
|
|
* No update to the mm so downgrade the writer lock to a read
|
|
* lock so other readers aren't blocked after this point.
|
|
*/
|
|
downgrade_write(¤t->mm->mmap_lock);
|
|
read_locked = true;
|
|
|
|
/* Allocate some more pages */
|
|
if (kbase_alloc_phy_pages_helper(reg->cpu_alloc, delta) != 0) {
|
|
res = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
|
if (kbase_alloc_phy_pages_helper(
|
|
reg->gpu_alloc, delta) != 0) {
|
|
res = -ENOMEM;
|
|
kbase_free_phy_pages_helper(reg->cpu_alloc,
|
|
delta);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/* No update required for CPU mappings, that's done on fault. */
|
|
|
|
/* Update GPU mapping. */
|
|
res = kbase_mem_grow_gpu_mapping(kctx, reg,
|
|
new_pages, old_pages);
|
|
|
|
/* On error free the new pages */
|
|
if (res) {
|
|
kbase_free_phy_pages_helper(reg->cpu_alloc, delta);
|
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
|
kbase_free_phy_pages_helper(reg->gpu_alloc,
|
|
delta);
|
|
res = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
delta = old_pages - new_pages;
|
|
|
|
/* Update all CPU mapping(s) */
|
|
kbase_mem_shrink_cpu_mapping(kctx, reg,
|
|
new_pages, old_pages);
|
|
|
|
/* Update the GPU mapping */
|
|
res = kbase_mem_shrink_gpu_mapping(kctx, reg,
|
|
new_pages, old_pages);
|
|
if (res) {
|
|
res = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
kbase_free_phy_pages_helper(reg->cpu_alloc, delta);
|
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
|
kbase_free_phy_pages_helper(reg->gpu_alloc, delta);
|
|
}
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
if (read_locked)
|
|
up_read(¤t->mm->mmap_lock);
|
|
else
|
|
up_write(¤t->mm->mmap_lock);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void kbase_cpu_vm_open(struct vm_area_struct *vma)
|
|
{
|
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
|
|
|
KBASE_DEBUG_ASSERT(map);
|
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
|
/* non-atomic as we're under Linux' mm lock */
|
|
map->count++;
|
|
}
|
|
|
|
static void kbase_cpu_vm_close(struct vm_area_struct *vma)
|
|
{
|
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
|
|
|
KBASE_DEBUG_ASSERT(map);
|
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
|
|
|
/* non-atomic as we're under Linux' mm lock */
|
|
if (--map->count)
|
|
return;
|
|
|
|
KBASE_DEBUG_ASSERT(map->kctx);
|
|
KBASE_DEBUG_ASSERT(map->alloc);
|
|
|
|
kbase_gpu_vm_lock(map->kctx);
|
|
|
|
if (map->free_on_close) {
|
|
KBASE_DEBUG_ASSERT((map->region->flags & KBASE_REG_ZONE_MASK) ==
|
|
KBASE_REG_ZONE_SAME_VA);
|
|
/* Avoid freeing memory on the process death which results in
|
|
* GPU Page Fault. Memory will be freed in kbase_destroy_context
|
|
*/
|
|
if (!(current->flags & PF_EXITING))
|
|
kbase_mem_free_region(map->kctx, map->region);
|
|
}
|
|
|
|
list_del(&map->mappings_list);
|
|
|
|
kbase_gpu_vm_unlock(map->kctx);
|
|
|
|
kbase_mem_phy_alloc_put(map->alloc);
|
|
kfree(map);
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_cpu_vm_close);
|
|
|
|
|
|
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0))
|
|
static vm_fault_t kbase_cpu_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
#else
|
|
static vm_fault_t kbase_cpu_vm_fault(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
#endif
|
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
|
pgoff_t rel_pgoff;
|
|
size_t i;
|
|
pgoff_t addr;
|
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
|
|
|
KBASE_DEBUG_ASSERT(map);
|
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
|
KBASE_DEBUG_ASSERT(map->kctx);
|
|
KBASE_DEBUG_ASSERT(map->alloc);
|
|
|
|
rel_pgoff = vmf->pgoff - map->region->start_pfn;
|
|
|
|
kbase_gpu_vm_lock(map->kctx);
|
|
if (rel_pgoff >= map->alloc->nents)
|
|
goto locked_bad_fault;
|
|
|
|
/* Fault on access to DONT_NEED regions */
|
|
if (map->alloc->reg && (map->alloc->reg->flags & KBASE_REG_DONT_NEED))
|
|
goto locked_bad_fault;
