693 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Crypto acceleration support for Rockchip Crypto V2
*
* Copyright (c) 2022, Rockchip Electronics Co., Ltd.
*
* Author: Lin Jinhan <troy.lin@rock-chips.com>
*
*/
#include <crypto/scatterwalk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "rk_crypto_core.h"
#include "rk_crypto_utils.h"
#include "rk_crypto_skcipher_utils.h"
#include "rk_crypto_v3.h"
#include "rk_crypto_v3_reg.h"
#define RK_POLL_PERIOD_US 100
#define RK_POLL_TIMEOUT_US 50000
static const u32 cipher_algo2bc[] = {
[CIPHER_ALGO_DES] = CRYPTO_BC_DES,
[CIPHER_ALGO_DES3_EDE] = CRYPTO_BC_TDES,
[CIPHER_ALGO_AES] = CRYPTO_BC_AES,
[CIPHER_ALGO_SM4] = CRYPTO_BC_SM4,
};
static const u32 cipher_mode2bc[] = {
[CIPHER_MODE_ECB] = CRYPTO_BC_ECB,
[CIPHER_MODE_CBC] = CRYPTO_BC_CBC,
[CIPHER_MODE_CFB] = CRYPTO_BC_CFB,
[CIPHER_MODE_OFB] = CRYPTO_BC_OFB,
[CIPHER_MODE_CTR] = CRYPTO_BC_CTR,
[CIPHER_MODE_XTS] = CRYPTO_BC_XTS,
[CIPHER_MODE_GCM] = CRYPTO_BC_GCM,
};
static inline bool is_check_tag_valid(struct rk_crypto_dev *dev)
{
/* crypto < v4 need to check tag valid */
return CRYPTO_MAJOR_VER(CRYPTO_READ(dev, CRYPTO_CRYPTO_VERSION)) < CRYPTO_MAJOR_VER_4;
}
static int rk_crypto_irq_handle(int irq, void *dev_id)
{
struct rk_crypto_dev *rk_dev = platform_get_drvdata(dev_id);
u32 interrupt_status;
struct rk_hw_crypto_v3_info *hw_info =
(struct rk_hw_crypto_v3_info *)rk_dev->hw_info;
struct rk_alg_ctx *alg_ctx = rk_cipher_alg_ctx(rk_dev);
interrupt_status = CRYPTO_READ(rk_dev, CRYPTO_DMA_INT_ST);
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_ST, interrupt_status);
interrupt_status &= CRYPTO_LOCKSTEP_MASK;
if (interrupt_status != CRYPTO_DST_ITEM_DONE_INT_ST) {
dev_err(rk_dev->dev, "DMA desc = %p\n", hw_info->hw_desc.lli_head);
dev_err(rk_dev->dev, "DMA addr_in = %08x\n",
(u32)alg_ctx->addr_in);
dev_err(rk_dev->dev, "DMA addr_out = %08x\n",
(u32)alg_ctx->addr_out);
dev_err(rk_dev->dev, "DMA count = %08x\n", alg_ctx->count);
dev_err(rk_dev->dev, "DMA desc_dma = %08x\n",
(u32)hw_info->hw_desc.lli_head_dma);
dev_err(rk_dev->dev, "DMA Error status = %08x\n",
interrupt_status);
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_LLI_ADDR status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_LLI_ADDR));
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_ST status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_ST));
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_STATE status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_STATE));
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_LLI_RADDR status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_LLI_RADDR));
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_SRC_RADDR status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_SRC_RADDR));
