// SPDX-License-Identifier: GPL-2.0 /* * gc2375h driver * * Copyright (C) 2020 Rockchip Electronics Co., Ltd. * * V0.0X01.0X01 init driver. * V0.0X01.0X02 fix mclk issue when probe multiple camera. * V0.0X01.0X03 add enum_frame_interval function. * TODO: add OTP function. * V0.0X01.0X04 add quick stream on/off * V0.0X01.0X05 add function g_mbus_config * V0.0X01.0X06 fix vblank set issue */ //#define DEBUG 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x6) #ifndef V4L2_CID_DIGITAL_GAIN #define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN #endif #define MIPI_FREQ 338000000 /* pixel rate = link frequency * 1 * lanes / BITS_PER_SAMPLE */ #define GC2375H_PIXEL_RATE (MIPI_FREQ * 2LL * 1LL / 10) #define GC2375H_XVCLK_FREQ 24000000 #define CHIP_ID 0x2375 #define GC2375H_REG_CHIP_ID_H 0xf0 #define GC2375H_REG_CHIP_ID_L 0xf1 #define SENSOR_ID(_msb, _lsb) ((_msb) << 8 | (_lsb)) #define GC2375H_REG_SET_PAGE 0xfe #define GC2375H_SET_PAGE_ONE 0x00 #define GC2375H_PAGE_SELECT 0xfe #define GC2375H_MODE_SELECT 0xef #define GC2375H_MODE_SW_STANDBY 0x00 #define GC2375H_MODE_STREAMING 0x90 #define GC2375H_REG_EXPOSURE_H 0x03 #define GC2375H_REG_EXPOSURE_L 0x04 #define GC2375H_EXPOSURE_MIN 4 #define GC2375H_EXPOSURE_STEP 1 #define GC2375H_VTS_MAX 0x7fff #define GC2375H_ANALOG_GAIN_1 64 /*1.00x*/ #define GC2375H_ANALOG_GAIN_2 88 /*1.375x*/ #define GC2375H_ANALOG_GAIN_3 122 /*1.90x*/ #define GC2375H_ANALOG_GAIN_4 168 /*2.625x*/ #define GC2375H_ANALOG_GAIN_5 239 /*3.738x*/ #define GC2375H_ANALOG_GAIN_6 330 /*5.163x*/ #define GC2375H_ANALOG_GAIN_7 470 /*7.350x*/ #define GC2375H_ANALOG_GAIN_8 725 // 11.34x #define GC2375H_ANALOG_GAIN_9 1038 // 16.23x #define GC2375H_ANALOG_GAIN_REG 0xb6 #define GC2375H_PREGAIN_H_REG 0xb1 #define GC2375H_PREGAIN_L_REG 0xb2 #define GC2375H_GAIN_MIN 0x40 #define GC2375H_GAIN_MAX 0x200 #define GC2375H_GAIN_STEP 1 #define GC2375H_GAIN_DEFAULT 0x80 #define GC2375H_REG_VTS_H 0x07 #define GC2375H_REG_VTS_L 0x08 #define GC2375_MIRROR_NORMAL //#define GC2375_MIRROR_H //#define GC2375_MIRROR_V //#define GC2375_MIRROR_HV #if defined(GC2375_MIRROR_NORMAL) #define MIRROR 0xd4 #define BLK_Select1_H 0x00 #define BLK_Select1_L 0x3c #define BLK_Select2_H 0x00 #define BLK_Select2_L 0x03 #elif defined(GC2375_MIRROR_H) #define MIRROR 0xd5 #define BLK_Select1_H 0x00 #define BLK_Select1_L 0x3c #define BLK_Select2_H 0x00 #define BLK_Select2_L 0x03 #elif defined(GC2375_MIRROR_V) #define MIRROR 0xd6 #define BLK_Select1_H 0x3c #define BLK_Select1_L 0x00 #define BLK_Select2_H 0xc0 #define BLK_Select2_L 0x00 #elif defined(GC2375_MIRROR_HV) #define MIRROR 0xd7 #define BLK_Select1_H 0x3c #define BLK_Select1_L 0x00 #define BLK_Select2_H 0xc0 #define BLK_Select2_L 0x00 #else #define MIRROR 0xd4 #define BLK_Select1_H 0x00 #define BLK_Select1_L 0x3c #define BLK_Select2_H 0x00 #define BLK_Select2_L 0x03 #endif //#define GC2375_OLD_SETTING #define REG_NULL 0xFFFF #define GC2375H_LANES 1 #define GC2375H_BITS_PER_SAMPLE 10 #define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default" #define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep" #define GC2375H_NAME "gc2375h" static const char * const gc2375h_supply_names[] = { "avdd", /* Analog power */ "dovdd", /* Digital I/O power */ "dvdd", /* Digital core power */ }; #define GC2375H_NUM_SUPPLIES ARRAY_SIZE(gc2375h_supply_names) struct regval { u16 addr; u8 val; }; struct gc2375h_mode { u32 width; u32 height; struct