|
|
|
|
/* insert all valid pages from the fault location */
|
|
i = rel_pgoff;
|
|
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0))
|
|
addr = (pgoff_t)((uintptr_t)vmf->virtual_address >> PAGE_SHIFT);
|
|
#else
|
|
addr = (pgoff_t)(vmf->address >> PAGE_SHIFT);
|
|
#endif
|
|
while (i < map->alloc->nents && (addr < vma->vm_end >> PAGE_SHIFT)) {
|
|
ret = vmf_insert_pfn(vma, addr << PAGE_SHIFT,
|
|
PFN_DOWN(map->alloc->pages[i]));
|
|
if (ret != VM_FAULT_NOPAGE)
|
|
goto locked_bad_fault;
|
|
|
|
i++; addr++;
|
|
}
|
|
|
|
kbase_gpu_vm_unlock(map->kctx);
|
|
/* we resolved it, nothing for VM to do */
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
locked_bad_fault:
|
|
kbase_gpu_vm_unlock(map->kctx);
|
|
return ret;
|
|
}
|
|
|
|
const struct vm_operations_struct kbase_vm_ops = {
|
|
.open = kbase_cpu_vm_open,
|
|
.close = kbase_cpu_vm_close,
|
|
.fault = kbase_cpu_vm_fault
|
|
};
|
|
|
|
static int kbase_cpu_mmap(struct kbase_va_region *reg, struct vm_area_struct *vma, void *kaddr, size_t nr_pages, unsigned long aligned_offset, int free_on_close)
|
|
{
|
|
struct kbase_cpu_mapping *map;
|
|
phys_addr_t *page_array;
|
|
int err = 0;
|
|
int i;
|
|
|
|
map = kzalloc(sizeof(*map), GFP_KERNEL);
|
|
|
|
if (!map) {
|
|
WARN_ON(1);
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* VM_DONTCOPY - don't make this mapping available in fork'ed processes
|
|
* VM_DONTEXPAND - disable mremap on this region
|
|
* VM_IO - disables paging
|
|
* VM_DONTDUMP - Don't include in core dumps (3.7 only)
|
|
* VM_MIXEDMAP - Support mixing struct page*s and raw pfns.
|
|
* This is needed to support using the dedicated and
|
|
* the OS based memory backends together.
|
|
*/
|
|
/*
|
|
* This will need updating to propagate coherency flags
|
|
* See MIDBASE-1057
|
|
*/
|
|
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTDUMP | VM_DONTEXPAND | VM_IO;
|
|
#else
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED | VM_IO;
|
|
#endif
|
|
vma->vm_ops = &kbase_vm_ops;
|
|
vma->vm_private_data = map;
|
|
|
|
page_array = kbase_get_cpu_phy_pages(reg);
|
|
|
|
if (!(reg->flags & KBASE_REG_CPU_CACHED) &&
|
|
(reg->flags & (KBASE_REG_CPU_WR|KBASE_REG_CPU_RD))) {
|
|
/* We can't map vmalloc'd memory uncached.
|
|
* Other memory will have been returned from
|
|
* kbase_mem_pool which would be
|
|
* suitable for mapping uncached.
|
|
*/
|
|
BUG_ON(kaddr);
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
}
|
|
|
|
if (!kaddr) {
|
|
unsigned long addr = vma->vm_start + aligned_offset;
|
|
u64 start_off = vma->vm_pgoff - reg->start_pfn +
|
|
(aligned_offset>>PAGE_SHIFT);
|
|
|
|
vma->vm_flags |= VM_PFNMAP;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long pfn = PFN_DOWN(page_array[i + start_off]);
|
|
vm_fault_t ret;
|
|
|
|
ret = vmf_insert_pfn(vma, addr, pfn);
|
|
if (WARN_ON(ret != VM_FAULT_NOPAGE)) {
|
|
if (ret == VM_FAULT_OOM)
|
|
err = -ENOMEM;
|
|
else
|
|
err = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
addr += PAGE_SIZE;
|
|
}
|
|
} else {
|
|
WARN_ON(aligned_offset);
|
|
/* MIXEDMAP so we can vfree the kaddr early and not track it after map time */
|
|
vma->vm_flags |= VM_MIXEDMAP;
|
|
/* vmalloc remaping is easy... */
|
|
err = remap_vmalloc_range(vma, kaddr, 0);
|
|
WARN_ON(err);
|
|
}
|
|
|
|
if (err) {
|
|
kfree(map);
|
|
goto out;
|
|
}
|
|
|
|
map->region = reg;
|
|
map->free_on_close = free_on_close;
|
|
map->kctx = reg->kctx;
|
|
map->alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
|
|
map->count = 1; /* start with one ref */
|
|
|
|
if (reg->flags & KBASE_REG_CPU_CACHED)
|
|
map->alloc->properties |= KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
|
|
|
|
list_add(&map->mappings_list, &map->alloc->mappings);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int kbase_trace_buffer_mmap(struct kbase_context *kctx, struct vm_area_struct *vma, struct kbase_va_region **const reg, void **const kaddr)
