/* * rk818 battery driver * * Copyright (C) 2016 Rockchip Electronics Co., Ltd. * chenjh * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rk818_battery.h" static int dbg_enable = 0; module_param_named(dbg_level, dbg_enable, int, 0644); #define DBG(args...) \ do { \ if (dbg_enable) { \ pr_info(args); \ } \ } while (0) #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args) /* default param */ #define DEFAULT_BAT_RES 135 #define DEFAULT_SLP_ENTER_CUR 300 #define DEFAULT_SLP_EXIT_CUR 300 #define DEFAULT_SLP_FILTER_CUR 100 #define DEFAULT_PWROFF_VOL_THRESD 3400 #define DEFAULT_MONITOR_SEC 5 #define DEFAULT_ALGR_VOL_THRESD1 3850 #define DEFAULT_ALGR_VOL_THRESD2 3950 #define DEFAULT_MAX_SOC_OFFSET 60 #define DEFAULT_FB_TEMP TEMP_105C #define DEFAULT_ZERO_RESERVE_DSOC 10 #define DEFAULT_POFFSET 42 #define DEFAULT_COFFSET 0x832 #define DEFAULT_SAMPLE_RES 20 #define DEFAULT_ENERGY_MODE 0 #define INVALID_COFFSET_MIN 0x780 #define INVALID_COFFSET_MAX 0x980 #define INVALID_VOL_THRESD 2500 /* sample resistor and division */ #define SAMPLE_RES_10MR 10 #define SAMPLE_RES_20MR 20 #define SAMPLE_RES_DIV1 1 #define SAMPLE_RES_DIV2 2 /* virtual params */ #define VIRTUAL_CURRENT 1000 #define VIRTUAL_VOLTAGE 3888 #define VIRTUAL_SOC 66 #define VIRTUAL_PRESET 1 #define VIRTUAL_TEMPERATURE 188 #define VIRTUAL_STATUS POWER_SUPPLY_STATUS_CHARGING /* charge */ #define FINISH_CHRG_CUR1 1000 #define FINISH_CHRG_CUR2 1500 #define FINISH_MAX_SOC_DELAY 20 #define TERM_CHRG_DSOC 88 #define TERM_CHRG_CURR 600 #define TERM_CHRG_K 650 #define SIMULATE_CHRG_INTV 8 #define SIMULATE_CHRG_CURR 400 #define SIMULATE_CHRG_K 1500 #define FULL_CHRG_K 400 /* zero algorithm */ #define PWROFF_THRESD 3400 #define MIN_ZERO_DSOC_ACCURACY 10 /*0.01%*/ #define MIN_ZERO_OVERCNT 100 #define MIN_ACCURACY 1 #define DEF_PWRPATH_RES 50 #define WAIT_DSOC_DROP_SEC 15 #define WAIT_SHTD_DROP_SEC 30 #define ZERO_GAP_XSOC1 10 #define ZERO_GAP_XSOC2 5 #define ZERO_GAP_XSOC3 3 #define ZERO_LOAD_LVL1 1400 #define ZERO_LOAD_LVL2 600 #define ZERO_GAP_CALIB 5 #define ADC_CALIB_THRESHOLD 4 #define ADC_CALIB_LMT_MIN 3 #define ADC_CALIB_CNT 5 #define NTC_CALC_FACTOR 7 /* time */ #define POWER_ON_SEC_BASE 1 #define MINUTE(x) ((x) * 60) /* sleep */ #define SLP_CURR_MAX 40 #define SLP_CURR_MIN 6 #define DISCHRG_TIME_STEP1 MINUTE(10) #define DISCHRG_TIME_STEP2 MINUTE(60) #define SLP_DSOC_VOL_THRESD 3600 #define REBOOT_PERIOD_SEC 180 #define REBOOT_MAX_CNT 80 /* fcc */ #define MIN_FCC 500 /* TS detect battery temperature */ #define ADC_CUR_MSK 0x03 #define ADC_CUR_20UA 0x00 #define ADC_CUR_40UA 0x01 #define ADC_CUR_60UA 0x02 #define ADC_CUR_80UA 0x03 #define NTC_CALC_FACTOR_80UA 7 #define NTC_CALC_FACTOR_60UA 9 #define NTC_CALC_FACTOR_40UA 13 #define NTC_CALC_FACTOR_20UA 27 #define NTC_80UA_MAX_MEASURE 27500 #define NTC_60UA_MAX_MEASURE 36666 #define NTC_40UA_MAX_MEASURE 55000 #define NTC_20UA_MAX_MEASURE 110000 #define INPUT_CUR80MA (0x01) static const char *bat_status[] = { "charge off", "dead charge", "trickle charge", "cc cv", "finish", "usb over vol", "bat temp error", "timer error", }; struct rk818_battery { struct platform_device *pdev; struct rk808 *rk818; struct regmap *regmap; struct device *dev; struct power_supply *bat; struct power_supply *usb_psy; struct power_supply *ac_psy; struct battery_platform_data *pdata; struct workqueue_struct *bat_monitor_wq; struct delayed_work bat_delay_work; struct delayed_work calib_delay_work; struct wake_lock wake_lock; struct notifier_block fb_nb; struct timer_list caltimer; time64_t rtc_base; int bat_res; int chrg_status; bool is_initialized; bool is_first_power_on; u8 res_div; int current_max; int voltage_max; int current_avg; int voltage_avg; int voltage_ocv; int voltage_relax; int voltage_k; int voltage_b; int remain_cap; int design_cap; int nac; int fcc; int qmax; int dsoc; int rsoc; int poffset; int age_ocv_soc; bool age_allow_update; int age_level; int age_ocv_cap; int age_voltage; int age_adjust_cap; unsigned long age_keep_sec; int zero_timeout_cnt; int zero_remain_cap; int zero_dsoc; int zero_linek; u64 zero_drop_sec; u64 shtd_drop_sec; int sm_remain_cap; int sm_linek; int sm_chrg_dsoc; int sm_dischrg_dsoc; int algo_rest_val; int algo_rest_mode; int sleep_sum_cap; int sleep_remain_cap; unsigned long sleep_dischrg_sec; unsigned long sleep_sum_sec; bool sleep_chrg_online; u8 sleep_chrg_status; bool adc_allow_update; int fb_blank; bool s2r; /*suspend to resume*/ u32 work_mode; int temperature; u32 monitor_ms; u32 pwroff_min; u32 adc_calib_cnt; unsigned long finish_base; unsigned long boot_base; unsigned long flat_match_sec; unsigned long plug_in_base; unsigned long plug_out_base; u8 halt_cnt; bool is_halt; bool is_max_soc_offset; bool is_sw_reset; bool is_ocv_calib; bool is_first_on; bool is_force_calib; int last_dsoc; int ocv_pre_dsoc; int ocv_new_dsoc; int max_pre_dsoc; int max_new_dsoc; int force_pre_dsoc; int force_new_dsoc; int dbg_cap_low0; int dbg_pwr_dsoc; int dbg_pwr_rsoc; int dbg_pwr_vol; int dbg_chrg_min[10]; int dbg_meet_soc; int dbg_calc_dsoc; int dbg_calc_rsoc; u8 ac_in; u8 usb_in; int is_charging; unsigned long charge_count; }; #define DIV(x) ((x) ? (x) : 1) static u64 get_boot_sec(void) { struct timespec64 ts; ktime_get_boottime_ts64(&ts); return ts.tv_sec; } static unsigned long base2sec(unsigned long x) { if (x) return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0; else return 0; } static unsigned long base2min(unsigned long x) { return base2sec(x) / 60; } static u32 interpolate(int value, u32 *table, int size) { u8 i; u16 d; if (size < 2) return 0; for (i = 0; i < size; i++) { if (value < table[i]) break; } if ((i > 0) && (i < size)) { d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1)); d /= table[i] - table[i - 1]; d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1)); } else { d = i * ((MAX_INTERPOLATE + size / 2) / size); } if (d > 1000) d = 1000; return d; } /* (a*b)/c */ static int32_t ab_div_c(u32 a, u32 b, u32 c) { bool sign; u32 ans = MAX_INT; int tmp; sign = ((((a ^ b) ^ c) & 0x80000000) != 0); if (c != 0) { if (sign) c = -c; tmp = (a * b + (c >> 1)) / c; if (tmp < MAX_INT) ans = tmp; } if (sign) ans = -ans; return ans; } static int rk818_bat_read(struct rk818_battery *di, u8 reg) { int ret, val; ret = regmap_read(di->regmap, reg, &val); if (ret) dev_err(di->dev, "read reg:0x%x failed\n", reg); return val; } static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf) { int ret; ret = regmap_write(di->regmap, reg, buf); if (ret) dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg); return ret; } static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf) { int ret; ret = regmap_update_bits(di->regmap, reg, mask, buf); if (ret) dev_err(di->dev, "write reg:0x%x failed\n", reg); return ret; } static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask) { int ret; ret = regmap_update_bits(di->regmap, reg, mask, 0); if (ret) dev_err(di->dev, "clr reg:0x%02x failed\n", reg); return ret; } static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end) { int i; if (!dbg_enable) return; DBG("dump regs from: 0x%x-->0x%x\n", start, end); for (i = start; i < end; i++) DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i)); } static bool rk818_bat_chrg_online(struct rk818_battery *di) { u8 buf; buf = rk818_bat_read(di, RK818_VB_MON_REG); return (buf & PLUG_IN_STS) ? true : false; } static int rk818_bat_get_coulomb_cap(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24; val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16; val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8; val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0; return (val / 2390) * di->res_div; } static int rk818_bat_get_rsoc(struct rk818_battery *di) { int remain_cap; remain_cap = rk818_bat_get_coulomb_cap(di); return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc); } static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { char cmd; struct rk818_battery *di = dev_get_drvdata(dev); sscanf(buf, "%c", &cmd); if (cmd == 'n') rk818_bat_set_bits(di, RK818_MISC_MARK_REG, FG_RESET_NOW, FG_RESET_NOW); else if (cmd == 'm') rk818_bat_set_bits(di, RK818_MISC_MARK_REG, FG_RESET_LATE, FG_RESET_LATE); else if (cmd == 'c') rk818_bat_clear_bits(di, RK818_MISC_MARK_REG, FG_RESET_LATE | FG_RESET_NOW); else if (cmd == 'r') BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG)); else BAT_INFO("command error\n"); return count; } static struct device_attribute rk818_bat_attr[] = { __ATTR(bat, 0664, NULL, bat_info_store), }; static void rk818_bat_enable_gauge(struct rk818_battery *di) { u8 buf; buf = rk818_bat_read(di, RK818_TS_CTRL_REG); buf |= GG_EN; rk818_bat_write(di, RK818_TS_CTRL_REG, buf); } static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level) { rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level); } static u8 rk818_bat_get_age_level(struct rk818_battery *di) { return rk818_bat_read(di, RK818_UPDAT_LEVE_REG); } static int rk818_bat_get_vcalib0(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0; val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8; DBG("<%s>. voffset0: 0x%x\n", __func__, val); return val; } static int rk818_bat_get_vcalib1(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0; val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8; DBG("<%s>. voffset1: 0x%x\n", __func__, val); return val; } static int rk818_bat_get_ioffset(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0; val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8; DBG("<%s>. ioffset: 0x%x\n", __func__, val); return val; } static int rk818_bat_get_coffset(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0; val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8; DBG("<%s>. coffset: 0x%x\n", __func__, val); return val; } static void rk818_bat_set_coffset(struct rk818_battery *di, int val) { u8 buf; if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) { BAT_INFO("set invalid coffset=0x%x\n", val); return; } buf = (val >> 8) & 0xff; rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf); buf = (val >> 0) & 0xff; rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf); DBG("<%s>. coffset: 0x%x\n", __func__, val); } static void rk818_bat_init_voltage_kb(struct rk818_battery *di) { int vcalib0, vcalib1; vcalib0 = rk818_bat_get_vcalib0(di); vcalib1 = rk818_bat_get_vcalib1(di); di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0); di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000; DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b); } static int rk818_bat_get_ocv_voltage(struct rk818_battery *di) { int vol, val = 0; val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0; val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static int rk818_bat_get_avg_voltage(struct rk818_battery *di) { int vol, val = 0; val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0; val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static bool is_rk818_bat_relax_mode(struct rk818_battery *di) { u8 status; status = rk818_bat_read(di, RK818_GGSTS_REG); if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD)) return false; else return true; } static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di) { u16 vol, val = 0; val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0; val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di) { u16 