v4l2_fract max_fps; u32 hts_def; u32 vts_def; u32 exp_def; const struct regval *reg_list; }; struct gc2375h { struct i2c_client *client; struct clk *xvclk; struct gpio_desc *reset_gpio; struct gpio_desc *pwdn_gpio; struct regulator_bulk_data supplies[GC2375H_NUM_SUPPLIES]; struct pinctrl *pinctrl; struct pinctrl_state *pins_default; struct pinctrl_state *pins_sleep; struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *exposure; struct v4l2_ctrl *anal_gain; struct v4l2_ctrl *digi_gain; struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; struct v4l2_ctrl *test_pattern; struct mutex mutex; bool streaming; bool power_on; const struct gc2375h_mode *cur_mode; unsigned int lane_num; unsigned int cfg_num; unsigned int pixel_rate; u32 module_index; const char *module_facing; const char *module_name; const char *len_name; }; #define to_gc2375h(sd) container_of(sd, struct gc2375h, subdev) /* * Xclk 24Mhz */ static const struct regval gc2375h_global_regs[] = { #ifdef GC2375_OLD_SETTING {0xfe, 0x00}, {0xfe, 0x00}, {0xfe, 0x00}, {0xf7, 0x01}, {0xf8, 0x0c}, {0xf9, 0x42}, {0xfa, 0x88}, {0xfc, 0x8e}, {0xfe, 0x00}, {0x88, 0x03}, {0x03, 0x04}, {0x04, 0x65}, {0x05, 0x02}, {0x06, 0x5a}, {0x07, 0x00}, {0x08, 0x10}, {0x09, 0x00}, {0x0a, 0x08}, {0x0b, 0x00}, {0x0c, 0x18}, {0x0d, 0x04}, {0x0e, 0xb8}, {0x0f, 0x06}, {0x10, 0x48}, {0x17, 0xd4}, {0x1c, 0x10}, {0x1d, 0x13}, {0x20, 0x0b}, {0x21, 0x6d}, {0x22, 0x0c}, {0x25, 0xc1}, {0x26, 0x0e}, {0x27, 0x22}, {0x29, 0x5f}, {0x2b, 0x88}, {0x2f, 0x12}, {0x38, 0x86}, {0x3d, 0x00}, {0xcd, 0xa3}, {0xce, 0x57}, {0xd0, 0x09}, {0xd1, 0xca}, {0xd2, 0x34}, {0xd3, 0xbb}, {0xd8, 0x60}, {0xe0, 0x08}, {0xe1, 0x1f}, {0xe4, 0xf8}, {0xe5, 0x0c}, {0xe6, 0x10}, {0xe7, 0xcc}, {0xe8, 0x02}, {0xe9, 0x01}, {0xea, 0x02}, {0xeb, 0x01}, {0x90, 0x01}, {0x92, 0x02}, {0x94, 0x00}, {0x95, 0x04}, {0x96, 0xb0}, {0x97, 0x06}, {0x98, 0x40}, {0x18, 0x02}, {0x1a, 0x18}, {0x28, 0x00}, {0x3f, 0x40}, {0x40, 0x26}, {0x41, 0x00}, {0x43, 0x03}, {0x4a, 0x00}, {0x4e, 0x3c}, {0x4f, 0x00}, {0x66, 0xc0}, {0x67, 0x00}, {0x68, 0x00}, {0xb0, 0x58}, {0xb1, 0x01}, {0xb2, 0x00}, {0xb6, 0x00}, {0xef, 0x90}, {0xfe, 0x03}, {0x01, 0x03}, {0x02, 0x33}, {0x03, 0x90}, {0x04, 0x04}, {0x05, 0x00}, {0x06, 0x80}, {0x11, 0x2b}, {0x12, 0xd0}, {0x13, 0x07}, {0x15, 0x00}, {0x21, 0x08}, {0x22, 0x05}, {0x23, 0x13}, {0x24, 0x02}, {0x25, 0x13}, {0x26, 0x08}, {0x29, 0x06}, {0x2a, 0x08}, {0x2b, 0x08}, {0xfe, 0x00}, {0x20, 0x0b}, {0x22, 0x0c}, {0x26, 0x0e}, {0xb6, 0x00}, #else /*System*/ {0xfe, 0x00}, {0xfe, 0x00}, {0xfe, 0x00}, {0xf7, 0x01}, {0xf8, 0x0c}, {0xf9, 0x42}, {0xfa, 0x88}, {0xfc, 0x8e}, {0xfe, 0x00}, {0x88, 0x03}, /*Analog*/ {0xfe, 0x00}, {0x03, 0x04}, {0x04, 0x65}, {0x05, 0x02}, {0x06, 0x5a}, {0x07, 0x00}, {0x08, 0x10}, {0x09, 0x00}, {0x0a, 0x04}, {0x0b, 0x00}, {0x0c, 0x14}, {0x0d, 0x04}, {0x0e, 0xb8}, {0x0f, 0x06}, {0x10, 0x48}, {0x17, MIRROR}, {0x1c, 0x10}, {0x1d, 0x13}, {0x20, 0x0b}, {0x21, 0x6d}, {0x22, 0x0c}, {0x25, 0xc1}, {0x26, 0x0e}, {0x27, 0x22}, {0x29, 0x5f}, {0x2b, 0x88}, {0x2f, 0x12}, {0x38, 0x86}, {0x3d, 0x00}, {0xcd, 0xa3}, {0xce, 0x57}, {0xd0, 0x09}, {0xd1, 0xca}, {0xd2, 0x34}, {0xd3, 0xbb}, {0xd8, 0x60}, {0xe0, 0x08}, {0xe1, 0x1f}, {0xe4, 0xf8}, {0xe5, 0x0c}, {0xe6, 0x10}, {0xe7, 0xcc}, {0xe8, 0x02}, {0xe9, 0x01}, {0xea, 0x02}, {0xeb, 0x01}, /*Crop*/ {0x90, 0x01}, {0x92, 0x04}, {0x94, 0x04}, {0x95, 0x04}, {0x96, 0xb0}, {0x97, 0x06}, {0x98, 0x40}, /*BLK*/ {0x18, 0x02}, {0x1a, 0x18}, {0x28, 