|
|
{
|
|
struct kbase_va_region *new_reg;
|
|
u32 nr_pages;
|
|
size_t size;
|
|
int err = 0;
|
|
u32 *tb;
|
|
int owns_tb = 1;
|
|
|
|
dev_dbg(kctx->kbdev->dev, "in %s\n", __func__);
|
|
size = (vma->vm_end - vma->vm_start);
|
|
nr_pages = size >> PAGE_SHIFT;
|
|
|
|
if (!kctx->jctx.tb) {
|
|
KBASE_DEBUG_ASSERT(0 != size);
|
|
tb = vmalloc_user(size);
|
|
|
|
if (NULL == tb) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kbase_device_trace_buffer_install(kctx, tb, size);
|
|
if (err) {
|
|
vfree(tb);
|
|
goto out;
|
|
}
|
|
} else {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*kaddr = kctx->jctx.tb;
|
|
|
|
new_reg = kbase_alloc_free_region(kctx, 0, nr_pages, KBASE_REG_ZONE_SAME_VA);
|
|
if (!new_reg) {
|
|
err = -ENOMEM;
|
|
WARN_ON(1);
|
|
goto out_no_region;
|
|
}
|
|
|
|
new_reg->cpu_alloc = kbase_alloc_create(0, KBASE_MEM_TYPE_TB);
|
|
if (IS_ERR_OR_NULL(new_reg->cpu_alloc)) {
|
|
err = -ENOMEM;
|
|
new_reg->cpu_alloc = NULL;
|
|
WARN_ON(1);
|
|
goto out_no_alloc;
|
|
}
|
|
|
|
new_reg->gpu_alloc = kbase_mem_phy_alloc_get(new_reg->cpu_alloc);
|
|
|
|
new_reg->cpu_alloc->imported.kctx = kctx;
|
|
new_reg->flags &= ~KBASE_REG_FREE;
|
|
new_reg->flags |= KBASE_REG_CPU_CACHED;
|
|
|
|
/* alloc now owns the tb */
|
|
owns_tb = 0;
|
|
|
|
if (kbase_add_va_region(kctx, new_reg, vma->vm_start, nr_pages, 1) != 0) {
|
|
err = -ENOMEM;
|
|
WARN_ON(1);
|
|
goto out_no_va_region;
|
|
}
|
|
|
|
*reg = new_reg;
|
|
|
|
/* map read only, noexec */
|
|
vma->vm_flags &= ~(VM_WRITE | VM_MAYWRITE | VM_EXEC | VM_MAYEXEC);
|
|
/* the rest of the flags is added by the cpu_mmap handler */
|
|
|
|
dev_dbg(kctx->kbdev->dev, "%s done\n", __func__);
|
|
return 0;
|
|
|
|
out_no_va_region:
|
|
out_no_alloc:
|
|
kbase_free_alloced_region(new_reg);
|
|
out_no_region:
|
|
if (owns_tb) {
|
|
kbase_device_trace_buffer_uninstall(kctx);
|
|
vfree(tb);
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int kbase_mmu_dump_mmap(struct kbase_context *kctx, struct vm_area_struct *vma, struct kbase_va_region **const reg, void **const kmap_addr)
|
|
{
|
|
struct kbase_va_region *new_reg;
|
|
void *kaddr;
|
|
u32 nr_pages;
|
|
size_t size;
|
|
int err = 0;
|
|
|
|
dev_dbg(kctx->kbdev->dev, "in kbase_mmu_dump_mmap\n");
|
|
size = (vma->vm_end - vma->vm_start);
|
|
nr_pages = size >> PAGE_SHIFT;
|
|
|
|
kaddr = kbase_mmu_dump(kctx, nr_pages);
|
|
|
|
if (!kaddr) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
new_reg = kbase_alloc_free_region(kctx, 0, nr_pages, KBASE_REG_ZONE_SAME_VA);
|
|
if (!new_reg) {
|
|
err = -ENOMEM;
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
new_reg->cpu_alloc = kbase_alloc_create(0, KBASE_MEM_TYPE_RAW);
|
|
if (IS_ERR_OR_NULL(new_reg->cpu_alloc)) {
|
|
err = -ENOMEM;
|
|
new_reg->cpu_alloc = NULL;
|
|
WARN_ON(1);
|
|
goto out_no_alloc;
|
|
}
|
|
|
|
new_reg->gpu_alloc = kbase_mem_phy_alloc_get(new_reg->cpu_alloc);
|
|
|
|
new_reg->flags &= ~KBASE_REG_FREE;
|
|
new_reg->flags |= KBASE_REG_CPU_CACHED;
|
|
if (kbase_add_va_region(kctx, new_reg, vma->vm_start, nr_pages, 1) != 0) {
|
|
err = -ENOMEM;
|
|
WARN_ON(1);
|
|
goto out_va_region;
|
|
}
|
|
|
|
*kmap_addr = kaddr;
|
|
*reg = new_reg;
|
|
|
|
dev_dbg(kctx->kbdev->dev, "kbase_mmu_dump_mmap done\n");
|
|
return 0;
|
|
|
|
out_no_alloc:
|
|
out_va_region:
|
|
kbase_free_alloced_region(new_reg);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
|
|
void kbase_os_mem_map_lock(struct kbase_context *kctx)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
(void)kctx;
|
|
down_read(&mm->mmap_lock);
|
|
}
|
|
|
|
void kbase_os_mem_map_unlock(struct kbase_context *kctx)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
(void)kctx;
|
|
up_read(&mm->mmap_lock);
|
|
}
|
|
|
|
static int kbasep_reg_mmap(struct kbase_context *kctx,
|
|
struct vm_area_struct *vma,
|
|
struct kbase_va_region **regm,
|
|
size_t *nr_pages, size_t *aligned_offset)