dev_err(rk_dev->dev, "DMA CRYPTO_DMA_DST_RADDR status = %08x\n",
CRYPTO_READ(rk_dev, CRYPTO_DMA_DST_RADDR));
rk_dev->err = -EFAULT;
}
return 0;
}
static inline void set_pc_len_reg(struct rk_crypto_dev *rk_dev, u64 pc_len)
{
u32 chn_base = CRYPTO_CH0_PC_LEN_0;
CRYPTO_TRACE("PC length = %lu\n", (unsigned long)pc_len);
CRYPTO_WRITE(rk_dev, chn_base, pc_len & 0xffffffff);
CRYPTO_WRITE(rk_dev, chn_base + 4, pc_len >> 32);
}
static inline void set_aad_len_reg(struct rk_crypto_dev *rk_dev, u64 aad_len)
{
u32 chn_base = CRYPTO_CH0_AAD_LEN_0;
CRYPTO_TRACE("AAD length = %lu\n", (unsigned long)aad_len);
CRYPTO_WRITE(rk_dev, chn_base, aad_len & 0xffffffff);
CRYPTO_WRITE(rk_dev, chn_base + 4, aad_len >> 32);
}
static void set_iv_reg(struct rk_crypto_dev *rk_dev, const u8 *iv, u32 iv_len)
{
if (!iv || iv_len == 0)
return;
CRYPTO_DUMPHEX("set iv", iv, iv_len);
rk_crypto_write_regs(rk_dev, CRYPTO_CH0_IV_0, iv, iv_len);
CRYPTO_WRITE(rk_dev, CRYPTO_CH0_IV_LEN_0, iv_len);
}
static void write_key_reg(struct rk_crypto_dev *rk_dev, const u8 *key,
u32 key_len)
{
rk_crypto_write_regs(rk_dev, CRYPTO_CH0_KEY_0, key, key_len);
}
static void write_tkey_reg(struct rk_crypto_dev *rk_dev, const u8 *key,
u32 key_len)
{
rk_crypto_write_regs(rk_dev, CRYPTO_CH4_KEY_0, key, key_len);
}
static int get_tag_reg(struct rk_crypto_dev *rk_dev, u8 *tag, u32 tag_len)
{
int ret = 0;
u32 reg_ctrl = 0;
CRYPTO_TRACE("tag_len = %u", tag_len);
if (tag_len > RK_MAX_TAG_SIZE)
return -EINVAL;
if (is_check_tag_valid(rk_dev)) {
ret = read_poll_timeout_atomic(CRYPTO_READ,
reg_ctrl,
reg_ctrl & CRYPTO_CH0_TAG_VALID,
0,
RK_POLL_TIMEOUT_US,
false,
rk_dev, CRYPTO_TAG_VALID);
if (ret)
goto exit;
}
rk_crypto_read_regs(rk_dev, CRYPTO_CH0_TAG_0, tag, tag_len);
exit:
return ret;
}
static bool is_force_fallback(struct rk_crypto_algt *algt, uint32_t key_len)
{
if (algt->algo != CIPHER_ALGO_AES)
return false;
/* crypto v2 not support xts with AES-192 */
if (algt->mode == CIPHER_MODE_XTS && key_len == AES_KEYSIZE_192 * 2)
return true;
if (algt->use_soft_aes192 && key_len == AES_KEYSIZE_192)
return true;
return false;
}
static bool is_calc_need_round_up(struct skcipher_request *req)
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct rk_crypto_algt *algt = rk_cipher_get_algt(cipher);
return (algt->mode == CIPHER_MODE_CFB ||
algt->mode == CIPHER_MODE_OFB ||
algt->mode == CIPHER_MODE_CTR) ? true : false;
}
static void rk_cipher_reset(struct rk_crypto_dev *rk_dev)
{
int ret;
u32 tmp = 0, tmp_mask = 0;
unsigned int pool_timeout_us = 1000;
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_EN, 0x00);
tmp = CRYPTO_SW_CC_RESET;
tmp_mask = tmp << CRYPTO_WRITE_MASK_SHIFT;
CRYPTO_WRITE(rk_dev, CRYPTO_RST_CTL, tmp | tmp_mask);
/* This is usually done in 20 clock cycles */