vol, val = 0; val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0; val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di) { u16 relax_vol1, relax_vol2; if (!is_rk818_bat_relax_mode(di)) return 0; relax_vol1 = rk818_bat_get_relax_vol1(di); relax_vol2 = rk818_bat_get_relax_vol2(di); return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2; } static int rk818_bat_get_avg_current(struct rk818_battery *di) { int cur, val = 0; val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0; val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8; if (val & 0x800) val -= 4096; cur = val * di->res_div * 1506 / 1000; return cur; } static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, ocv_soc; ocv_table = di->pdata->ocv_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE); return ocv_soc; } static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, cap; ocv_table = di->pdata->ocv_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE); return cap; } static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, ocv_soc; ocv_table = di->pdata->zero_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE); return ocv_soc; } static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, cap; ocv_table = di->pdata->zero_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE); return cap; } static int rk818_bat_get_iadc(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0; val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8; if (val > 2047) val -= 4096; return val; } static bool rk818_bat_adc_calib(struct rk818_battery *di) { int i, ioffset, coffset, adc, save_coffset; if ((di->chrg_status != CHARGE_FINISH) || (di->adc_calib_cnt > ADC_CALIB_CNT) || (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) || (abs(di->current_avg) < ADC_CALIB_THRESHOLD)) return false; di->adc_calib_cnt++; save_coffset = rk818_bat_get_coffset(di); for (i = 0; i < 5; i++) { adc = rk818_bat_get_iadc(di); if (!rk818_bat_chrg_online(di)) { rk818_bat_set_coffset(di, save_coffset); BAT_INFO("quit, charger plugout when calib adc\n"); return false; } coffset = rk818_bat_get_coffset(di); rk818_bat_set_coffset(di, coffset + adc); msleep(2000); adc = rk818_bat_get_iadc(di); if (abs(adc) < ADC_CALIB_THRESHOLD) { coffset = rk818_bat_get_coffset(di); ioffset = rk818_bat_get_ioffset(di); di->poffset = coffset - ioffset; rk818_bat_write(di, RK818_POFFSET_REG, di->poffset); BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n", coffset, ioffset, di->poffset); return true; } else { BAT_INFO("coffset calib again %d.., max_cnt=%d\n", i, di->adc_calib_cnt); rk818_bat_set_coffset(di, coffset); msleep(2000); } } rk818_bat_set_coffset(di, save_coffset); return false; } static void rk818_bat_set_ioffset_sample(struct rk818_battery *di) { u8 ggcon; ggcon = rk818_bat_read(di, RK818_GGCON_REG); ggcon &= ~ADC_CAL_MIN_MSK; ggcon |= ADC_CAL_8MIN; rk818_bat_write(di, RK818_GGCON_REG, ggcon); } static void rk818_bat_set_ocv_sample(struct rk818_battery *di) { u8 ggcon; ggcon = rk818_bat_read(di, RK818_GGCON_REG); ggcon &= ~OCV_SAMP_MIN_MSK; ggcon |= OCV_SAMP_8MIN; rk818_bat_write(di, RK818_GGCON_REG, ggcon); } static void rk818_bat_restart_relax(struct rk818_battery *di) { u8 ggsts; ggsts = rk818_bat_read(di, RK818_GGSTS_REG); ggsts &= ~RELAX_VOL12_UPD_MSK; rk818_bat_write(di, RK818_GGSTS_REG, ggsts); } static void rk818_bat_set_relax_sample(struct rk818_battery *di) { u8 buf; int enter_thres, exit_thres; struct battery_platform_data *pdata = di->pdata; enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div); exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div); /* set relax enter and exit threshold */ buf = enter_thres & 0xff; rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf); buf = (enter_thres >> 8) & 0xff; rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf); buf = exit_thres & 0xff; rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf); buf = (exit_thres >> 8) & 0xff; rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf); /* reset relax update state */ rk818_bat_restart_relax(di); DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n", __func__, pdata->sleep_enter_current, pdata->sleep_exit_current); } static bool is_rk818_bat_exist(struct rk818_battery *di) { return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false; } static bool is_rk818_bat_first_pwron(struct rk818_battery *di) { u8 buf; buf = rk818_bat_read(di, RK818_GGSTS_REG); if (buf & BAT_CON) { buf &= ~BAT_CON; rk818_bat_write(di, RK818_GGSTS_REG, buf); return true; } return false; } static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di) { u8 cur, last; cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG); last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG); rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur); return (cur != last) ? cur : 0; } static u8 is_rk818_bat_initialized(struct rk818_battery *di) { u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG); if (val & FG_INIT) { val &= ~FG_INIT; rk818_bat_write(di, RK818_MISC_MARK_REG, val); return true; } else { return false; } } static bool is_rk818_bat_ocv_valid(struct rk818_battery *di) { return (!di->is_initialized && di->pwroff_min >= 30) ? true : false; } static void rk818_bat_init_age_algorithm(struct rk818_battery *di) { int age_level, ocv_soc, ocv_cap, ocv_vol; if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) { DBG("<%s> enter.\n", __func__); ocv_vol = rk818_bat_get_ocv_voltage(di); ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol); if (ocv_soc < 20) { di->age_voltage = ocv_vol; di->age_ocv_cap = ocv_cap; di->age_ocv_soc = ocv_soc; di->age_adjust_cap = 0; if (ocv_soc <= 0) di->age_level = 100; else if (ocv_soc < 5) di->age_level = 95; else if (ocv_soc < 10) di->age_level = 90; else di->age_level = 80; age_level = rk818_bat_get_age_level(di); if (age_level > di->age_level) { di->age_allow_update = false; age_level -= 5; if (age_level <= 80) age_level = 80; rk818_bat_save_age_level(di, age_level); } else { di->age_allow_update = true; di->age_keep_sec = get_boot_sec(); } BAT_INFO("init_age_algorithm: " "age_vol:%d, age_ocv_cap:%d, " "age_ocv_soc:%d, old_age_level:%d, " "age_allow_update:%d, new_age_level:%d\n", di->age_voltage, di->age_ocv_cap, ocv_soc, age_level, di->age_allow_update, di->age_level); } } } static enum power_supply_property rk818_bat_props[] = { POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_CURRENT_MAX, }; static int rk818_bat_get_usb_psy(struct device *dev, void *data) { struct rk818_battery *di = data; struct power_supply *psy = dev_get_drvdata(dev); if (psy->desc->type == POWER_SUPPLY_TYPE_USB) { di->usb_psy = psy; return 1; } return 0; } static int rk818_bat_get_ac_psy(struct device *dev, void *data) { struct rk818_battery *di = data; struct power_supply *psy = dev_get_drvdata(dev); if (psy->desc->type == POWER_SUPPLY_TYPE_MAINS) { di->ac_psy = psy; return 1; } return 0; } static void rk818_bat_get_chrg_psy(struct rk818_battery *di) { if (!di->usb_psy) class_for_each_device(power_supply_class, NULL, (void *)di, rk818_bat_get_usb_psy); if (!di->ac_psy) class_for_each_device(power_supply_class, NULL, (void *)di, rk818_bat_get_ac_psy); } static int rk818_bat_get_charge_state(struct rk818_battery *di) { union power_supply_propval val; int ret; if (!di->usb_psy || !di->ac_psy) rk818_bat_get_chrg_psy(di); if (di->usb_psy) { ret = di->usb_psy->desc->get_property(di->usb_psy, POWER_SUPPLY_PROP_ONLINE, &val); if (!ret) di->usb_in = val.intval; } if (di->ac_psy) { ret = di->ac_psy->desc->get_property(di->ac_psy, POWER_SUPPLY_PROP_ONLINE, &val); if (!ret) di->ac_in = val.intval; } DBG("%s: ac_online=%d, usb_online=%d\n", __func__, di->ac_in, di->usb_in); return (di->usb_in || di->ac_in); } static int rk818_get_capacity_leve(struct rk818_battery *di) { if (di->pdata->bat_mode == MODE_VIRTUAL) return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; if (di->dsoc < 1) return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (di->dsoc <= 20) return POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (di->dsoc <= 70) return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; else if (di->dsoc <= 90) return POWER_SUPPLY_CAPACITY_LEVEL_HIGH; else return POWER_SUPPLY_CAPACITY_LEVEL_FULL; } static int rk818_battery_time_to_full(struct rk818_battery *di) { int time_sec; int cap_temp; if (di->pdata->bat_mode == MODE_VIRTUAL) { time_sec = 3600; } else if (di->voltage_avg > 0) { cap_temp = di->pdata->design_capacity - di->remain_cap; if (cap_temp < 0) cap_temp = 0; time_sec = (3600 * cap_temp) / di->voltage_avg; } else { time_sec = 3600 * 24; /* One day */ } return time_sec; } static int rk818_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rk818_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = di->current_avg * 1000;/*uA*/ if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_CURRENT * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = di->voltage_avg * 1000;/*uV*/ if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_VOLTAGE * 1000; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = is_rk818_bat_exist(di); if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_PRESET; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = di->dsoc; if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_SOC; DBG("<%s>. report dsoc: %d\n", __func__, val->intval); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: val->intval = rk818_get_capacity_leve(di); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = POWER_SUPPLY_HEALTH_GOOD; break; case POWER_SUPPLY_PROP_TEMP: val->intval = di->temperature; if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_TEMPERATURE; break; case POWER_SUPPLY_PROP_STATUS: if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_STATUS; else if (di->dsoc == 100) val->intval = POWER_SUPPLY_STATUS_FULL; else if (rk818_bat_get_charge_state(di)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: val->intval = di->charge_count; break; case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = di->pdata->design_capacity * 1000;/* uAh */ break; case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: val->intval = rk818_battery_time_to_full(di); break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: val->intval = di->voltage_max; break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = di->current_max; break; default: return -EINVAL; } return 0; } static const struct power_supply_desc rk818_bat_desc = { .name = "battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = rk818_bat_props, .num_properties = ARRAY_SIZE(rk818_bat_props), .get_property = rk818_battery_get_property, }; static int rk818_bat_init_power_supply(struct rk818_battery *di) { struct power_supply_config psy_cfg = { .drv_data = di, }; di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg); if (IS_ERR(di->bat)) { dev_err(di->dev, "register bat power supply fail\n"); return PTR_ERR(di->bat); } return 0; } static void rk818_bat_save_cap(struct rk818_battery *di, int cap) { u8 buf; static u32 old_cap; if (cap >= di->qmax) cap = di->qmax; if (cap <= 0) cap = 0; if (old_cap == cap) return; old_cap = cap; buf = (cap >> 24) & 0xff; rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf); buf = (cap >> 16) & 