|
|
|
|
{
|
|
int cookie = vma->vm_pgoff - PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
|
struct kbase_va_region *reg;
|
|
int err = 0;
|
|
|
|
*aligned_offset = 0;
|
|
|
|
dev_dbg(kctx->kbdev->dev, "in kbasep_reg_mmap\n");
|
|
|
|
/* SAME_VA stuff, fetch the right region */
|
|
reg = kctx->pending_regions[cookie];
|
|
if (!reg) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if ((reg->flags & KBASE_REG_GPU_NX) && (reg->nr_pages != *nr_pages)) {
|
|
/* incorrect mmap size */
|
|
/* leave the cookie for a potential later
|
|
* mapping, or to be reclaimed later when the
|
|
* context is freed */
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if ((vma->vm_flags & VM_READ && !(reg->flags & KBASE_REG_CPU_RD)) ||
|
|
(vma->vm_flags & VM_WRITE && !(reg->flags & KBASE_REG_CPU_WR))) {
|
|
/* VM flags inconsistent with region flags */
|
|
err = -EPERM;
|
|
dev_err(kctx->kbdev->dev, "%s:%d inconsistent VM flags\n",
|
|
__FILE__, __LINE__);
|
|
goto out;
|
|
}
|
|
|
|
/* adjust down nr_pages to what we have physically */
|
|
*nr_pages = kbase_reg_current_backed_size(reg);
|
|
|
|
if (kbase_gpu_mmap(kctx, reg, vma->vm_start + *aligned_offset,
|
|
reg->nr_pages, 1) != 0) {
|
|
dev_err(kctx->kbdev->dev, "%s:%d\n", __FILE__, __LINE__);
|
|
/* Unable to map in GPU space. */
|
|
WARN_ON(1);
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
/* no need for the cookie anymore */
|
|
kctx->pending_regions[cookie] = NULL;
|
|
kctx->cookies |= (1UL << cookie);
|
|
|
|
/*
|
|
* Overwrite the offset with the region start_pfn, so we effectively
|
|
* map from offset 0 in the region. However subtract the aligned
|
|
* offset so that when user space trims the mapping the beginning of
|
|
* the trimmed VMA has the correct vm_pgoff;
|
|
*/
|
|
vma->vm_pgoff = reg->start_pfn - ((*aligned_offset)>>PAGE_SHIFT);
|
|
out:
|
|
*regm = reg;
|
|
dev_dbg(kctx->kbdev->dev, "kbasep_reg_mmap done\n");
|
|
|
|
return err;
|
|
}
|
|
|
|
int kbase_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct kbase_context *kctx = file->private_data;
|
|
struct kbase_va_region *reg = NULL;
|
|
void *kaddr = NULL;
|
|
size_t nr_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
int err = 0;
|
|
int free_on_close = 0;
|
|
struct device *dev = kctx->kbdev->dev;
|
|
size_t aligned_offset = 0;
|
|
|
|
dev_dbg(dev, "kbase_mmap\n");
|
|
|
|
/* strip away corresponding VM_MAY% flags to the VM_% flags requested */
|
|
vma->vm_flags &= ~((vma->vm_flags & (VM_READ | VM_WRITE)) << 4);
|
|
|
|
if (0 == nr_pages) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
if (vma->vm_pgoff == PFN_DOWN(BASE_MEM_MAP_TRACKING_HANDLE)) {
|
|
/* The non-mapped tracking helper page */
|
|
err = kbase_tracking_page_setup(kctx, vma);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* if not the MTP, verify that the MTP has been mapped */
|
|
rcu_read_lock();
|
|
/* catches both when the special page isn't present or
|
|
* when we've forked */
|
|
if (rcu_dereference(kctx->process_mm) != current->mm) {
|
|
err = -EINVAL;
|
|
rcu_read_unlock();
|
|
goto out_unlock;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
switch (vma->vm_pgoff) {
|
|
case PFN_DOWN(BASEP_MEM_INVALID_HANDLE):
|
|
case PFN_DOWN(BASEP_MEM_WRITE_ALLOC_PAGES_HANDLE):
|
|
/* Illegal handle for direct map */
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
case PFN_DOWN(BASE_MEM_TRACE_BUFFER_HANDLE):
|
|
err = kbase_trace_buffer_mmap(kctx, vma, ®, &kaddr);
|
|
if (0 != err)
|
|
goto out_unlock;
|
|
dev_dbg(dev, "kbase_trace_buffer_mmap ok\n");
|
|
/* free the region on munmap */
|
|
free_on_close = 1;
|
|
break;
|
|
case PFN_DOWN(BASE_MEM_MMU_DUMP_HANDLE):
|
|
/* MMU dump */
|
|
err = kbase_mmu_dump_mmap(kctx, vma, ®, &kaddr);
|
|
if (0 != err)
|
|
goto out_unlock;
|
|
/* free the region on munmap */
|
|
free_on_close = 1;
|
|
break;
|
|
case PFN_DOWN(BASE_MEM_COOKIE_BASE) ...