ret = read_poll_timeout_atomic(CRYPTO_READ, tmp, !tmp, 0,
pool_timeout_us, false, rk_dev, CRYPTO_RST_CTL);
if (ret)
dev_err(rk_dev->dev, "cipher reset pool timeout %ums.",
pool_timeout_us);
CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, 0xffff0000);
/* clear dma int status */
tmp = CRYPTO_READ(rk_dev, CRYPTO_DMA_INT_ST);
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_ST, tmp);
}
static void rk_crypto_complete(struct crypto_async_request *base, int err)
{
struct rk_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx;
struct rk_hw_crypto_v3_info *hw_info = ctx->rk_dev->hw_info;
struct crypto_lli_desc *lli_desc = hw_info->hw_desc.lli_head;
CRYPTO_WRITE(ctx->rk_dev, CRYPTO_BC_CTL, 0xffff0000);
if (err) {
rk_cipher_reset(ctx->rk_dev);
pr_err("aligned = %u, align_size = %u\n",
alg_ctx->aligned, alg_ctx->align_size);
pr_err("total = %u, left = %u, count = %u\n",
alg_ctx->total, alg_ctx->left_bytes, alg_ctx->count);
pr_err("lli->src = %08x\n", lli_desc->src_addr);
pr_err("lli->src_len = %08x\n", lli_desc->src_len);
pr_err("lli->dst = %08x\n", lli_desc->dst_addr);
pr_err("lli->dst_len = %08x\n", lli_desc->dst_len);
pr_err("lli->dma_ctl = %08x\n", lli_desc->dma_ctrl);
pr_err("lli->usr_def = %08x\n", lli_desc->user_define);
pr_err("lli->next = %08x\n\n\n", lli_desc->next_addr);
}
if (base->complete)
base->complete(base, err);
}
static int rk_cipher_crypt(struct skcipher_request *req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_algt *algt = rk_cipher_get_algt(tfm);
CRYPTO_TRACE("%s total = %u",
encrypt ? "encrypt" : "decrypt", req->cryptlen);
if (!req->cryptlen) {
if (algt->mode == CIPHER_MODE_ECB ||
algt->mode == CIPHER_MODE_CBC ||
algt->mode == CIPHER_MODE_CTR ||
algt->mode == CIPHER_MODE_CFB ||
algt->mode == CIPHER_MODE_OFB)
return 0;
else
return -EINVAL;
}
/* XTS data should >= chunksize */
if (algt->mode == CIPHER_MODE_XTS) {
if (req->cryptlen < crypto_skcipher_chunksize(tfm))
return -EINVAL;
/* force use unalign branch */
ctx->algs_ctx.align_size = ctx->rk_dev->vir_max;
/* XTS can't pause when use hardware crypto */
if (req->cryptlen > ctx->rk_dev->vir_max)
return rk_cipher_fallback(req, ctx, encrypt);
}
if (is_force_fallback(algt, ctx->keylen))
return rk_cipher_fallback(req, ctx, encrypt);
ctx->mode = cipher_algo2bc[algt->algo] |
cipher_mode2bc[algt->mode];
if (!encrypt)
ctx->mode |= CRYPTO_BC_DECRYPT;
if (algt->algo == CIPHER_ALGO_AES) {
uint32_t key_factor;
/* The key length of XTS is twice the normal length */
key_factor = algt->mode == CIPHER_MODE_XTS ? 2 : 1;
if (ctx->keylen == AES_KEYSIZE_128 * key_factor)
ctx->mode |= CRYPTO_BC_128_bit_key;
else if (ctx->keylen == AES_KEYSIZE_192 * key_factor)
ctx->mode |= CRYPTO_BC_192_bit_key;
else if (ctx->keylen == AES_KEYSIZE_256 * key_factor)