0xff; rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf); buf = (cap >> 8) & 0xff; rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf); buf = (cap >> 0) & 0xff; rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf); } static int rk818_bat_get_prev_cap(struct rk818_battery *di) { int val = 0; val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24; val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16; val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8; val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0; return val; } static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc) { u8 buf; buf = (fcc >> 24) & 0xff; rk818_bat_write(di, RK818_NEW_FCC_REG3, buf); buf = (fcc >> 16) & 0xff; rk818_bat_write(di, RK818_NEW_FCC_REG2, buf); buf = (fcc >> 8) & 0xff; rk818_bat_write(di, RK818_NEW_FCC_REG1, buf); buf = (fcc >> 0) & 0xff; rk818_bat_write(di, RK818_NEW_FCC_REG0, buf); BAT_INFO("save fcc: %d\n", fcc); } static int rk818_bat_get_fcc(struct rk818_battery *di) { u32 fcc = 0; fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24; fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16; fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8; fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0; if (fcc < MIN_FCC) { BAT_INFO("invalid fcc(%d), use design cap", fcc); fcc = di->pdata->design_capacity; rk818_bat_save_fcc(di, fcc); } else if (fcc > di->pdata->design_qmax) { BAT_INFO("invalid fcc(%d), use qmax", fcc); fcc = di->pdata->design_qmax; rk818_bat_save_fcc(di, fcc); } return fcc; } static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity) { u8 buf; u32 cap; cap = capacity * 2390 / DIV(di->res_div); buf = (cap >> 24) & 0xff; rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf); buf = (cap >> 16) & 0xff; rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf); buf = (cap >> 8) & 0xff; rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf); buf = ((cap >> 0) & 0xff); rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf); DBG("<%s>. new coulomb cap = %d\n", __func__, capacity); di->remain_cap = capacity; di->rsoc = rk818_bat_get_rsoc(di); } static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc) { static int last_soc = -1; if (last_soc != save_soc) { rk818_bat_write(di, RK818_SOC_REG, save_soc); last_soc = save_soc; } } static int rk818_bat_get_prev_dsoc(struct rk818_battery *di) { return rk818_bat_read(di, RK818_SOC_REG); } static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt) { rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt); } static int rk818_bat_fb_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct rk818_battery *di; struct fb_event *evdata = data; if (event != FB_EVENT_BLANK) return NOTIFY_DONE; di = container_of(nb, struct rk818_battery, fb_nb); di->fb_blank = *(int *)evdata->data; return NOTIFY_OK; } static int rk818_bat_register_fb_notify(struct rk818_battery *di) { memset(&di->fb_nb, 0, sizeof(di->fb_nb)); di->fb_nb.notifier_call = rk818_bat_fb_notifier; return fb_register_client(&di->fb_nb); } static int rk818_bat_unregister_fb_notify(struct rk818_battery *di) { return fb_unregister_client(&di->fb_nb); } static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di) { return rk818_bat_read(di, RK818_HALT_CNT_REG); } static void rk818_bat_inc_halt_cnt(struct rk818_battery *di) { u8 cnt; cnt = rk818_bat_read(di, RK818_HALT_CNT_REG); rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt); } static bool is_rk818_bat_last_halt(struct rk818_battery *di) { int pre_cap = rk818_bat_get_prev_cap(di); int now_cap = rk818_bat_get_coulomb_cap(di); /* over 10%: system halt last time */ if (abs(now_cap - pre_cap) > (di->fcc / 10)) { rk818_bat_inc_halt_cnt(di); return true; } else { return false; } } static void rk818_bat_first_pwron(struct rk818_battery *di) { int ocv_vol; rk818_bat_save_fcc(di, di->design_cap); ocv_vol = rk818_bat_get_ocv_voltage(di); di->fcc = rk818_bat_get_fcc(di); di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol); di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol); di->dsoc = di->rsoc; di->is_first_on = true; BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n", di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol); } static void rk818_bat_not_first_pwron(struct rk818_battery *di) { int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol; di->fcc = rk818_bat_get_fcc(di); pre_soc = rk818_bat_get_prev_dsoc(di); pre_cap = rk818_bat_get_prev_cap(di); now_cap = rk818_bat_get_coulomb_cap(di); di->is_halt = is_rk818_bat_last_halt(di); di->halt_cnt = rk818_bat_get_halt_cnt(di); di->is_initialized = is_rk818_bat_initialized(di); di->is_ocv_calib = is_rk818_bat_ocv_valid(di); if (di->is_initialized) { BAT_INFO("initialized yet..\n"); goto finish; } else if (di->is_halt) { BAT_INFO("system halt last time... cap: pre=%d, now=%d\n", pre_cap, now_cap); if (now_cap < 0) now_cap = 0; rk818_bat_init_coulomb_cap(di, now_cap); pre_cap = now_cap; pre_soc = di->rsoc; goto finish; } else if (di->is_ocv_calib) { ocv_vol = rk818_bat_get_ocv_voltage(di); ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol); pre_cap = ocv_cap; di->ocv_pre_dsoc = pre_soc; di->ocv_new_dsoc = ocv_soc; if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) { di->ocv_pre_dsoc = pre_soc; di->ocv_new_dsoc = ocv_soc; di->is_max_soc_offset = true; BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n", pre_soc, ocv_soc); pre_soc = ocv_soc; } BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc); } else if (di->pwroff_min > 0) { ocv_vol = rk818_bat_get_ocv_voltage(di); ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol); di->force_pre_dsoc = pre_soc; di->force_new_dsoc = ocv_soc; if (abs(ocv_soc - pre_soc) >= 80) { di->is_force_calib = true; BAT_INFO("dsoc force calib: %d -> %d\n", pre_soc, ocv_soc); pre_soc = ocv_soc; pre_cap = ocv_cap; } } finish: di->dsoc = pre_soc; di->nac = pre_cap; if (di->nac < 0) di->nac = 0; BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n", di->dsoc, di->nac, rk818_bat_get_avg_voltage(di), rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di), di->pwroff_min, rk818_bat_get_prev_dsoc(di), rk818_bat_get_prev_cap(di)); } static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di) { u8 buf; buf = rk818_bat_read(di, RK818_MISC_MARK_REG); if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) || (buf & FG_RESET_NOW)) { buf &= ~FG_RESET_LATE; buf &= ~FG_RESET_NOW; rk818_bat_write(di, RK818_MISC_MARK_REG, buf); BAT_INFO("manual reset fuel gauge\n"); return true; } else { return false; } } static void rk818_bat_init_rsoc(struct rk818_battery *di) { di->is_first_power_on = is_rk818_bat_first_pwron(di); di->is_sw_reset = rk818_bat_ocv_sw_reset(di); di->pwroff_min = rk818_bat_get_pwroff_min(di); if (di->is_first_power_on || di->is_sw_reset) rk818_bat_first_pwron(di); else rk818_bat_not_first_pwron(di); } static u8 rk818_bat_get_chrg_status(struct rk818_battery *di) { u8 status; status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK; switch (status) { case CHARGE_OFF: DBG("CHARGE-OFF ...\n"); break; case DEAD_CHARGE: BAT_INFO("DEAD CHARGE...\n"); break; case TRICKLE_CHARGE: BAT_INFO("TRICKLE CHARGE...\n "); break; case CC_OR_CV: DBG("CC or CV...\n"); break; case CHARGE_FINISH: DBG("CHARGE FINISH...\n"); break; case USB_OVER_VOL: BAT_INFO("USB OVER VOL...\n"); break; case BAT_TMP_ERR: BAT_INFO("BAT TMP ERROR...\n"); break; case TIMER_ERR: BAT_INFO("TIMER ERROR...\n"); break; case USB_EXIST: BAT_INFO("USB EXIST...\n"); break; case USB_EFF: BAT_INFO("USB EFF...\n"); break; default: return -EINVAL; } return status; } static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di) { u8 reg; int index, fb_temp; reg = DEFAULT_FB_TEMP; fb_temp = di->pdata->fb_temp; for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) { if (fb_temp < feedback_temp_array[index]) break; reg = (index << FB_TEMP_SHIFT); } return reg; } static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc) { u8 ma; if (di->pdata->sample_res == SAMPLE_RES_10MR) ma = FINISH_100MA; else if (fcc > 5000) ma = FINISH_250MA; else if (fcc >= 4000) ma = FINISH_200MA; else if (fcc >= 3000) ma = FINISH_150MA; else ma = FINISH_100MA; return ma; } static void rk818_bat_init_chrg_config(struct rk818_battery *di) { u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3; u8 thermal, ggcon, finish_ma, fb_temp; finish_ma = rk818_bat_parse_finish_ma(di, di->fcc); fb_temp = rk818_bat_parse_fb_temperature(di); ggcon = rk818_bat_read(di, RK818_GGCON_REG); thermal = rk818_bat_read(di, RK818_THERMAL_REG); usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG); chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2); chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3); /* set charge finish current */ chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL; chrg_ctrl2 &= ~FINISH_CUR_MSK; chrg_ctrl2 |= finish_ma; /* disable cccv mode */ chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN; /* set feed back temperature */ if (di->pdata->fb_temp) usb_ctrl |= CHRG_CT_EN; else usb_ctrl &= ~CHRG_CT_EN; thermal &= ~FB_TEMP_MSK; thermal |= fb_temp; /* adc current mode */ ggcon |= ADC_CUR_MODE; rk818_bat_write(di, RK818_GGCON_REG, ggcon); rk818_bat_write(di, RK818_THERMAL_REG, thermal); rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl); rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2); rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3); } static void rk818_bat_init_coffset(struct rk818_battery *di) { int coffset, ioffset; ioffset = rk818_bat_get_ioffset(di); di->poffset = rk818_bat_read(di, RK818_POFFSET_REG); if (!di->poffset) di->poffset = DEFAULT_POFFSET; coffset = di->poffset + ioffset; if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX) coffset = DEFAULT_COFFSET; rk818_bat_set_coffset(di, coffset); DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n", __func__, di->poffset, ioffset, rk818_bat_get_coffset(di)); } static void rk818_bat_caltimer_isr(struct timer_list *t) { struct rk818_battery *di = from_timer(di, t, caltimer); mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ); queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work, msecs_to_jiffies(10)); } static void rk818_bat_internal_calib(struct work_struct *work) { int ioffset, poffset; struct rk818_battery *di = container_of(work, struct rk818_battery, calib_delay_work.work); /* calib coffset */ poffset = rk818_bat_read(di, RK818_POFFSET_REG); if (poffset) di->poffset = poffset; else di->poffset = DEFAULT_POFFSET; ioffset = rk818_bat_get_ioffset(di); rk818_bat_set_coffset(di, ioffset + di->poffset); /* calib voltage kb */ rk818_bat_init_voltage_kb(di); BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n", ioffset, rk818_bat_get_coffset(di), di->poffset); } static void rk818_bat_init_caltimer(struct rk818_battery *di) { timer_setup(&di->caltimer, rk818_bat_caltimer_isr, 0); di->caltimer.expires = jiffies + MINUTE(8) * HZ; add_timer(&di->caltimer); INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib); } static void rk818_bat_init_zero_table(struct rk818_battery *di) { int i, diff, min, max; size_t ocv_size, length; ocv_size = di->pdata->ocv_size; length = sizeof(di->pdata->zero_table) * ocv_size; di->pdata->zero_table = devm_kzalloc(di->dev, length, GFP_KERNEL); if (!di->pdata->zero_table) { di->pdata->zero_table = di->pdata->ocv_table; dev_err(di->dev, "malloc zero table fail\n"); return; } min = di->pdata->pwroff_vol, max = di->pdata->ocv_table[ocv_size - 4]; diff = (max - min) / DIV(ocv_size - 1); for (i = 0; i < ocv_size; i++) di->pdata->zero_table[i] = min + (i * diff); for (i = 0; i < ocv_size; i++) DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]); for (i = 0; i < ocv_size; i++) DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]); } static void rk818_bat_calc_sm_linek(struct rk818_battery *di) { int linek, current_avg; u8 diff, delta; delta = abs(di->dsoc - di->rsoc); diff = delta * 3;/* speed:3/4 */ current_avg = rk818_bat_get_avg_current(di); if (current_avg >= 0) { if (di->dsoc < di->rsoc) linek = 1000 * (delta + diff) / DIV(diff); else if (di->dsoc > di->rsoc) linek = 1000 * diff / DIV(delta + diff); else linek = 1000; di->dbg_meet_soc = (di->dsoc >= di->rsoc) ? (di->dsoc + diff) : (di->rsoc + diff); } else { if (di->dsoc < di->rsoc) linek = -1000 * diff / DIV(delta + diff); else if (di->dsoc > di->rsoc) linek = -1000 * (delta + diff) / DIV(diff); else linek = -1000; di->dbg_meet_soc = (di->dsoc >= di->rsoc) ? (di->dsoc - diff) : (di->rsoc - diff); } di->sm_linek = linek; di->sm_remain_cap = di->remain_cap; di->dbg_calc_dsoc = di->dsoc; di->dbg_calc_rsoc = di->rsoc; DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg); } static void rk818_bat_calc_zero_linek(struct rk818_battery *di) { int dead_voltage, ocv_voltage; int voltage_avg, current_avg, vsys; int ocv_cap, dead_cap, xsoc; int ocv_soc, dead_soc; int pwroff_vol; int i, cnt = 0, vol_old, vol_now; int org_linek = 0, min_gap_xsoc; if ((abs(di->current_avg) < 500) && (di->dsoc > 10)) pwroff_vol = di->pdata->pwroff_vol + 50; else pwroff_vol = di->pdata->pwroff_vol; do { vol_old = rk818_bat_get_avg_voltage(di); msleep(100); vol_now = rk818_bat_get_avg_voltage(di); cnt++; } while ((vol_old == vol_now) && (cnt < 11)); voltage_avg = 0; for (i = 0; i < 10; i++) { voltage_avg += rk818_bat_get_avg_voltage(di); msleep(100); } /* calc estimate ocv voltage */ voltage_avg /= 10; current_avg = rk818_bat_get_avg_current(di); vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000; DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n", di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc); dead_voltage = pwroff_vol - current_avg * (di->bat_res + DEF_PWRPATH_RES) / 1000; ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000; DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n", dead_voltage, ocv_voltage); /* calc estimate soc and cap */ dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage); dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage); DBG("ZERO0: dead_soc = %d, dead_cap = %d\n", dead_soc, dead_cap); ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage); ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage); DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n", ocv_soc, ocv_cap); /* xsoc: available rsoc */ xsoc = ocv_soc - dead_soc; /* min_gap_xsoc: reserve xsoc */ if (abs(current_avg) > ZERO_LOAD_LVL1) min_gap_xsoc = ZERO_GAP_XSOC3; else if (abs(current_avg) > ZERO_LOAD_LVL2) min_gap_xsoc = ZERO_GAP_XSOC2; else min_gap_xsoc = ZERO_GAP_XSOC1; if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc)) min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB; di->zero_remain_cap = di->remain_cap; di->zero_timeout_cnt = 0; if ((di->dsoc <= 1) && (xsoc > 0)) { di->zero_linek = 400; di->zero_drop_sec = 0; } else if (xsoc >= 0) { di->zero_drop_sec = 0; di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc); org_linek = di->zero_linek; /* battery energy mode to use up voltage */ if ((di->pdata->energy_mode) && (xsoc - di->dsoc >= ZERO_GAP_XSOC3) && (di->dsoc <= 10) && (di->zero_linek < 300)) { di->zero_linek = 300; DBG("ZERO-new: zero_linek adjust step0...\n"); /* reserve enough power yet, slow down any way */ } else if ((xsoc - di->dsoc >= min_gap_xsoc) || ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) && (di->dsoc <= 10) && (xsoc > 15))) { if (xsoc <= 20 && di->dsoc >= di->pdata->zero_reserve_dsoc) di->zero_linek = 1200; else if (xsoc - di->dsoc >= 2 * min_gap_xsoc) di->zero_linek = 400; else if (xsoc - di->dsoc >= 3 + min_gap_xsoc) di->zero_linek = 600; else di->zero_linek = 800; DBG("ZERO-new: zero_linek adjust step1...\n"); /* control zero mode beginning enter */ } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) { di->zero_linek = 1800; DBG("ZERO-new: zero_linek adjust step2...\n"); /* dsoc close to xsoc: it must reserve power */ } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) { di->zero_linek = 1200; DBG("ZERO-new: zero_linek adjust step3...\n"); /* dsoc[5~15], dsoc < xsoc */ } else if ((di->dsoc <= 15 && di->dsoc > 5) && (di->zero_linek <= 1200)) { /* slow down */ if (xsoc - di->dsoc >= min_gap_xsoc) di->zero_linek = 800; /* reserve power */ else di->zero_linek = 1200; DBG("ZERO-new: zero_linek adjust step4...\n"); /* dsoc[5, 100], dsoc < xsoc */ } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) { if ((xsoc - di->dsoc) < min_gap_xsoc) { /* reserve power */ di->zero_linek = 1200; } else { if (abs(di->current_avg) > 500)/* heavy */ di->zero_linek = 900; else di->zero_linek = 1000; } DBG("ZERO-new: zero_linek adjust step5...\n"); /* dsoc[0~5], dsoc < xsoc */ } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) { if ((xsoc - di->dsoc) <= 3) di->zero_linek = 1200; else di->zero_linek = 800; DBG("ZERO-new: zero_linek adjust step6...\n"); } } else { /* xsoc < 0 */ di->zero_linek = 1000; if (!di->zero_drop_sec) di->zero_drop_sec = get_boot_sec(); if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) { DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec)); di->zero_drop_sec = 0; di->dsoc--; di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } } if (voltage_avg < pwroff_vol - 70) { if (!di->shtd_drop_sec) di->shtd_drop_sec = get_boot_sec(); if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) { BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc); di->shtd_drop_sec = 0; di->dsoc = 0; } } else { di->shtd_drop_sec = 0; } DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, " "rsoc=%d, gap=%d, v=%d, vsys=%d\n" "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, " "sht_drop=%ld\n\n", org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc, min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap, base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec)); } static void rk818_bat_finish_algo_prepare(struct rk818_battery *di) { di->finish_base = get_boot_sec(); if (!di->finish_base) di->finish_base = 1; } static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di) { int tmp_soc; tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc != di->dsoc) di->sm_chrg_dsoc = di->dsoc * 1000; tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc != di->dsoc) di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n", __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); rk818_bat_calc_sm_linek(di); } static void rk818_bat_zero_algo_prepare(struct rk818_battery *di) { int tmp_dsoc; di->zero_timeout_cnt = 0; tmp_dsoc = di->zero_dsoc / 1000; if (tmp_dsoc != di->dsoc) di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. first calc, reinit linek\n", __func__); rk818_bat_calc_zero_linek(di); } static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0; tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when discharge slow down, take sm chrg into calc */ if (di->dsoc < di->rsoc) { /* take sm charge rest into calc */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000; di->sm_chrg_dsoc = di->dsoc * 1000; di->zero_dsoc += sm_delta_dsoc; DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc); } } /* when discharge speed up, take sm dischrg into calc */ if (di->dsoc > di->rsoc) { /* take sm discharge rest into calc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->zero_dsoc += sm_delta_dsoc; DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc); } } /* check overflow */ if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) { DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } /* check new dsoc */ tmp_soc = di->zero_dsoc / 1000; if (tmp_soc != di->dsoc) { /* avoid dsoc jump when heavy load */ if ((di->dsoc - tmp_soc) > 1) { di->dsoc--; di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("ZERO1: heavy load...\n"); } else { di->dsoc = tmp_soc; } di->zero_drop_sec = 0; } out: DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n", di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc); DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n", di->sm_dischrg_dsoc, di->sm_chrg_dsoc); } static void rk818_bat_zero_algorithm(struct rk818_battery *di) { int delta_cap = 0, delta_soc = 0; di->zero_timeout_cnt++; delta_cap = di->zero_remain_cap - di->remain_cap; delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc); DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n" "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n" "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n", di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc, delta_soc, delta_cap, di->zero_remain_cap, di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) || (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) || (di->zero_linek == 0)) { DBG("ZERO1:--------- enter calc -----------\n"); di->zero_timeout_cnt = 0; di->zero_dsoc -= delta_soc; rk818_bat_calc_zero_algorithm(di); rk818_bat_calc_zero_linek(di); } } static void rk818_bat_dump_time_table(struct rk818_battery *di) { u8 i; static int old_index; static int old_min; int mod = di->dsoc % 10; int index = di->dsoc / 10; u32 time; if (rk818_bat_chrg_online(di)) time = base2min(di->plug_in_base); else time = base2min(di->plug_out_base); if ((mod == 0) && (index > 0) && (old_index != index)) { di->dbg_chrg_min[index - 1] = time - old_min; old_min = time; old_index = index; } for (i = 1; i < 11; i++) DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]); DBG("\n"); } static void rk818_bat_debug_info(struct rk818_battery *di) { u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt; u8 usb_ctrl, chrg_ctrl1, thermal; u8 int_sts1, int_sts2; u8 int_msk1, int_msk2; u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en; char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"}; char *bat_mode[] = {"BAT", "VIRTUAL"}; if (rk818_bat_chrg_online(di)) di->plug_out_base = get_boot_sec(); else di->plug_in_base = get_boot_sec(); rk818_bat_dump_time_table(di); if (!dbg_enable) return; ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG); misc = rk818_bat_read(di, RK818_MISC_MARK_REG); ggcon = rk818_bat_read(di, RK818_GGCON_REG); ggsts = rk818_bat_read(di, RK818_GGSTS_REG); sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG); vb_mod = rk818_bat_read(di, RK818_VB_MON_REG); usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG); chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1); chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2); chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3); rtc = rk818_bat_read(di, 0); thermal = rk818_bat_read(di, RK818_THERMAL_REG); int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1); int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2); int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1); int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2); dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG); reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG); DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n" "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n" "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n" "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n" "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n" "INT_STS: REG1=0x%2x, REG2=0x%2x\n" "INT_MSK: REG1=0x%2x, REG2=0x%2x\n", DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en, sup_tst, vb_mod, usb_ctrl, thermal, misc, ts_ctrl, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3, int_sts1, int_sts2, int_msk1, int_msk2 ); DBG("###############################################################\n" "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n" "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n" "fb_temp=%d, bat_temp=%d, sample_res=%d, USB=%d, DC=%d\n" "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d, hot=%d\n" "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n" "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n" "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n" "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n" "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n" "###############################################################\n", di->dsoc, di->rsoc, di->voltage_avg, di->current_avg, di->remain_cap, di->fcc, di->rsoc - di->dsoc, di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap, di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f], chrg_cur_input_array[usb_ctrl & 0x0f], chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4], feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature, di->pdata->sample_res, di->usb_in, di->ac_in, rk818_bat_get_ioffset(di), rk818_bat_get_coffset(di), di->poffset, di->bat_res, di->age_adjust_cap, di->fb_blank, !!(thermal & HOTDIE_STS), base2min(di->finish_base), base2min(di->boot_base), di->sleep_sum_sec / 60, di->adc_allow_update, di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000, bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc, di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt, reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc, di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc, di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc, di->pwroff_min, di->is_initialized, di->is_sw_reset, di->dbg_cap_low0, di->is_first_on, di->last_dsoc ); } static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap) { int delta_cap; delta_cap = cap - di->remain_cap; if (!delta_cap) return; di->age_adjust_cap += delta_cap; rk818_bat_init_coulomb_cap(di, cap); rk818_bat_smooth_algo_prepare(di); rk818_bat_zero_algo_prepare(di); } static void rk818_bat_update_age_fcc(struct rk818_battery *di) { int fcc, remain_cap, age_keep_min, lock_fcc; lock_fcc = rk818_bat_get_coulomb_cap(di); remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap; age_keep_min = base2min(di->age_keep_sec); DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d," "age_allow_update=%d, age_keep_min=%d\n", __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap, di->age_allow_update, age_keep_min); if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) && (age_keep_min < 1200)) { di->age_allow_update = false; fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc); BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, " "level=%d, fcc:%d->%d?\n", lock_fcc, remain_cap, di->age_ocv_soc, di->age_ocv_cap, di->age_level, di->fcc, fcc); if ((fcc < di->qmax) && (fcc > MIN_FCC)) { BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc); di->fcc = fcc; rk818_bat_init_capacity(di, di->fcc); rk818_bat_save_fcc(di, di->fcc); rk818_bat_save_age_level(di, di->age_level); } } } static void rk818_bat_wait_finish_sig(struct rk818_battery *di) { int chrg_finish_vol = di->pdata->max_chrg_voltage; if (!rk818_bat_chrg_online(di)) return; if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) && (di->voltage_avg > chrg_finish_vol - 150)) { rk818_bat_update_age_fcc(di); if (rk818_bat_adc_calib(di)) di->adc_allow_update = false; } } static void rk818_bat_finish_algorithm(struct rk818_battery *di) { unsigned long finish_sec, soc_sec; int plus_soc, finish_current, rest = 0; /* rsoc */ if ((di->remain_cap != di->fcc) && (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) { di->age_adjust_cap += (di->fcc - di->remain_cap); rk818_bat_init_coulomb_cap(di, di->fcc); } /* dsoc */ if (di->dsoc < 100) { if (!di->finish_base) di->finish_base = get_boot_sec(); finish_current = (di->rsoc - di->dsoc) > FINISH_MAX_SOC_DELAY ? FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1; finish_sec = base2sec(di->finish_base); soc_sec = di->fcc * 3600 / 100 / DIV(finish_current); if (soc_sec == 0) soc_sec = 1; plus_soc = finish_sec / DIV(soc_sec); if (finish_sec > soc_sec) { rest = finish_sec % soc_sec; di->dsoc += plus_soc; di->finish_base = get_boot_sec(); if (di->finish_base > rest) di->finish_base = get_boot_sec() - rest; } DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n" "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n", __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest); } } static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0; tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when dischrge slow down, take sm charge rest into calc */ if (di->dsoc < di->rsoc) { tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000; di->sm_chrg_dsoc = di->dsoc * 1000; di->sm_dischrg_dsoc += sm_delta_dsoc; DBG("<%s>. take sm dischrg, delta=%d\n", __func__, sm_delta_dsoc); } } /* when discharge speed up, take zero discharge rest into calc */ if (di->dsoc > di->rsoc) { tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) { zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_dischrg_dsoc += zero_delta_dsoc; DBG("<%s>. take zero schrg, delta=%d\n", __func__, zero_delta_dsoc); } } /* check up overflow */ if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) { DBG("<%s>. dischrg_dsoc up overflow\n", __func__); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } /* check new dsoc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc != di->dsoc) { di->dsoc = tmp_soc; di->sm_chrg_dsoc = di->dsoc * 1000; } out: DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n", __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc, di->zero_dsoc); } static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0; tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when charge slow down, take zero & sm dischrg into calc */ if (di->dsoc > di->rsoc) { /* take sm discharge rest into calc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_chrg_dsoc += sm_delta_dsoc; DBG("<%s>. take sm dischrg, delta=%d\n", __func__, sm_delta_dsoc); } /* take zero discharge rest into calc */ tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) { zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_chrg_dsoc += zero_delta_dsoc; DBG("<%s>. take zero dischrg, delta=%d\n", __func__, zero_delta_dsoc); } } /* check down overflow */ if (di->sm_chrg_dsoc < di->dsoc * 1000) { DBG("<%s>. chrg_dsoc down overflow\n", __func__); di->sm_chrg_dsoc = di->dsoc * 1000; } /* check new dsoc */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc != di->dsoc) { di->dsoc = tmp_soc; di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } out: DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n", __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc, di->zero_dsoc); } static void rk818_bat_smooth_algorithm(struct rk818_battery *di) { int ydsoc = 0, delta_cap = 0, old_cap = 0; unsigned long tgt_sec = 0; di->remain_cap = rk818_bat_get_coulomb_cap(di); /* full charge: slow down */ if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV) && (di->current_avg > 0)) { di->sm_linek = FULL_CHRG_K; /* terminal charge, slow down */ } else if ((di->current_avg >= TERM_CHRG_CURR) && (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) { di->sm_linek = TERM_CHRG_K; DBG("<%s>. terminal mode..\n", __func__); /* simulate charge, speed up */ } else if ((di->current_avg <= SIMULATE_CHRG_CURR) && (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) && (di->dsoc < TERM_CHRG_DSOC) && ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) { di->sm_linek = SIMULATE_CHRG_K; DBG("<%s>. simulate mode..\n", __func__); } else { /* charge and discharge switch */ if ((di->sm_linek * di->current_avg <= 0) || (di->sm_linek == TERM_CHRG_K) || (di->sm_linek == FULL_CHRG_K) || (di->sm_linek == SIMULATE_CHRG_K)) { DBG("<%s>. linek mode, retinit sm linek..\n", __func__); rk818_bat_calc_sm_linek(di); } } old_cap = di->sm_remain_cap; /* * when dsoc equal rsoc(not include full, term, simulate case), * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1 * right away, so change it after flat seconds */ if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) && (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K && di->sm_linek != SIMULATE_CHRG_K)) { if (!di->flat_match_sec) di->flat_match_sec = get_boot_sec(); tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3; if (base2sec(di->flat_match_sec) >= tgt_sec) { di->flat_match_sec = 0; di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000; } DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__, base2sec(di->flat_match_sec), tgt_sec, di->sm_linek); } else { di->flat_match_sec = 0; } /* abs(k)=1000 or dsoc=100, stop calc */ if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 && di->chrg_status == CC_OR_CV && di->dsoc >= 100)) { DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek); if (abs(di->sm_linek) == 1000) { di->dsoc = di->rsoc; di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000; DBG("<%s>. dsoc == rsoc, sm_linek=%d\n", __func__, di->sm_linek); } di->sm_remain_cap = di->remain_cap; di->sm_chrg_dsoc = di->dsoc * 1000; di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n", __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); } else { delta_cap = di->remain_cap - di->sm_remain_cap; if (delta_cap == 0) { DBG("<%s>. delta_cap = 0\n", __func__); return; } ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc); if (ydsoc == 0) { DBG("<%s>. ydsoc = 0\n", __func__); return; } di->sm_remain_cap = di->remain_cap; DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n", __func__, di->sm_linek, ydsoc, old_cap, di->sm_remain_cap, delta_cap); /* discharge mode */ if (ydsoc < 0) { di->sm_dischrg_dsoc += ydsoc; rk818_bat_calc_smooth_dischrg(di); /* charge mode */ } else { di->sm_chrg_dsoc += ydsoc; rk818_bat_calc_smooth_chrg(di); } if (di->s2r) { di->s2r = false; rk818_bat_calc_sm_linek(di); } } } /* * cccv and finish switch all the time will cause dsoc freeze, * if so, do finish chrg, 100ma is less than min finish_ma. */ static bool rk818_bat_fake_finish_mode(struct rk818_battery *di) { if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) && (abs(di->current_avg) <= 100)) return true; else return false; } static void rk818_bat_display_smooth(struct rk818_battery *di) { /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */ if (di->s2r && !di->sleep_chrg_online) { DBG("s2r: discharge, reset algorithm...