|
|
PFN_DOWN(BASE_MEM_FIRST_FREE_ADDRESS) - 1: {
|
|
err = kbasep_reg_mmap(kctx, vma, ®, &nr_pages,
|
|
&aligned_offset);
|
|
if (0 != err)
|
|
goto out_unlock;
|
|
/* free the region on munmap */
|
|
free_on_close = 1;
|
|
break;
|
|
}
|
|
default: {
|
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
|
|
(u64)vma->vm_pgoff << PAGE_SHIFT);
|
|
|
|
if (reg && !(reg->flags & KBASE_REG_FREE)) {
|
|
/* will this mapping overflow the size of the region? */
|
|
if (nr_pages > (reg->nr_pages -
|
|
(vma->vm_pgoff - reg->start_pfn))) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if ((vma->vm_flags & VM_READ &&
|
|
!(reg->flags & KBASE_REG_CPU_RD)) ||
|
|
(vma->vm_flags & VM_WRITE &&
|
|
!(reg->flags & KBASE_REG_CPU_WR))) {
|
|
/* VM flags inconsistent with region flags */
|
|
err = -EPERM;
|
|
dev_err(dev, "%s:%d inconsistent VM flags\n",
|
|
__FILE__, __LINE__);
|
|
goto out_unlock;
|
|
}
|
|
|
|
#ifdef CONFIG_DMA_SHARED_BUFFER
|
|
if (KBASE_MEM_TYPE_IMPORTED_UMM ==
|
|
reg->cpu_alloc->type) {
|
|
err = dma_buf_mmap(
|
|
reg->cpu_alloc->imported.umm.dma_buf,
|
|
vma, vma->vm_pgoff - reg->start_pfn);
|
|
goto out_unlock;
|
|
}
|
|
#endif /* CONFIG_DMA_SHARED_BUFFER */
|
|
|
|
/* limit what we map to the amount currently backed */
|
|
if (reg->cpu_alloc->nents < (vma->vm_pgoff - reg->start_pfn + nr_pages)) {
|
|
if ((vma->vm_pgoff - reg->start_pfn) >= reg->cpu_alloc->nents)
|
|
nr_pages = 0;
|
|
else
|
|
nr_pages = reg->cpu_alloc->nents - (vma->vm_pgoff - reg->start_pfn);
|
|
}
|
|
} else {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
} /* default */
|
|
} /* switch */
|
|
|
|
err = kbase_cpu_mmap(reg, vma, kaddr, nr_pages, aligned_offset, free_on_close);
|
|
|
|
if (vma->vm_pgoff == PFN_DOWN(BASE_MEM_MMU_DUMP_HANDLE)) {
|
|
/* MMU dump - userspace should now have a reference on
|
|
* the pages, so we can now free the kernel mapping */
|
|
vfree(kaddr);
|
|
}
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
out:
|
|
if (err)
|
|
dev_err(dev, "mmap failed %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
KBASE_EXPORT_TEST_API(kbase_mmap);
|
|
|
|
void *kbase_vmap_prot(struct kbase_context *kctx, u64 gpu_addr, size_t size,
|
|
unsigned long prot_request, struct kbase_vmap_struct *map)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
unsigned long page_index;
|
|
unsigned int offset = gpu_addr & ~PAGE_MASK;
|
|
size_t page_count = PFN_UP(offset + size);
|
|
phys_addr_t *page_array;
|
|
struct page **pages;
|
|
void *cpu_addr = NULL;
|
|
pgprot_t prot;
|
|
size_t i;
|
|
bool sync_needed;
|
|
|
|
if (!size || !map)
|
|
return NULL;
|
|
|
|
/* check if page_count calculation will wrap */
|
|
if (size > ((size_t)-1 / PAGE_SIZE))
|
|
return NULL;
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
|
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx, gpu_addr);
|
|
if (!reg || (reg->flags & KBASE_REG_FREE))
|
|
goto out_unlock;
|
|
|
|
page_index = (gpu_addr >> PAGE_SHIFT) - reg->start_pfn;
|
|
|
|
/* check if page_index + page_count will wrap */