ctx->mode |= CRYPTO_BC_256_bit_key;
}
ctx->iv_len = crypto_skcipher_ivsize(tfm);
memset(ctx->iv, 0x00, sizeof(ctx->iv));
memcpy(ctx->iv, req->iv, ctx->iv_len);
ctx->is_enc = encrypt;
CRYPTO_MSG("ctx->mode = %x\n", ctx->mode);
return rk_skcipher_handle_req(ctx->rk_dev, req);
}
static int rk_cipher_encrypt(struct skcipher_request *req)
{
return rk_cipher_crypt(req, true);
}
static int rk_cipher_decrypt(struct skcipher_request *req)
{
return rk_cipher_crypt(req, false);
}
static int rk_ablk_hw_init(struct rk_crypto_dev *rk_dev, u32 algo, u32 mode)
{
struct rk_cipher_ctx *ctx = rk_cipher_ctx_cast(rk_dev);
rk_cipher_reset(rk_dev);
CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, 0x00010000);
if (mode == CIPHER_MODE_XTS) {
uint32_t tmp_len = ctx->keylen / 2;
write_key_reg(ctx->rk_dev, ctx->key, tmp_len);
write_tkey_reg(ctx->rk_dev, ctx->key + tmp_len, tmp_len);
} else {
write_key_reg(ctx->rk_dev, ctx->key, ctx->keylen);
}
if (mode != CIPHER_MODE_ECB)
set_iv_reg(rk_dev, ctx->iv, ctx->iv_len);
ctx->mode |= CRYPTO_BC_ENABLE;
CRYPTO_WRITE(rk_dev, CRYPTO_FIFO_CTL, 0x00030003);
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_EN, 0x7f);
CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, ctx->mode | CRYPTO_WRITE_MASK_ALL);
return 0;
}
static int crypto_dma_start(struct rk_crypto_dev *rk_dev, uint32_t flag)
{
struct rk_hw_crypto_v3_info *hw_info =
(struct rk_hw_crypto_v3_info *)rk_dev->hw_info;
struct skcipher_request *req =
skcipher_request_cast(rk_dev->async_req);
struct rk_alg_ctx *alg_ctx = rk_cipher_alg_ctx(rk_dev);
struct crypto_lli_desc *lli_head, *lli_tail, *lli_aad;
u32 calc_len = alg_ctx->count;
u32 start_flag = CRYPTO_DMA_START;
int ret;
if (alg_ctx->aligned)
ret = rk_crypto_hw_desc_init(&hw_info->hw_desc,
alg_ctx->sg_src, alg_ctx->sg_dst, alg_ctx->count);
else
ret = rk_crypto_hw_desc_init(&hw_info->hw_desc,
&alg_ctx->sg_tmp, &alg_ctx->sg_tmp, alg_ctx->count);
if (ret)
return ret;
lli_head = hw_info->hw_desc.lli_head;
lli_tail = hw_info->hw_desc.lli_tail;
lli_aad = hw_info->hw_desc.lli_aad;
/*
* the data length is not aligned will use addr_vir to calculate,
* so crypto v2 could round up data length to chunk_size
*/
if (!alg_ctx->is_aead && is_calc_need_round_up(req))
calc_len = round_up(calc_len, alg_ctx->chunk_size);
CRYPTO_TRACE("calc_len = %u, cryptlen = %u, assoclen= %u, is_aead = %d",
calc_len, alg_ctx->total, alg_ctx->assoclen, alg_ctx->is_aead);
lli_head->user_define = LLI_USER_STRING_START | LLI_USER_CIPHER_START;
lli_tail->dma_ctrl = LLI_DMA_CTRL_DST_DONE | LLI_DMA_CTRL_LAST;
lli_tail->user_define |= LLI_USER_STRING_LAST;
lli_tail->src_len += (calc_len - alg_ctx->count);
lli_tail->dst_len += (calc_len - alg_ctx->count);
if (alg_ctx->is_aead) {