\n"); di->s2r = false; rk818_bat_zero_algo_prepare(di); rk818_bat_smooth_algo_prepare(di); return; } if (di->work_mode == MODE_FINISH) { DBG("step1: charge finish...\n"); rk818_bat_finish_algorithm(di); if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) && !rk818_bat_fake_finish_mode(di)) { if ((di->current_avg < 0) && (di->voltage_avg < di->pdata->zero_algorithm_vol)) { DBG("step1: change to zero mode...\n"); rk818_bat_zero_algo_prepare(di); di->work_mode = MODE_ZERO; } else { DBG("step1: change to smooth mode...\n"); rk818_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } } } else if (di->work_mode == MODE_ZERO) { DBG("step2: zero algorithm...\n"); rk818_bat_zero_algorithm(di); if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) || (di->current_avg >= 0)) { DBG("step2: change to smooth mode...\n"); rk818_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) || rk818_bat_fake_finish_mode(di)) { DBG("step2: change to finish mode...\n"); rk818_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } } else { DBG("step3: smooth algorithm...\n"); rk818_bat_smooth_algorithm(di); if ((di->current_avg < 0) && (di->voltage_avg < di->pdata->zero_algorithm_vol)) { DBG("step3: change to zero mode...\n"); rk818_bat_zero_algo_prepare(di); di->work_mode = MODE_ZERO; } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) || rk818_bat_fake_finish_mode(di)) { DBG("step3: change to finish mode...\n"); rk818_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } } } static void rk818_bat_relax_vol_calib(struct rk818_battery *di) { int soc, cap, vol; vol = di->voltage_relax; soc = rk818_bat_vol_to_ocvsoc(di, vol); cap = rk818_bat_vol_to_ocvcap(di, vol); rk818_bat_init_capacity(di, cap); BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap); } static void rk818_bat_relife_age_flag(struct rk818_battery *di) { u8 ocv_soc, ocv_cap, soc_level; if (di->voltage_relax <= 0) return; ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax); ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax); DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__, ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax); /* sleep enough time and ocv_soc enough low */ if (!di->age_allow_update && ocv_soc <= 10) { di->age_voltage = di->voltage_relax; di->age_ocv_cap = ocv_cap; di->age_ocv_soc = ocv_soc; di->age_adjust_cap = 0; if (ocv_soc <= 1) di->age_level = 100; else if (ocv_soc < 5) di->age_level = 90; else di->age_level = 80; soc_level = rk818_bat_get_age_level(di); if (soc_level > di->age_level) { di->age_allow_update = false; } else { di->age_allow_update = true; di->age_keep_sec = get_boot_sec(); } BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, " "soc_level:%d, age_allow_update:%d, " "age_level:%d\n", di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level, di->age_allow_update, di->age_level); } } static int rk818_bat_sleep_dischrg(struct rk818_battery *di) { bool ocv_soc_updated = false; int tgt_dsoc, gap_soc, sleep_soc = 0; int pwroff_vol = di->pdata->pwroff_vol; unsigned long sleep_sec = di->sleep_dischrg_sec; DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n", __func__, di->dsoc, di->rsoc, di->voltage_relax, di->voltage_avg, sleep_sec / 60); if (di->voltage_relax >= di->voltage_avg) { rk818_bat_relax_vol_calib(di); rk818_bat_restart_relax(di); rk818_bat_relife_age_flag(di); ocv_soc_updated = true; } /* handle dsoc */ if (di->dsoc <= di->rsoc) { di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600); sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc); tgt_dsoc = di->dsoc - sleep_soc; if (sleep_soc > 0) { BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n", di->rsoc, di->dsoc, sleep_soc); if (di->dsoc < 5) { di->dsoc--; } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) { if (di->dsoc == 5) di->dsoc--; else di->dsoc = 5; } else if (tgt_dsoc > 5) { di->dsoc = tgt_dsoc; } } DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n", __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc); } else { /* di->dsoc > di->rsoc */ di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600); sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100); gap_soc = di->dsoc - di->rsoc; BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n", di->rsoc, di->dsoc, sleep_soc); if (gap_soc > sleep_soc) { if ((gap_soc - 5) > (sleep_soc * 2)) di->dsoc -= (sleep_soc * 2); else di->dsoc -= sleep_soc; } else { di->dsoc = di->rsoc; } DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n", __func__, di->sleep_sum_cap, sleep_soc, gap_soc); } if (di->voltage_avg <= pwroff_vol - 70) { di->dsoc = 0; rk_send_wakeup_key(); BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc); } if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 && di->dsoc < 40) { di->dsoc--; BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc); } if (di->dsoc <= 0) { di->dsoc = 0; rk_send_wakeup_key(); BAT_INFO("sleep dsoc is %d...\n", di->dsoc); } DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n", __func__, di->dsoc, di->rsoc, di->sleep_sum_cap); return sleep_soc; } static void rk818_bat_power_supply_changed(struct rk818_battery *di) { u8 status, thermal; static int old_soc = -1; if (di->dsoc > 100) di->dsoc = 100; else if (di->dsoc < 0) di->dsoc = 0; if (di->dsoc == old_soc) return; thermal = rk818_bat_read(di, RK818_THERMAL_REG); status = rk818_bat_read(di, RK818_SUP_STS_REG); status = (status & CHRG_STATUS_MSK) >> 4; old_soc = di->dsoc; di->last_dsoc = di->dsoc; power_supply_changed(di->bat); BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, " "cap=%d, f=%d, st=%s, hotdie=%d\n", di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv, di->current_avg, di->remain_cap, di->fcc, bat_status[status], !!(thermal & HOTDIE_STS)); BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, " "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n", di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt, di->is_max_soc_offset, di->is_initialized, di->is_sw_reset, di->is_ocv_calib, di->dbg_cap_low0, di->is_force_calib); } static u8 rk818_bat_check_reboot(struct rk818_battery *di) { u8 cnt; cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG); cnt++; if (cnt >= REBOOT_MAX_CNT) { BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc); di->dsoc = di->rsoc; if (di->dsoc > 100) di->dsoc = 100; else if (di->dsoc < 0) di->dsoc = 0; rk818_bat_save_dsoc(di, di->dsoc); cnt = REBOOT_MAX_CNT; } rk818_bat_save_reboot_cnt(di, cnt); DBG("reboot cnt: %d\n", cnt); return cnt; } static void rk818_bat_rsoc_daemon(struct rk818_battery *di) { int est_vol, remain_cap; static unsigned long sec; if ((di->remain_cap < 0) && (di->fb_blank != 0)) { if (!sec) sec = get_boot_sec(); wake_lock_timeout(&di->wake_lock, (di->pdata->monitor_sec + 1) * HZ); DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec)); if (base2sec(sec) >= 60) { sec = 0; di->dbg_cap_low0++; est_vol = di->voltage_avg - (di->bat_res * di->current_avg) / 1000; remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol); rk818_bat_init_capacity(di, remain_cap); BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n", di->remain_cap, di->rsoc); wake_unlock(&di->wake_lock); } } else { sec = 0; } } static void rk818_bat_update_info(struct rk818_battery *di) { int is_charging; di->voltage_avg = rk818_bat_get_avg_voltage(di); di->current_avg = rk818_bat_get_avg_current(di); di->voltage_relax = rk818_bat_get_relax_voltage(di); di->rsoc = rk818_bat_get_rsoc(di); di->remain_cap = rk818_bat_get_coulomb_cap(di); di->chrg_status = rk818_bat_get_chrg_status(di); is_charging = rk818_bat_get_charge_state(di); if (is_charging != di->is_charging) { di->is_charging = is_charging; if (is_charging) di->charge_count++; } if (di->voltage_avg > di->voltage_max) di->voltage_max = di->voltage_avg; if (di->current_avg > di->current_max) di->current_max = di->current_avg; /* smooth charge */ if (di->remain_cap > di->fcc) { di->sm_remain_cap -= (di->remain_cap - di->fcc); DBG("<%s>. cap: remain=%d, sm_remain=%d\n", __func__, di->remain_cap, di->sm_remain_cap); rk818_bat_init_coulomb_cap(di, di->fcc); } if (di->chrg_status != CHARGE_FINISH) di->finish_base = get_boot_sec(); /* * we need update fcc in continuous charging state, if discharge state * keep at least 2 hour, we decide not to update fcc, so clear the * fcc update flag: age_allow_update. */ if (base2min(di->plug_out_base) > 120) di->age_allow_update = false; /* do adc calib: status must from cccv mode to finish mode */ if (di->chrg_status == CC_OR_CV) { di->adc_allow_update = true; di->adc_calib_cnt = 0; } } static void rk818_bat_init_ts1_detect(struct rk818_battery *di) { u8 buf; u32 *ntc_table = di->pdata->ntc_table; if (!di->pdata->ntc_size) return; /* select ua */ buf = rk818_bat_read(di, RK818_TS_CTRL_REG); buf &= ~TS1_CUR_MSK; /* chose suitable UA for temperature detect */ if (ntc_table[0] < NTC_80UA_MAX_MEASURE) { di->pdata->ntc_factor = NTC_CALC_FACTOR_80UA; di->pdata->ntc_uA = 80; buf |= ADC_CUR_80UA; } else if (ntc_table[0] < NTC_60UA_MAX_MEASURE) { di->pdata->ntc_factor = NTC_CALC_FACTOR_60UA; di->pdata->ntc_uA = 60; buf |= ADC_CUR_60UA; } else if (ntc_table[0] < NTC_40UA_MAX_MEASURE) { di->pdata->ntc_factor = NTC_CALC_FACTOR_40UA; di->pdata->ntc_uA = 40; buf |= ADC_CUR_40UA; } else { di->pdata->ntc_factor = NTC_CALC_FACTOR_20UA; di->pdata->ntc_uA = 20; buf |= ADC_CUR_20UA; } rk818_bat_write(di, RK818_TS_CTRL_REG, buf); /* enable ADC_TS1_EN */ buf = rk818_bat_read(di, RK818_ADC_CTRL_REG); buf |= ADC_TS1_EN; rk818_bat_write(di, RK818_ADC_CTRL_REG, buf); } /* * Due to hardware design issue, Vdelta = "(R_sample + R_other) * I_avg" will be * included into TS1 adc value. We must subtract it to get correct adc value. * The solution: * * (1) calculate Vdelta: * * adc1 - Vdelta ua1 (adc2 * ua1) - (adc1 * ua2) * ------------- = ----- ==> equals: Vdelta = ----------------------------- * adc2 - Vdelta ua2 ua1 - ua2 * * * (2) calculate correct ADC value: * * charging: ADC = adc1 - abs(Vdelta); * discharging: ADC = adc1 + abs(Vdelta); */ static int rk818_bat_get_ntc_res(struct rk818_battery *di) { int adc1 = 0, adc2 = 0; int ua1, ua2, v_delta, res, val; u8 buf; /* read sample ua1 */ buf = rk818_bat_read(di, RK818_TS_CTRL_REG); DBG("<%s>. read adc1, sample uA=%d\n", __func__, ((buf & 0x03) + 1) * 20); /* read adc adc1 */ ua1 = di->pdata->ntc_uA; adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0; adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8; /* chose reference UA for adc2 */ ua2 = (ua1 != 20) ? 