|
|
if (-1UL - page_count < page_index)
|
|
goto out_unlock;
|
|
|
|
if (page_index + page_count > kbase_reg_current_backed_size(reg))
|
|
goto out_unlock;
|
|
|
|
if (reg->flags & KBASE_REG_DONT_NEED)
|
|
goto out_unlock;
|
|
|
|
/* check access permissions can be satisfied
|
|
* Intended only for checking KBASE_REG_{CPU,GPU}_{RD,WR} */
|
|
if ((reg->flags & prot_request) != prot_request)
|
|
goto out_unlock;
|
|
|
|
page_array = kbase_get_cpu_phy_pages(reg);
|
|
if (!page_array)
|
|
goto out_unlock;
|
|
|
|
pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages)
|
|
goto out_unlock;
|
|
|
|
for (i = 0; i < page_count; i++)
|
|
pages[i] = pfn_to_page(PFN_DOWN(page_array[page_index + i]));
|
|
|
|
prot = PAGE_KERNEL;
|
|
if (!(reg->flags & KBASE_REG_CPU_CACHED)) {
|
|
/* Map uncached */
|
|
prot = pgprot_writecombine(prot);
|
|
}
|
|
/* Note: enforcing a RO prot_request onto prot is not done, since:
|
|
* - CPU-arch-specific integration required
|
|
* - kbase_vmap() requires no access checks to be made/enforced */
|
|
|
|
cpu_addr = vmap(pages, page_count, VM_MAP, prot);
|
|
|
|
kfree(pages);
|
|
|
|
if (!cpu_addr)
|
|
goto out_unlock;
|
|
|
|
map->gpu_addr = gpu_addr;
|
|
map->cpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
|
|
map->cpu_pages = &kbase_get_cpu_phy_pages(reg)[page_index];
|
|
map->gpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
map->gpu_pages = &kbase_get_gpu_phy_pages(reg)[page_index];
|
|
map->addr = (void *)((uintptr_t)cpu_addr + offset);
|
|
map->size = size;
|
|
map->is_cached = (reg->flags & KBASE_REG_CPU_CACHED) != 0;
|
|
sync_needed = map->is_cached;
|
|
|
|
#ifdef CONFIG_MALI_COH_KERN
|
|
/* kernel can use coherent memory if supported */
|
|
if (kctx->kbdev->system_coherency == COHERENCY_ACE)
|
|
sync_needed = false;
|
|
#endif
|
|
|
|
if (sync_needed) {
|
|
/* Sync first page */
|
|
size_t sz = MIN(((size_t) PAGE_SIZE - offset), size);
|
|
phys_addr_t cpu_pa = map->cpu_pages[0];
|
|
phys_addr_t gpu_pa = map->gpu_pages[0];
|
|
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, offset, sz,
|
|
KBASE_SYNC_TO_CPU);
|
|
|
|
/* Sync middle pages (if any) */
|
|
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
|
|
cpu_pa = map->cpu_pages[i];
|
|
gpu_pa = map->gpu_pages[i];
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, PAGE_SIZE,
|
|
KBASE_SYNC_TO_CPU);
|
|
}
|
|
|
|
/* Sync last page (if any) */
|
|
if (page_count > 1) {
|
|
cpu_pa = map->cpu_pages[page_count - 1];
|
|
gpu_pa = map->gpu_pages[page_count - 1];
|
|
sz = ((offset + size - 1) & ~PAGE_MASK) + 1;
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, sz,
|
|
KBASE_SYNC_TO_CPU);
|
|
}
|
|
}
|
|
kbase_gpu_vm_unlock(kctx);
|
|
|
|
return map->addr;
|
|
|
|
out_unlock:
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return NULL;
|
|
}
|
|
|
|
void *kbase_vmap(struct kbase_context *kctx, u64 gpu_addr, size_t size,
|
|
struct kbase_vmap_struct *map)
|
|
{
|
|
/* 0 is specified for prot_request to indicate no access checks should
|
|
* be made.