lli_aad->src_addr = alg_ctx->addr_aad_in;
lli_aad->src_len = alg_ctx->assoclen;
lli_aad->user_define = LLI_USER_CIPHER_START |
LLI_USER_STRING_START |
LLI_USER_STRING_LAST |
LLI_USER_STRING_AAD;
lli_aad->next_addr = hw_info->hw_desc.lli_head_dma;
/* clear cipher start */
lli_head->user_define &= (~((u32)LLI_USER_CIPHER_START));
set_pc_len_reg(rk_dev, alg_ctx->total);
set_aad_len_reg(rk_dev, alg_ctx->assoclen);
}
rk_crypto_dump_hw_desc(&hw_info->hw_desc);
dma_wmb();
if (alg_ctx->is_aead)
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_LLI_ADDR, hw_info->hw_desc.lli_aad_dma);
else
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_LLI_ADDR, hw_info->hw_desc.lli_head_dma);
CRYPTO_WRITE(rk_dev, CRYPTO_DMA_CTL, start_flag | (start_flag << WRITE_MASK));
return 0;
}
static int rk_ablk_init_tfm(struct crypto_skcipher *tfm)
{
struct rk_crypto_algt *algt = rk_cipher_get_algt(tfm);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
struct rk_crypto_dev *rk_dev = algt->rk_dev;
struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx;
CRYPTO_TRACE();
memset(ctx, 0x00, sizeof(*ctx));
if (!rk_dev->request_crypto)
return -EFAULT;
rk_dev->request_crypto(rk_dev, alg_name);
/* always not aligned for crypto v2 cipher */
alg_ctx->align_size = 64;
alg_ctx->chunk_size = crypto_skcipher_chunksize(tfm);
alg_ctx->ops.start = rk_ablk_start;
alg_ctx->ops.update = rk_ablk_rx;
alg_ctx->ops.complete = rk_crypto_complete;
alg_ctx->ops.irq_handle = rk_crypto_irq_handle;
alg_ctx->ops.hw_init = rk_ablk_hw_init;
alg_ctx->ops.hw_dma_start = crypto_dma_start;
alg_ctx->ops.hw_write_iv = set_iv_reg;
ctx->rk_dev = rk_dev;
if (algt->alg.crypto.base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
CRYPTO_MSG("alloc fallback tfm, name = %s", alg_name);
ctx->fallback_tfm = crypto_alloc_skcipher(alg_name, 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
CRYPTO_MSG("Could not load fallback driver %s : %ld.\n",
alg_name, PTR_ERR(ctx->fallback_tfm));
ctx->fallback_tfm = NULL;
}
}
return 0;
}
static void rk_ablk_exit_tfm(struct crypto_skcipher *tfm)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
CRYPTO_TRACE();
if (ctx->fallback_tfm) {
CRYPTO_MSG("free fallback tfm");
crypto_free_skcipher(ctx->fallback_tfm);
}
ctx->rk_dev->release_crypto(ctx->rk_dev, alg_name);
}
static int rk_aead_init_tfm(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct rk_crypto_algt *algt =
container_of(alg, struct rk_crypto_algt, alg.aead);
struct rk_cipher_ctx *ctx = crypto_tfm_ctx(&tfm->base);
const char *alg_name = crypto_tfm_alg_name(&tfm->base);
struct rk_crypto_dev *rk_dev = algt->rk_dev;
struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx;
CRYPTO_TRACE();
if (!rk_dev->request_crypto)
return -EFAULT;
rk_dev->request_crypto(rk_dev, alg_name);