20 : 40; buf = rk818_bat_read(di, RK818_TS_CTRL_REG); buf &= ~TS1_CUR_MSK; buf |= ((ua2 - 20) / 20); rk818_bat_write(di, RK818_TS_CTRL_REG, buf); /* read adc adc2 */ msleep(1000); /* read sample ua2 */ buf = rk818_bat_read(di, RK818_TS_CTRL_REG); DBG("<%s>. read adc2, sample uA=%d\n", __func__, ((buf & 0x03) + 1) * 20); adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0; adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8; DBG("<%s>. ua1=%d, ua2=%d, adc1=%d, adc2=%d\n", __func__, ua1, ua2, adc1, adc2); /* calculate delta voltage */ if (adc2 != adc1) v_delta = abs((adc2 * ua1 - adc1 * ua2) / (ua2 - ua1)); else v_delta = 0; /* considering current avg direction, calcuate real adc value */ val = (di->current_avg >= 0) ? (adc1 - v_delta) : (adc1 + v_delta); DBG("<%s>. Iavg=%d, Vdelta=%d, Vadc=%d\n", __func__, di->current_avg, v_delta, val); res = val * di->pdata->ntc_factor; DBG("<%s>. val=%d, ntc_res=%d, ntc_factor=%d, Rdelta=%d\n", __func__, val, res, di->pdata->ntc_factor, v_delta * di->pdata->ntc_factor); DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__, di->pdata->ntc_degree_from, di->pdata->ntc_table[0], di->pdata->ntc_degree_from + di->pdata->ntc_size - 1, di->pdata->ntc_table[di->pdata->ntc_size - 1]); rk818_bat_init_ts1_detect(di); return res; } static void rk818_bat_set_input_current(struct rk818_battery *di, int input_current) { u8 usb_ctrl; usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG); usb_ctrl &= ~0x0f; usb_ctrl |= (input_current); rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl); } static BLOCKING_NOTIFIER_HEAD(rk818_bat_notifier_chain); int rk818_bat_temp_notifier_register(struct notifier_block *nb) { return blocking_notifier_chain_register(&rk818_bat_notifier_chain, nb); } EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_register); int rk818_bat_temp_notifier_unregister(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&rk818_bat_notifier_chain, nb); } EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_unregister); static void rk818_bat_temp_notifier_callback(int temp) { blocking_notifier_call_chain(&rk818_bat_notifier_chain, temp, NULL); } static void rk818_bat_update_temperature(struct rk818_battery *di) { static int old_temp, first_time = 1; u32 ntc_size, *ntc_table; int i, res, temp; ntc_table = di->pdata->ntc_table; ntc_size = di->pdata->ntc_size; di->temperature = VIRTUAL_TEMPERATURE; if (ntc_size) { res = rk818_bat_get_ntc_res(di); if (res < ntc_table[ntc_size - 1]) { di->temperature = di->pdata->ntc_degree_from + di->pdata->ntc_size - 1; if (di->pdata->bat_mode != MODE_VIRTUAL) rk818_bat_set_input_current(di, INPUT_CUR80MA); BAT_INFO("bat ntc upper max degree: R=%d\n", res); } else if (res > ntc_table[0]) { di->temperature = di->pdata->ntc_degree_from; if (di->pdata->bat_mode != MODE_VIRTUAL) rk818_bat_set_input_current(di, INPUT_CUR80MA); BAT_INFO("bat ntc lower min degree: R=%d\n", res); } else { for (i = 0; i < ntc_size; i++) { if (res >= ntc_table[i]) break; } /* if first in, init old_temp */ temp = (i + di->pdata->ntc_degree_from) * 10; if (first_time == 1) { di->temperature = temp; old_temp = temp; first_time = 0; } /* * compare with old one, it's invalid when over 50 * and we should use old data. */ if (abs(temp - old_temp) > 50) temp = old_temp; else old_temp = temp; di->temperature = temp; DBG("<%s>. temperature = %d\n", __func__, di->temperature); rk818_bat_temp_notifier_callback(di->temperature / 10); } } } static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di) { u8 buf; int16_t rest = 0; unsigned long soc_sec; const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH", "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", }; /* get rest */ rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8; rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0; /* get mode */ buf = rk818_bat_read(di, RK818_MISC_MARK_REG); di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT; if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) { if (di->algo_rest_mode == MODE_FINISH) { soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1; if ((rest / DIV(soc_sec)) > 0) { if (di->dsoc < 100) { di->dsoc++; di->algo_rest_val = rest % soc_sec; BAT_INFO("algorithm rest(%d) dsoc " "inc: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } } else { di->algo_rest_val = rest; } } else { di->algo_rest_val = rest; } } else { /* charge speed up */ if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) { if (di->dsoc < di->rsoc) { di->dsoc++; di->algo_rest_val = rest % 1000; BAT_INFO("algorithm rest(%d) dsoc inc: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } /* discharge speed up */ } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) { if (di->dsoc > di->rsoc) { di->dsoc--; di->algo_rest_val = rest % 1000; BAT_INFO("algorithm rest(%d) dsoc sub: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } } else { di->algo_rest_val = rest; } } if (di->dsoc >= 100) di->dsoc = 100; else if (di->dsoc <= 0) di->dsoc = 0; /* init current mode */ di->voltage_avg = rk818_bat_get_avg_voltage(di); di->current_avg = rk818_bat_get_avg_current(di); if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) { rk818_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } else { rk818_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; " "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n", __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode], di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc, di->finish_base); } static void rk818_bat_save_algo_rest(struct rk818_battery *di) { u8 buf, mode; int16_t algo_rest = 0; int tmp_soc; int zero_rest = 0, sm_chrg_rest = 0; int sm_dischrg_rest = 0, finish_rest = 0; const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH", "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", }; /* zero dischrg */ tmp_soc = (di->zero_dsoc) / 1000; if (tmp_soc == di->dsoc) zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); /* sm chrg */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000; /* sm dischrg */ tmp_soc = (di->sm_dischrg_dsoc) / 1000; if (tmp_soc == di->dsoc) sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); /* last time is also finish chrg, then add last rest */ if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val) finish_rest = base2sec(di->finish_base) + di->algo_rest_val; else finish_rest = base2sec(di->finish_base); /* total calc */ if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) || (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) || (di->dsoc == di->rsoc)) { di->algo_rest_val = 0; algo_rest = 0; DBG("<%s>. step1..\n", __func__); } else if (di->work_mode == MODE_FINISH) { algo_rest = finish_rest; DBG("<%s>. step2..\n", __func__); } else if (di->algo_rest_mode == MODE_FINISH) { algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest; DBG("<%s>. step3..\n", __func__); } else { if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) algo_rest = sm_chrg_rest + di->algo_rest_val; else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) algo_rest = zero_rest + sm_dischrg_rest + di->algo_rest_val; else algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest + di->algo_rest_val; DBG("<%s>. step4..\n", __func__); } /* check mode */ if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) { mode = di->work_mode; } else {/* MODE_SMOOTH */ if (di->sm_linek > 0) mode = MODE_SMOOTH_CHRG; else mode = MODE_SMOOTH_DISCHRG; } /* save mode */ buf = rk818_bat_read(di, RK818_MISC_MARK_REG); buf &= ~ALGO_REST_MODE_MSK; buf |= (mode << ALGO_REST_MODE_SHIFT); rk818_bat_write(di, RK818_MISC_MARK_REG, buf); /* save rest */ buf = (algo_rest >> 8) & 0xff; rk818_bat_write(di, RK818_CALC_REST_REGH, buf); buf = (algo_rest >> 0) & 0xff; rk818_bat_write(di, RK818_CALC_REST_REGL, buf); DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, " "chrg=%d, dischrg=%d, finish=%lu\n", __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest, sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base)); } static void rk818_bat_save_data(struct rk818_battery *di) { rk818_bat_save_dsoc(di, di->dsoc); rk818_bat_save_cap(di, di->remain_cap); rk818_bat_save_algo_rest(di); } static void rk818_battery_work(struct work_struct *work) { struct rk818_battery *di = container_of(work, struct rk818_battery, bat_delay_work.work); rk818_bat_update_info(di); rk818_bat_wait_finish_sig(di); rk818_bat_rsoc_daemon(di); rk818_bat_update_temperature(di); rk818_bat_display_smooth(di); rk818_bat_power_supply_changed(di); rk818_bat_save_data(di); rk818_bat_debug_info(di); queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(di->monitor_ms)); } static irqreturn_t rk818_vb_low_irq(int irq, void *bat) { struct rk818_battery *di = (struct rk818_battery *)bat; di->dsoc = 0; rk_send_wakeup_key(); BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n", di->voltage_avg, di->current_avg, di->dsoc); return IRQ_HANDLED; } static void rk818_bat_init_sysfs(struct rk818_battery *di) { int i, ret; for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) { ret = sysfs_create_file(&di->dev->kobj, &rk818_bat_attr[i].attr); if (ret) dev_err(di->dev, "create bat node(%s) error\n", rk818_bat_attr[i].attr.name); } } static int rk818_bat_init_irqs(struct rk818_battery *di) { struct rk808 *rk818 = di->rk818; struct platform_device *pdev = di->pdev; int ret, vb_lo_irq; vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO); if (vb_lo_irq < 0) { dev_err(di->dev, "vb_lo_irq request failed!\n"); return vb_lo_irq; } ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL, rk818_vb_low_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "rk818_vb_low", di); if (ret) { dev_err(&pdev->dev, "vb_lo_irq request failed!\n"); return ret; } enable_irq_wake(vb_lo_irq); return 0; } static void rk818_bat_init_info(struct rk818_battery *di) { di->design_cap = di->pdata->design_capacity; di->qmax = di->pdata->design_qmax; di->bat_res = di->pdata->bat_res; di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS; di->boot_base = POWER_ON_SEC_BASE; di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ? SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2; } static time64_t rk818_get_rtc_sec(void) { int err; struct rtc_time tm; struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); err = rtc_read_time(rtc, &tm); if (err) { dev_err(rtc->dev.parent, "read hardware clk failed\n"); return 0; } err = rtc_valid_tm(&tm); if (err) { dev_err(rtc->dev.parent, "invalid date time\n"); return 0; } return rtc_tm_to_time64(&tm); } static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di) { int interval_sec; interval_sec = rk818_get_rtc_sec() - di->rtc_base; return (interval_sec > 0) ? interval_sec : 0; } static void rk818_bat_set_shtd_vol(struct rk818_battery *di) { u8 val; /* set vbat lowest 3.0v shutdown */ val = rk818_bat_read(di, RK818_VB_MON_REG); val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK); val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN); rk818_bat_write(di, RK818_VB_MON_REG, val); /* disable low irq */ rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, VB_LOW_INT_EN); } static void rk818_bat_init_fg(struct rk818_battery *di) { rk818_bat_enable_gauge(di); rk818_bat_init_voltage_kb(di); rk818_bat_init_coffset(di); rk818_bat_set_relax_sample(di); rk818_bat_set_ioffset_sample(di); rk818_bat_set_ocv_sample(di); rk818_bat_init_ts1_detect(di); rk818_bat_init_rsoc(di); rk818_bat_init_coulomb_cap(di, di->nac); rk818_bat_init_age_algorithm(di); rk818_bat_init_chrg_config(di); rk818_bat_set_shtd_vol(di); rk818_bat_init_zero_table(di); rk818_bat_init_caltimer(di); rk818_bat_init_dsoc_algorithm(di); di->voltage_avg = rk818_bat_get_avg_voltage(di); di->voltage_ocv = rk818_bat_get_ocv_voltage(di); di->voltage_relax = rk818_bat_get_relax_voltage(di); di->current_avg = rk818_bat_get_avg_current(di); di->remain_cap = rk818_bat_get_coulomb_cap(di); di->dbg_pwr_dsoc = di->dsoc; di->dbg_pwr_rsoc = di->rsoc; di->dbg_pwr_vol = di->voltage_avg; rk818_bat_dump_regs(di, 0x99, 0xee); DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n", di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg, di->voltage_relax, di->dsoc, di->rsoc, di->current_avg); } #ifdef CONFIG_OF static int rk818_bat_parse_dt(struct rk818_battery *di) { u32 out_value; int length, ret; size_t size; struct device_node *np = di->dev->of_node; struct battery_platform_data *pdata; struct device *dev = di->dev; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; di->pdata = pdata; /* init default param */ pdata->bat_res = DEFAULT_BAT_RES; pdata->monitor_sec = DEFAULT_MONITOR_SEC; pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD; pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR; pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR; pdata->bat_mode = MODE_BATTARY; pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET; pdata->sample_res = DEFAULT_SAMPLE_RES; pdata->energy_mode = DEFAULT_ENERGY_MODE; pdata->fb_temp = DEFAULT_FB_TEMP; pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC; /* parse necessary param */ if (!of_find_property(np, "ocv_table", &length)) { dev_err(dev, "ocv_table not found!