|
|
*
|
|
* As mentioned in kbase_vmap_prot() this means that a kernel-side
|
|
* CPU-RO mapping is not enforced to allow this to work */
|
|
return kbase_vmap_prot(kctx, gpu_addr, size, 0u, map);
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_vmap);
|
|
|
|
void kbase_vunmap(struct kbase_context *kctx, struct kbase_vmap_struct *map)
|
|
{
|
|
void *addr = (void *)((uintptr_t)map->addr & PAGE_MASK);
|
|
bool sync_needed = map->is_cached;
|
|
vunmap(addr);
|
|
#ifdef CONFIG_MALI_COH_KERN
|
|
/* kernel can use coherent memory if supported */
|
|
if (kctx->kbdev->system_coherency == COHERENCY_ACE)
|
|
sync_needed = false;
|
|
#endif
|
|
if (sync_needed) {
|
|
off_t offset = (uintptr_t)map->addr & ~PAGE_MASK;
|
|
size_t size = map->size;
|
|
size_t page_count = PFN_UP(offset + size);
|
|
size_t i;
|
|
|
|
/* Sync first page */
|
|
size_t sz = MIN(((size_t) PAGE_SIZE - offset), size);
|
|
phys_addr_t cpu_pa = map->cpu_pages[0];
|
|
phys_addr_t gpu_pa = map->gpu_pages[0];
|
|
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, offset, sz,
|
|
KBASE_SYNC_TO_DEVICE);
|
|
|
|
/* Sync middle pages (if any) */
|
|
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
|
|
cpu_pa = map->cpu_pages[i];
|
|
gpu_pa = map->gpu_pages[i];
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, PAGE_SIZE,
|
|
KBASE_SYNC_TO_DEVICE);
|
|
}
|
|
|
|
/* Sync last page (if any) */
|
|
if (page_count > 1) {
|
|
cpu_pa = map->cpu_pages[page_count - 1];
|
|
gpu_pa = map->gpu_pages[page_count - 1];
|
|
sz = ((offset + size - 1) & ~PAGE_MASK) + 1;
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, sz,
|
|
KBASE_SYNC_TO_DEVICE);
|
|
}
|
|
}
|
|
map->gpu_addr = 0;
|
|
map->cpu_alloc = kbase_mem_phy_alloc_put(map->cpu_alloc);
|
|
map->gpu_alloc = kbase_mem_phy_alloc_put(map->gpu_alloc);
|
|
map->cpu_pages = NULL;
|
|
map->gpu_pages = NULL;
|
|
map->addr = NULL;
|
|
map->size = 0;
|
|
map->is_cached = false;
|
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_vunmap);
|
|
|
|
static void kbasep_add_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
#if (KERNEL_VERSION(6, 2, 0) <= LINUX_VERSION_CODE)
|
|
/* To avoid the build breakage due to the type change in rss_stat,
|
|
* we inline here the equivalent of 'add_mm_counter()' from linux kernel V6.2.
|
|
*/
|
|
percpu_counter_add(&mm->rss_stat[member], value);
|
|
#elif (KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE)
|
|
/* To avoid the build breakage due to an unexported kernel symbol 'mm_trace_rss_stat',
|
|
* we inline here the equivalent of 'add_mm_counter()' from linux kernel V5.5.
|
|
*/
|
|
atomic_long_add(value, &mm->rss_stat.count[member]);
|
|
#else
|
|
add_mm_counter(mm, member, value);
|
|
#endif
|
|
}
|
|
|
|
void kbasep_os_process_page_usage_update(struct kbase_context *kctx, int pages)
|
|
{
|
|
struct mm_struct *mm;
|
|
|
|
rcu_read_lock();
|
|
mm = rcu_dereference(kctx->process_mm);
|
|
if (mm) {
|
|
atomic_add(pages, &kctx->nonmapped_pages);
|
|
#ifdef SPLIT_RSS_COUNTING
|
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, pages);
|
|
#else
|
|
spin_lock(&mm->page_table_lock);
|
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, pages);
|
|
spin_unlock(&mm->page_table_lock);
|
|
#endif
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void kbasep_os_process_page_usage_drain(struct kbase_context *kctx)
|
|
{
|
|
int pages;
|
|
struct mm_struct *mm;
|
|
|
|
spin_lock(&kctx->mm_update_lock);
|
|
mm = rcu_dereference_protected(kctx->process_mm, lockdep_is_held(&kctx->mm_update_lock));
|
|
if (!mm) {
|
|
spin_unlock(&kctx->mm_update_lock);
|
|
return;
|
|
}
|
|
|
|
rcu_assign_pointer(kctx->process_mm, NULL);
|
|
spin_unlock(&kctx->mm_update_lock);
|
|
synchronize_rcu();
|
|
|
|
pages = atomic_xchg(&kctx->nonmapped_pages, 0);
|
|
#ifdef SPLIT_RSS_COUNTING
|
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, -pages);
|
|
#else
|
|
spin_lock(&mm->page_table_lock);
|
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, -pages);
|
|
spin_unlock(&mm->page_table_lock);
|
|
#endif
|
|
}
|
|
|
|
static void kbase_special_vm_close(struct vm_area_struct *vma)
|
|
{
|
|
struct kbase_context *kctx;
|
|
|
|
kctx = vma->vm_private_data;
|
|
kbasep_os_process_page_usage_drain(kctx);
|
|
}
|
|
|
|
static const struct vm_operations_struct kbase_vm_special_ops = {
|
|
.close = kbase_special_vm_close,
|
|
};
|
|
|
|
static int kbase_tracking_page_setup(struct kbase_context *kctx, struct vm_area_struct *vma)
|
|
{
|
|
/* check that this is the only tracking page */
|
|
spin_lock(&kctx->mm_update_lock);
|
|