alg_ctx->align_size = 64;
alg_ctx->chunk_size = crypto_aead_chunksize(tfm);
alg_ctx->ops.start = rk_aead_start;
alg_ctx->ops.update = rk_ablk_rx;
alg_ctx->ops.complete = rk_crypto_complete;
alg_ctx->ops.irq_handle = rk_crypto_irq_handle;
alg_ctx->ops.hw_init = rk_ablk_hw_init;
alg_ctx->ops.hw_dma_start = crypto_dma_start;
alg_ctx->ops.hw_write_iv = set_iv_reg;
alg_ctx->ops.hw_get_result = get_tag_reg;
ctx->rk_dev = rk_dev;
alg_ctx->is_aead = 1;
if (algt->alg.crypto.base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
CRYPTO_MSG("alloc fallback tfm, name = %s", alg_name);
ctx->fallback_aead =
crypto_alloc_aead(alg_name, 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_aead)) {
dev_err(rk_dev->dev,
"Load fallback driver %s err: %ld.\n",
alg_name, PTR_ERR(ctx->fallback_aead));
ctx->fallback_aead = NULL;
crypto_aead_set_reqsize(tfm, sizeof(struct aead_request));
} else {
crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
crypto_aead_reqsize(ctx->fallback_aead));
}
}
return 0;
}
static void rk_aead_exit_tfm(struct crypto_aead *tfm)
{
struct rk_cipher_ctx *ctx = crypto_tfm_ctx(&tfm->base);
CRYPTO_TRACE();
if (ctx->fallback_aead) {
CRYPTO_MSG("free fallback tfm");
crypto_free_aead(ctx->fallback_aead);
}
ctx->rk_dev->release_crypto(ctx->rk_dev, crypto_tfm_alg_name(&tfm->base));
}
static int rk_aead_crypt(struct aead_request *req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct rk_crypto_algt *algt = rk_aead_get_algt(tfm);
struct scatterlist *sg_src, *sg_dst;
struct scatterlist src[2], dst[2];
u64 data_len;
bool aligned;
int ret = -EINVAL;
CRYPTO_TRACE("%s cryptlen = %u, assoclen = %u",
encrypt ? "encrypt" : "decrypt",
req->cryptlen, req->assoclen);
data_len = encrypt ? req->cryptlen : (req->cryptlen - crypto_aead_authsize(tfm));
if (req->assoclen == 0 ||
req->cryptlen == 0 ||
data_len == 0 ||
is_force_fallback(algt, ctx->keylen))
return rk_aead_fallback(req, ctx, encrypt);
/* point sg_src and sg_dst skip assoc data */
sg_src = scatterwalk_ffwd(src, req->src, req->assoclen);
sg_dst = (req->src == req->dst) ? sg_src : scatterwalk_ffwd(dst, req->dst, req->assoclen);
aligned = rk_crypto_check_align(sg_src, sg_nents_for_len(sg_src, data_len),
sg_dst, sg_nents_for_len(sg_dst, data_len),
64);
if (sg_nents_for_len(sg_src, data_len) > RK_DEFAULT_LLI_CNT ||
sg_nents_for_len(sg_dst, data_len) > RK_DEFAULT_LLI_CNT)
return rk_aead_fallback(req, ctx, encrypt);
if (!aligned) {
if (req->assoclen > ctx->rk_dev->aad_max ||
data_len > ctx->rk_dev->vir_max)
return rk_aead_fallback(req, ctx, encrypt);
}
ctx->mode = cipher_algo2bc[algt->algo] |
cipher_mode2bc[algt->mode];
if (!encrypt)
ctx->mode |= CRYPTO_BC_DECRYPT;
if (algt->algo == CIPHER_ALGO_AES) {
if (ctx->keylen == AES_KEYSIZE_128)
ctx->mode |= CRYPTO_BC_128_bit_key;