\n"); return -EINVAL; } pdata->ocv_size = length / sizeof(u32); if (pdata->ocv_size < 2) { dev_err(dev, "invalid ocv table\n"); return -EINVAL; } size = sizeof(*pdata->ocv_table) * pdata->ocv_size; pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL); if (!pdata->ocv_table) return -ENOMEM; ret = of_property_read_u32_array(np, "ocv_table", pdata->ocv_table, pdata->ocv_size); if (ret < 0) return ret; ret = of_property_read_u32(np, "design_capacity", &out_value); if (ret < 0) { dev_err(dev, "design_capacity not found!\n"); return ret; } pdata->design_capacity = out_value; ret = of_property_read_u32(np, "design_qmax", &out_value); if (ret < 0) { dev_err(dev, "design_qmax not found!\n"); return ret; } pdata->design_qmax = out_value; ret = of_property_read_u32(np, "max_chrg_voltage", &out_value); if (ret < 0) { dev_err(dev, "max_chrg_voltage missing!\n"); return ret; } pdata->max_chrg_voltage = out_value; if (out_value >= 4300) pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2; else pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1; ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp); if (ret < 0) dev_err(dev, "fb_temperature missing!\n"); ret = of_property_read_u32(np, "sample_res", &pdata->sample_res); if (ret < 0) dev_err(dev, "sample_res missing!\n"); ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode); if (ret < 0) dev_err(dev, "energy_mode missing!\n"); ret = of_property_read_u32(np, "max_soc_offset", &pdata->max_soc_offset); if (ret < 0) dev_err(dev, "max_soc_offset missing!\n"); ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec); if (ret < 0) dev_err(dev, "monitor_sec missing!\n"); ret = of_property_read_u32(np, "zero_algorithm_vol", &pdata->zero_algorithm_vol); if (ret < 0) dev_err(dev, "zero_algorithm_vol missing!\n"); ret = of_property_read_u32(np, "zero_reserve_dsoc", &pdata->zero_reserve_dsoc); ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode); if (ret < 0) dev_err(dev, "virtual_power missing!\n"); ret = of_property_read_u32(np, "bat_res", &pdata->bat_res); if (ret < 0) dev_err(dev, "bat_res missing!\n"); ret = of_property_read_u32(np, "sleep_enter_current", &pdata->sleep_enter_current); if (ret < 0) dev_err(dev, "sleep_enter_current missing!\n"); ret = of_property_read_u32(np, "sleep_exit_current", &pdata->sleep_exit_current); if (ret < 0) dev_err(dev, "sleep_exit_current missing!\n"); ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol); if (ret < 0) dev_err(dev, "power_off_thresd missing!\n"); if (!of_find_property(np, "ntc_table", &length)) { pdata->ntc_size = 0; } else { /* get ntc degree base value */ ret = of_property_read_s32(np, "ntc_degree_from_v2", &pdata->ntc_degree_from); if (ret) { dev_err(dev, "invalid ntc_degree_from_v2\n"); return -EINVAL; } pdata->ntc_size = length / sizeof(u32); } if (pdata->ntc_size) { size = sizeof(*pdata->ntc_table) * pdata->ntc_size; pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL); if (!pdata->ntc_table) return -ENOMEM; ret = of_property_read_u32_array(np, "ntc_table", pdata->ntc_table, pdata->ntc_size); if (ret < 0) return ret; } DBG("the battery dts info dump:\n" "bat_res:%d\n" "design_capacity:%d\n" "design_qmax :%d\n" "sleep_enter_current:%d\n" "sleep_exit_current:%d\n" "zero_algorithm_vol:%d\n" "zero_reserve_dsoc:%d\n" "monitor_sec:%d\n" "max_soc_offset:%d\n" "virtual_power:%d\n" "pwroff_vol:%d\n" "sample_res:%d\n" "ntc_size=%d\n" "ntc_degree_from_v2:%d\n" "ntc_degree_to:%d\n", pdata->bat_res, pdata->design_capacity, pdata->design_qmax, pdata->sleep_enter_current, pdata->sleep_exit_current, pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc, pdata->monitor_sec, pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol, pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from, pdata->ntc_degree_from + pdata->ntc_size - 1 ); return 0; } #else static int rk818_bat_parse_dt(struct rk818_battery *di) { return -ENODEV; } #endif static const struct of_device_id rk818_battery_of_match[] = { {.compatible = "rk818-battery",}, { }, }; static int rk818_battery_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(rk818_battery_of_match, &pdev->dev); struct rk818_battery *di; struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent); int ret; if (!of_id) { dev_err(&pdev->dev, "Failed to find matching dt id\n"); return -ENODEV; } di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; di->rk818 = rk818; di->pdev = pdev; di->dev = &pdev->dev; di->regmap = rk818->regmap; platform_set_drvdata(pdev, di); ret = rk818_bat_parse_dt(di); if (ret < 0) { dev_err(di->dev, "rk818 battery parse dt failed!\n"); return ret; } if (!is_rk818_bat_exist(di)) { di->pdata->bat_mode = MODE_VIRTUAL; dev_err(di->dev, "no battery, virtual power mode\n"); } ret = rk818_bat_init_irqs(di); if (ret != 0) { dev_err(di->dev, "rk818 bat init irqs failed!\n"); return ret; } ret = rk818_bat_init_power_supply(di); if (ret) { dev_err(di->dev, "rk818 power supply register failed!\n"); return ret; } rk818_bat_init_info(di); rk818_bat_init_fg(di); rk818_bat_init_sysfs(di); rk818_bat_register_fb_notify(di); wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock"); di->bat_monitor_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq"); INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work); queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(TIMER_MS_COUNTS * 5)); BAT_INFO("driver version %s\n", DRIVER_VERSION); return ret; } static int rk818_battery_suspend(struct platform_device *dev, pm_message_t state) { struct rk818_battery *di = platform_get_drvdata(dev); u8 val, st; cancel_delayed_work_sync(&di->bat_delay_work); di->s2r = false; di->sleep_chrg_online = rk818_bat_chrg_online(di); di->sleep_chrg_status = rk818_bat_get_chrg_status(di); di->current_avg = rk818_bat_get_avg_current(di); di->remain_cap = rk818_bat_get_coulomb_cap(di); di->rsoc = rk818_bat_get_rsoc(di); di->rtc_base = rk818_get_rtc_sec(); rk818_bat_save_data(di); st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4; /* if not CHARGE_FINISH, reinit finish_base. * avoid sleep loop between suspend and resume */ if (di->sleep_chrg_status != CHARGE_FINISH) di->finish_base = get_boot_sec(); /* avoid: enter suspend from MODE_ZERO: load from heavy to light */ if ((di->work_mode == MODE_ZERO) && (di->sleep_chrg_online) && (di->current_avg >= 0)) { DBG("suspend: MODE_ZERO exit...\n"); /* it need't do prepare for mode finish and smooth, it will * be done in display_smooth */ if (di->sleep_chrg_status == CHARGE_FINISH) { di->work_mode = MODE_FINISH; di->finish_base = get_boot_sec(); } else { di->work_mode = MODE_SMOOTH; rk818_bat_smooth_algo_prepare(di); } } /* set vbat low than 3.4v to generate a wakeup irq */ val = rk818_bat_read(di, RK818_VB_MON_REG); val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK)); val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ); rk818_bat_write(di, RK818_VB_MON_REG, val); rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0); BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n", di->dsoc, di->rsoc, di->current_avg, rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di), di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]); return 0; } static int rk818_battery_resume(struct platform_device *dev) { struct rk818_battery *di = platform_get_drvdata(dev); int interval_sec, time_step = 0, pwroff_vol; u8 val, st; di->s2r = true; di->current_avg = rk818_bat_get_avg_current(di); di->voltage_relax = rk818_bat_get_relax_voltage(di); di->voltage_avg = rk818_bat_get_avg_voltage(di); di->remain_cap = rk818_bat_get_coulomb_cap(di); di->rsoc = rk818_bat_get_rsoc(di); interval_sec = rk818_bat_rtc_sleep_sec(di); di->sleep_sum_sec += interval_sec; pwroff_vol = di->pdata->pwroff_vol; st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4; if (!di->sleep_chrg_online) { /* only add up discharge sleep seconds */ di->sleep_dischrg_sec += interval_sec; if (di->voltage_avg <= pwroff_vol + 50) time_step = DISCHRG_TIME_STEP1; else time_step = DISCHRG_TIME_STEP2; } BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d " "cap=%d dt=%d at=%ld ch=%d st=%s\n", di->dsoc, di->rsoc, di->current_avg, di->voltage_avg, di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec, di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]); /* sleep: enough time and discharge */ if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) { if (rk818_bat_sleep_dischrg(di)) di->sleep_dischrg_sec = 0; } rk818_bat_save_data(di); /* set vbat lowest 3.0v shutdown */ val = rk818_bat_read(di, RK818_VB_MON_REG); val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK); val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN); rk818_bat_write(di, RK818_VB_MON_REG, val); rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, VB_LOW_INT_EN); /* charge/lowpower lock: for battery work to update dsoc and rsoc */ if ((di->sleep_chrg_online) || (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol)) wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000)); queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(1000)); return 0; } static void rk818_battery_shutdown(struct platform_device *dev) { u8 cnt = 0; struct rk818_battery *di = platform_get_drvdata(dev); cancel_delayed_work_sync(&di->bat_delay_work); cancel_delayed_work_sync(&di->calib_delay_work); rk818_bat_unregister_fb_notify(di); del_timer(&di->caltimer); if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC) cnt = rk818_bat_check_reboot(di); else rk818_bat_save_reboot_cnt(di, 0); BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d " "mode=%d rest=%d\n", di->dsoc, di->rsoc, di->current_avg, di->voltage_avg, di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt, di->algo_rest_mode, di->algo_rest_val); } static struct platform_driver rk818_battery_driver = { .probe = rk818_battery_probe, .suspend = rk818_battery_suspend, .resume = rk818_battery_resume, .shutdown = rk818_battery_shutdown, .driver = { .name = "rk818-battery", .of_match_table = rk818_battery_of_match, }, }; static int __init battery_init(void) { return platform_driver_register(&rk818_battery_driver); } fs_initcall_sync(battery_init); static void __exit battery_exit(void) { platform_driver_unregister(&rk818_battery_driver); } module_exit(battery_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:rk818-battery"); MODULE_AUTHOR("chenjh");