if (rcu_dereference_protected(kctx->process_mm, lockdep_is_held(&kctx->mm_update_lock))) {
|
|
spin_unlock(&kctx->mm_update_lock);
|
|
return -EFAULT;
|
|
}
|
|
|
|
rcu_assign_pointer(kctx->process_mm, current->mm);
|
|
|
|
spin_unlock(&kctx->mm_update_lock);
|
|
|
|
/* no real access */
|
|
vma->vm_flags &= ~(VM_READ | VM_MAYREAD | VM_WRITE | VM_MAYWRITE | VM_EXEC | VM_MAYEXEC);
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP | VM_IO;
|
|
#else
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED | VM_IO;
|
|
#endif
|
|
vma->vm_ops = &kbase_vm_special_ops;
|
|
vma->vm_private_data = kctx;
|
|
|
|
return 0;
|
|
}
|
|
void *kbase_va_alloc(struct kbase_context *kctx, u32 size, struct kbase_hwc_dma_mapping *handle)
|
|
{
|
|
int i;
|
|
int res;
|
|
void *va;
|
|
dma_addr_t dma_pa;
|
|
struct kbase_va_region *reg;
|
|
phys_addr_t *page_array;
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
|
|
unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
|
|
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
#endif
|
|
|
|
u32 pages = ((size - 1) >> PAGE_SHIFT) + 1;
|
|
u32 flags = BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_CPU_WR |
|
|
BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR;
|
|
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
KBASE_DEBUG_ASSERT(0 != size);
|
|
KBASE_DEBUG_ASSERT(0 != pages);
|
|
|
|
if (size == 0)
|
|
goto err;
|
|
|
|
/* All the alloc calls return zeroed memory */
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
|
|
va = dma_alloc_attrs(kctx->kbdev->dev, size, &dma_pa, GFP_KERNEL,
|
|
attrs);
|
|
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
va = dma_alloc_attrs(kctx->kbdev->dev, size, &dma_pa, GFP_KERNEL,
|
|
&attrs);
|
|
#else
|
|
va = dma_alloc_writecombine(kctx->kbdev->dev, size, &dma_pa, GFP_KERNEL);
|
|
#endif
|
|
if (!va)
|
|
goto err;
|
|
|
|
/* Store the state so we can free it later. */
|
|
handle->cpu_va = va;
|
|
handle->dma_pa = dma_pa;
|
|
handle->size = size;
|
|
|
|
|
|
reg = kbase_alloc_free_region(kctx, 0, pages, KBASE_REG_ZONE_SAME_VA);
|
|
if (!reg)
|
|
goto no_reg;
|
|
|
|
reg->flags &= ~KBASE_REG_FREE;
|
|
if (kbase_update_region_flags(kctx, reg, flags) != 0)
|
|
goto invalid_flags;
|
|
|
|
reg->cpu_alloc = kbase_alloc_create(pages, KBASE_MEM_TYPE_RAW);
|
|
if (IS_ERR_OR_NULL(reg->cpu_alloc))
|
|
goto no_alloc;
|
|
|
|
reg->gpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
|
|
|
|
page_array = kbase_get_cpu_phy_pages(reg);
|
|
|
|
for (i = 0; i < pages; i++)
|
|
page_array[i] = dma_pa + (i << PAGE_SHIFT);
|
|
|
|
reg->cpu_alloc->nents = pages;
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
res = kbase_gpu_mmap(kctx, reg, (uintptr_t) va, pages, 1);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
if (res)
|
|
goto no_mmap;
|
|
|
|
return va;
|
|
|
|
no_mmap:
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
no_alloc:
|
|
invalid_flags:
|
|
kfree(reg);
|
|
no_reg:
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
|
|
dma_free_attrs(kctx->kbdev->dev, size, va, dma_pa, attrs);
|
|
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
|
|
dma_free_attrs(kctx->kbdev->dev, size, va, dma_pa, &attrs);
|
|
#else
|
|
dma_free_writecombine(kctx->kbdev->dev, size, va, dma_pa);
|
|
#endif
|
|
err:
|
|
return NULL;
|
|
}
|
|
KBASE_EXPORT_SYMBOL(kbase_va_alloc);
|
|
|
|
void kbase_va_free(struct kbase_context *kctx, struct kbase_hwc_dma_mapping *handle)
|
|
{
|
|
struct kbase_va_region *reg;
|
|
int err;
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)) && \
|
|
(LINUX_VERSION_CODE < KERNEL_VERSION(4, 8, 0))
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
#endif
|
|
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
KBASE_DEBUG_ASSERT(handle->cpu_va != NULL);
|
|
|
|
kbase_gpu_vm_lock(kctx);
|
|
reg = kbase_region_tracker_find_region_base_address(kctx, (uintptr_t)handle->cpu_va);
|
|
KBASE_DEBUG_ASSERT(reg);
|
|
err = kbase_gpu_munmap(kctx, reg);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
KBASE_DEBUG_ASSERT(!err);
|
|
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
kfree(reg);
|
|
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
|
|
dma_free_attrs(kctx->kbdev->dev, handle->size,
|
|
handle->cpu_va, handle->dma_pa, DMA_ATTR_WRITE_COMBINE);
|
|
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
dma_free_attrs(kctx->kbdev->dev, handle->size,
|
|
handle->cpu_va, handle->dma_pa, &attrs);
|
|
#else
|
|
dma_free_writecombine(kctx->kbdev->dev, handle->size,
|
|
handle->cpu_va, handle->dma_pa);
|
|
#endif
|
|
}
|
|
KBASE_EXPORT_SYMBOL(kbase_va_free);
|
|
|