else if (ctx->keylen == AES_KEYSIZE_192)
ctx->mode |= CRYPTO_BC_192_bit_key;
else if (ctx->keylen == AES_KEYSIZE_256)
ctx->mode |= CRYPTO_BC_256_bit_key;
}
ctx->iv_len = crypto_aead_ivsize(tfm);
memset(ctx->iv, 0x00, sizeof(ctx->iv));
memcpy(ctx->iv, req->iv, ctx->iv_len);
ctx->is_enc = encrypt;
CRYPTO_MSG("ctx->mode = %x\n", ctx->mode);
ret = rk_aead_handle_req(ctx->rk_dev, req);
return ret;
}
static int rk_aead_encrypt(struct aead_request *req)
{
return rk_aead_crypt(req, true);
}
static int rk_aead_decrypt(struct aead_request *req)
{
return rk_aead_crypt(req, false);
}
struct rk_crypto_algt rk_v3_ecb_sm4_alg =
RK_CIPHER_ALGO_INIT(SM4, ECB, ecb(sm4), ecb-sm4-rk);
struct rk_crypto_algt rk_v3_cbc_sm4_alg =
RK_CIPHER_ALGO_INIT(SM4, CBC, cbc(sm4), cbc-sm4-rk);
struct rk_crypto_algt rk_v3_xts_sm4_alg =
RK_CIPHER_ALGO_XTS_INIT(SM4, xts(sm4), xts-sm4-rk);
struct rk_crypto_algt rk_v3_cfb_sm4_alg =
RK_CIPHER_ALGO_INIT(SM4, CFB, cfb(sm4), cfb-sm4-rk);
struct rk_crypto_algt rk_v3_ofb_sm4_alg =
RK_CIPHER_ALGO_INIT(SM4, OFB, ofb(sm4), ofb-sm4-rk);
struct rk_crypto_algt rk_v3_ctr_sm4_alg =
RK_CIPHER_ALGO_INIT(SM4, CTR, ctr(sm4), ctr-sm4-rk);
struct rk_crypto_algt rk_v3_gcm_sm4_alg =
RK_AEAD_ALGO_INIT(SM4, GCM, gcm(sm4), gcm-sm4-rk);
struct rk_crypto_algt rk_v3_ecb_aes_alg =
RK_CIPHER_ALGO_INIT(AES, ECB, ecb(aes), ecb-aes-rk);
struct rk_crypto_algt rk_v3_cbc_aes_alg =
RK_CIPHER_ALGO_INIT(AES, CBC, cbc(aes), cbc-aes-rk);
struct rk_crypto_algt rk_v3_xts_aes_alg =
RK_CIPHER_ALGO_XTS_INIT(AES, xts(aes), xts-aes-rk);
struct rk_crypto_algt rk_v3_cfb_aes_alg =
RK_CIPHER_ALGO_INIT(AES, CFB, cfb(aes), cfb-aes-rk);
struct rk_crypto_algt rk_v3_ofb_aes_alg =
RK_CIPHER_ALGO_INIT(AES, OFB, ofb(aes), ofb-aes-rk);
struct rk_crypto_algt rk_v3_ctr_aes_alg =
RK_CIPHER_ALGO_INIT(AES, CTR, ctr(aes), ctr-aes-rk);
struct rk_crypto_algt rk_v3_gcm_aes_alg =
RK_AEAD_ALGO_INIT(AES, GCM, gcm(aes), gcm-aes-rk);
struct rk_crypto_algt rk_v3_ecb_des_alg =
RK_CIPHER_ALGO_INIT(DES, ECB, ecb(des), ecb-des-rk);
struct rk_crypto_algt rk_v3_cbc_des_alg =
RK_CIPHER_ALGO_INIT(DES, CBC, cbc(des), cbc-des-rk);
struct rk_crypto_algt rk_v3_cfb_des_alg =
RK_CIPHER_ALGO_INIT(DES, CFB, cfb(des), cfb-des-rk);
struct rk_crypto_algt rk_v3_ofb_des_alg =
RK_CIPHER_ALGO_INIT(DES, OFB, ofb(des), ofb-des-rk);
struct rk_crypto_algt rk_v3_ecb_des3_ede_alg =
RK_CIPHER_ALGO_INIT(DES3_EDE, ECB, ecb(des3_ede), ecb-des3_ede-rk);
struct rk_crypto_algt rk_v3_cbc_des3_ede_alg =
RK_CIPHER_ALGO_INIT(DES3_EDE, CBC, cbc(des3_ede), cbc-des3_ede-rk);
struct rk_crypto_algt rk_v3_cfb_des3_ede_alg =
RK_CIPHER_ALGO_INIT(DES3_EDE, CFB, cfb(des3_ede), cfb-des3_ede-rk);
struct rk_crypto_algt rk_v3_ofb_des3_ede_alg =
RK_CIPHER_ALGO_INIT(DES3_EDE, OFB, ofb(des3_ede), ofb-des3_ede-rk);