0x00}, {0x3f, 0x40}, {0x40, 0x26}, {0x41, 0x00}, {0x43, 0x03}, {0x4a, 0x00}, {0x4e, BLK_Select1_H}, {0x4f, BLK_Select1_L}, {0x66, BLK_Select2_H}, {0x67, BLK_Select2_L}, /*Dark sun*/ {0x68, 0x00}, /*Gain*/ {0xb0, 0x58}, {0xb1, 0x01}, {0xb2, 0x00}, {0xb6, 0x00}, /*MIPI*/ {0xef, 0x00}, {0xfe, 0x03}, {0x01, 0x03}, {0x02, 0x33}, {0x03, 0x90}, {0x04, 0x04}, {0x05, 0x00}, {0x06, 0x80}, {0x11, 0x2b}, {0x12, 0xd0}, {0x13, 0x07}, {0x15, 0x00}, {0x21, 0x08}, {0x22, 0x05}, {0x23, 0x13}, {0x24, 0x02}, {0x25, 0x13}, {0x26, 0x08}, {0x29, 0x06}, {0x2a, 0x08}, {0x2b, 0x08}, {0xfe, 0x00}, #endif {REG_NULL, 0x00}, }; /* * Xclk 24Mhz * max_framerate 30fps * mipi_datarate per lane 1008Mbps */ static const struct regval gc2375h_1600x1200_regs[] = { {REG_NULL, 0x00}, }; static const struct gc2375h_mode supported_modes_1lane[] = { { .width = 1600, .height = 1200, .max_fps = { .numerator = 10000, .denominator = 300000, }, .exp_def = 0x04d0, .hts_def = 0x0820, .vts_def = 0x04d9, .reg_list = gc2375h_1600x1200_regs, }, }; static const struct gc2375h_mode *supported_modes; static const s64 link_freq_menu_items[] = { MIPI_FREQ }; /* sensor register write */ static int gc2375h_write_reg(struct i2c_client *client, u8 reg, u8 val) { struct i2c_msg msg; u8 buf[2]; int ret; dev_dbg(&client->dev, "%s(%d) enter!\n", __func__, __LINE__); dev_dbg(&client->dev, "gc2375h write reg(0x%x val:0x%x)!\n", reg, val); buf[0] = reg & 0xFF; buf[1] = val; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret >= 0) return 0; dev_err(&client->dev, "gc2375h write reg(0x%x val:0x%x) failed !\n", reg, val); return ret; } /* sensor register read */ static int gc2375h_read_reg(struct i2c_client *client, u8 reg, u8 *val) { struct i2c_msg msg[2]; u8 buf[1]; int ret; buf[0] = reg & 0xFF; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = buf; msg[1].len = 1; ret = i2c_transfer(client->adapter, msg, 2); if (ret >= 0) { *val = buf[0]; return 0; } dev_err(&client->dev, "gc2375h read reg:0x%x failed !\n", reg); return ret; } static int gc2375h_write_array(struct i2c_client *client, const struct regval *regs) { u32 i; int ret = 0; for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++) ret = gc2375h_write_reg(client, regs[i].addr, regs[i].val); return ret; } static int gc2375h_get_reso_dist(const struct gc2375h_mode *mode, struct v4l2_mbus_framefmt *framefmt) { return abs(mode->width - framefmt->width) + abs(mode->height - framefmt->height); } static const struct gc2375h_mode * gc2375h_find_best_fit(struct gc2375h *gc2375h, struct v4l2_subdev_format *fmt) { struct v4l2_mbus_framefmt *framefmt = &fmt->format; int dist; int cur_best_fit = 0; int cur_best_fit_dist = -1; unsigned int i; for (i = 0; i < gc2375h->cfg_num; i++) { dist = gc2375h_get_reso_dist(&supported_modes[i], framefmt); if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) { cur_best_fit_dist = dist; cur_best_fit = i; } } return &supported_modes[cur_best_fit]; } static int gc2375h_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct gc2375h *gc2375h = to_gc2375h(sd); const struct gc2375h_mode *mode; s64 h_blank, vblank_def; mutex_lock(&gc2375h->mutex); mode = gc2375h_find_best_fit(gc2375h, fmt); fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10; fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.field = V4L2_FIELD_NONE; if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format; #else mutex_unlock(&gc2375h->mutex); return -ENOTTY; #endif } else { gc2375h->cur_mode = mode; h_blank = mode->hts_def - mode->width; __v4l2_ctrl_modify_range(gc2375h->hblank, h_blank, h_blank, 1, h_blank); vblank_def = mode->vts_def - mode->height; __v4l2_ctrl_modify_range(gc2375h->vblank, vblank_def, GC2375H_VTS_MAX - mode->height, 1, vblank_def); } mutex_unlock(&gc2375h->mutex); return 0; } static int gc2375h_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct gc2375h *gc2375h = to_gc2375h(sd); const struct gc2375h_mode *mode = gc2375h->cur_mode; mutex_lock(&gc2375h->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad); #else mutex_unlock(&gc2375h->mutex); return -ENOTTY; #endif } else { fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10; fmt->format.field = V4L2_FIELD_NONE; } mutex_unlock(&gc2375h->mutex); return 0; } static int gc2375h_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index != 0) return -EINVAL; code->code = MEDIA_BUS_FMT_SRGGB10_1X10; return 0; } static int gc2375h_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct gc2375h *gc2375h = to_gc2375h(sd); if (fse->index >= gc2375h->cfg_num) return -EINVAL; if (fse->code != MEDIA_BUS_FMT_SRGGB10_1X10) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = supported_modes[fse->index].width; fse->max_height = supported_modes[fse->index].height; fse->min_height = supported_modes[fse->index].height; return 0; } static int gc2375h_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct gc2375h *gc2375h = to_gc2375h(sd); const struct gc2375h_mode *mode = gc2375h->cur_mode; fi->interval = mode->max_fps; return 0; } static void gc2375h_get_module_inf(struct gc2375h *gc2375h, struct rkmodule_inf *inf) { memset(inf, 0, sizeof(*inf)); strlcpy(inf->base.sensor, GC2375H_NAME, sizeof(inf->base.sensor)); strlcpy(inf->base.module, gc2375h->module_name, sizeof(inf->base.module)); strlcpy(inf->base.lens, gc2375h->len_name, sizeof(inf->base.lens)); } static long gc2375h_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { struct gc2375h *gc2375h = to_gc2375h(sd); long ret = 0; u32 stream = 0; switch (cmd) { case RKMODULE_GET_MODULE_INFO: gc2375h_get_module_inf(gc2375h, (struct rkmodule_inf *)arg); break; case RKMODULE_SET_QUICK_STREAM: stream = *((u32 *)arg); if (stream) { ret = gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_MODE_SELECT, GC2375H_MODE_STREAMING); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); } else { ret = gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_MODE_SELECT, GC2375H_MODE_SW_STANDBY); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); } break; default: ret = -ENOIOCTLCMD; break; } return ret; } #ifdef CONFIG_COMPAT static long gc2375h_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd, unsigned long arg) { void __user *up = compat_ptr(arg); struct rkmodule_inf *inf; struct rkmodule_awb_cfg *cfg; long ret; u32 stream = 0; switch (cmd) { case RKMODULE_GET_MODULE_INFO: inf = kzalloc(sizeof(*inf), GFP_KERNEL); if (!inf) { ret = -ENOMEM; return ret; } ret = gc2375h_ioctl(sd, cmd, inf); if (!ret) { ret = copy_to_user(up, inf, sizeof(*inf)); if (ret) ret = -EFAULT; } kfree(inf); break; case RKMODULE_AWB_CFG: cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { ret = -ENOMEM; return ret; } ret = copy_from_user(cfg, up, sizeof(*cfg)); if (!ret) ret = gc2375h_ioctl(sd, cmd, cfg); else ret = -EFAULT; kfree(cfg); break; case RKMODULE_SET_QUICK_STREAM: ret = copy_from_user(&stream, up, sizeof(u32)); if (!ret) ret = gc2375h_ioctl(sd, cmd, &stream); else ret = -EFAULT; break; default: ret = -ENOIOCTLCMD; break; } return ret; } #endif static int __gc2375h_start_stream(struct gc2375h *gc2375h) { int ret; ret = gc2375h_write_array(gc2375h->client, gc2375h->cur_mode->reg_list); if (ret) return ret; /* In case these controls are set before streaming */ mutex_unlock(&gc2375h->mutex); ret = v4l2_ctrl_handler_setup(&gc2375h->ctrl_handler); mutex_lock(&gc2375h->mutex); if (ret) return ret; //add mark ret = gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_MODE_SELECT, GC2375H_MODE_STREAMING); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); return ret; } static int __gc2375h_stop_stream(struct gc2375h *gc2375h) { int ret; ret = gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_MODE_SELECT, GC2375H_MODE_SW_STANDBY); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); return ret; // return 0; } static int gc2375h_s_stream(struct v4l2_subdev *sd, int on) { struct gc2375h *gc2375h = to_gc2375h(sd); struct i2c_client *client = gc2375h->client; int ret = 0; mutex_lock(&gc2375h->mutex); on = !!on; if (on == gc2375h->streaming) goto unlock_and_return; if (on) { ret = pm_runtime_get_sync(&client->dev); if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ret = __gc2375h_start_stream(gc2375h); if (ret) { v4l2_err(sd, "start stream failed while write regs\n"); pm_runtime_put(&client->dev); goto unlock_and_return; } } else { __gc2375h_stop_stream(gc2375h); pm_runtime_put(&client->dev); } gc2375h->streaming = on; unlock_and_return: mutex_unlock(&gc2375h->mutex); return ret; } static int gc2375h_s_power(struct v4l2_subdev *sd, int on) { struct gc2375h *gc2375h = to_gc2375h(sd); struct i2c_client *client = gc2375h->client; int ret = 0; mutex_lock(&gc2375h->mutex); /* If the power state is not modified - no work to do. */ if (gc2375h->power_on == !!on) goto unlock_and_return; if (on) { ret = pm_runtime_get_sync(&client->dev); if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ret = gc2375h_write_array(gc2375h->client, gc2375h_global_regs); if (ret) { v4l2_err(sd, "could not set init registers\n"); pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } gc2375h->power_on = true; } else { pm_runtime_put(&client->dev); gc2375h->power_on = false; } unlock_and_return: mutex_unlock(&gc2375h->mutex); return ret; } /* Calculate the delay in us by clock rate and clock cycles */ static inline u32 gc2375h_cal_delay(u32 cycles) { return DIV_ROUND_UP(cycles, GC2375H_XVCLK_FREQ / 1000 / 1000); } static int __gc2375h_power_on(struct gc2375h *gc2375h) { int ret; u32 delay_us; struct device *dev = &gc2375h->client->dev; if (!IS_ERR_OR_NULL(gc2375h->pins_default)) { ret = pinctrl_select_state(gc2375h->pinctrl, gc2375h->pins_default); if (ret < 0) dev_err(dev, "could not set pins\n"); } ret = clk_set_rate(gc2375h->xvclk, GC2375H_XVCLK_FREQ); if (ret < 0) dev_warn(dev, "Failed to set xvclk rate (24MHz)\n"); if (clk_get_rate(gc2375h->xvclk) != GC2375H_XVCLK_FREQ) dev_warn(dev, "xvclk mismatched, modes are based on 24MHz\n"); ret = clk_prepare_enable(gc2375h->xvclk); if (ret < 0) { dev_err(dev, "Failed to enable xvclk\n"); return ret; } if (!IS_ERR(gc2375h->pwdn_gpio)) gpiod_set_value_cansleep(gc2375h->pwdn_gpio, 0); if (!IS_ERR(gc2375h->reset_gpio)) gpiod_set_value_cansleep(gc2375h->reset_gpio, 0); usleep_range(500, 1000); ret = regulator_bulk_enable(GC2375H_NUM_SUPPLIES, gc2375h->supplies); if (ret < 0) { dev_err(dev, "Failed to enable regulators\n"); goto disable_clk; } if (!IS_ERR(gc2375h->reset_gpio)) gpiod_set_value_cansleep(gc2375h->reset_gpio, 1); /* 8192 cycles prior to first SCCB transaction */ delay_us = gc2375h_cal_delay(8192); usleep_range(delay_us, delay_us * 2); gc2375h->power_on = true; return 0; disable_clk: clk_disable_unprepare(gc2375h->xvclk); return ret; } static void __gc2375h_power_off(struct gc2375h *gc2375h) { int ret; struct device *dev = &gc2375h->client->dev; if (!IS_ERR(gc2375h->pwdn_gpio)) gpiod_set_value_cansleep(gc2375h->pwdn_gpio, 1); clk_disable_unprepare(gc2375h->xvclk); if (!IS_ERR(gc2375h->reset_gpio)) gpiod_set_value_cansleep(gc2375h->reset_gpio, 0); if (!IS_ERR_OR_NULL(gc2375h->pins_sleep)) { ret = pinctrl_select_state(gc2375h->pinctrl, gc2375h->pins_sleep); if (ret < 0) dev_dbg(dev, "could not set pins\n"); } regulator_bulk_disable(GC2375H_NUM_SUPPLIES, gc2375h->supplies); gc2375h->power_on = false; } static int gc2375h_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc2375h *gc2375h = to_gc2375h(sd); return __gc2375h_power_on(gc2375h); } static int gc2375h_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc2375h *gc2375h = to_gc2375h(sd); __gc2375h_power_off(gc2375h); return 0; } #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static int gc2375h_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct gc2375h *gc2375h = to_gc2375h(sd); struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, fh->state, 0); const struct gc2375h_mode *def_mode = &supported_modes[0]; mutex_lock(&gc2375h->mutex); /* Initialize try_fmt */ try_fmt->width = def_mode->width; try_fmt->height = def_mode->height; try_fmt->code = MEDIA_BUS_FMT_SRGGB10_1X10; try_fmt->field = V4L2_FIELD_NONE; mutex_unlock(&gc2375h->mutex); /* No crop or compose */ return 0; } #endif static int gc2375h_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct gc2375h *gc2375h = to_gc2375h(sd); if (fie->index >= gc2375h->cfg_num) return -EINVAL; fie->code = MEDIA_BUS_FMT_SRGGB10_1X10; fie->width = supported_modes[fie->index].width; fie->height = supported_modes[fie->index].height; fie->interval = supported_modes[fie->index].max_fps; return 0; } static int gc2375h_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_config *config) { config->type = V4L2_MBUS_CSI2_DPHY; config->bus.mipi_csi2.num_data_lanes = GC2375H_LANES; return 0; } static const struct dev_pm_ops gc2375h_pm_ops = { SET_RUNTIME_PM_OPS(gc2375h_runtime_suspend, gc2375h_runtime_resume, NULL) }; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static const struct v4l2_subdev_internal_ops gc2375h_internal_ops = { .open = gc2375h_open, }; #endif static const struct v4l2_subdev_core_ops gc2375h_core_ops = { .s_power = gc2375h_s_power, .ioctl = gc2375h_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl32 = gc2375h_compat_ioctl32, #endif }; static const struct v4l2_subdev_video_ops gc2375h_video_ops = { .s_stream = gc2375h_s_stream, .g_frame_interval = gc2375h_g_frame_interval, }; static const struct v4l2_subdev_pad_ops gc2375h_pad_ops = { .enum_mbus_code = gc2375h_enum_mbus_code, .enum_frame_size = gc2375h_enum_frame_sizes, .enum_frame_interval = gc2375h_enum_frame_interval, .get_fmt = gc2375h_get_fmt, .set_fmt = gc2375h_set_fmt, .get_mbus_config = gc2375h_g_mbus_config, }; static const struct v4l2_subdev_ops gc2375h_subdev_ops = { .core = &gc2375h_core_ops, .video = &gc2375h_video_ops, .pad = &gc2375h_pad_ops, }; static int gc2375h_set_gain_reg(struct gc2375h *gc2375h, u32 a_gain) { int ret = 0; u32 temp = 0; ret = gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); if (a_gain >= GC2375H_ANALOG_GAIN_1 && a_gain < GC2375H_ANALOG_GAIN_2) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0b); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x00); temp = a_gain; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_2 && a_gain < GC2375H_ANALOG_GAIN_3) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x01); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_2; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_3 && a_gain < GC2375H_ANALOG_GAIN_4) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x02); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_3; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_4 && a_gain < GC2375H_ANALOG_GAIN_5) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x03); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_4; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_5 && a_gain < GC2375H_ANALOG_GAIN_6) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x04); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_5; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_6 && a_gain < GC2375H_ANALOG_GAIN_7) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x05); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_6; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_7 && a_gain < GC2375H_ANALOG_GAIN_8) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x06); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_7; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else if (a_gain >= GC2375H_ANALOG_GAIN_8 && a_gain < GC2375H_ANALOG_GAIN_9) { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x07); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_8; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } else { ret |= gc2375h_write_reg(gc2375h->client, 0x20, 0x0c); ret |= gc2375h_write_reg(gc2375h->client, 0x22, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, 0x26, 0x0e); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_ANALOG_GAIN_REG, 0x08); temp = 64 * a_gain / GC2375H_ANALOG_GAIN_9; ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_H_REG, temp >> 6); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PREGAIN_L_REG, (temp << 2) & 0xfc); } return ret; } static int gc2375h_set_ctrl(struct v4l2_ctrl *ctrl) { struct gc2375h *gc2375h = container_of(ctrl->handler, struct gc2375h, ctrl_handler); struct i2c_client *client = gc2375h->client; s64 max; int ret = 0; /* Propagate change of current control to all related controls */ switch (ctrl->id) { case V4L2_CID_VBLANK: /* Update max exposure while meeting expected vblanking */ max = gc2375h->cur_mode->height + ctrl->val - 4; __v4l2_ctrl_modify_range(gc2375h->exposure, gc2375h->exposure->minimum, max, gc2375h->exposure->step, gc2375h->exposure->default_value); break; } if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE: /* 4 least significant bits of expsoure are fractional part */ ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_REG_EXPOSURE_H, (ctrl->val >> 8) & 0x3f); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_REG_EXPOSURE_L, ctrl->val & 0xff); break; case V4L2_CID_ANALOGUE_GAIN: ret = gc2375h_set_gain_reg(gc2375h, ctrl->val); break; case V4L2_CID_VBLANK: ret |= gc2375h_write_reg(gc2375h->client, GC2375H_PAGE_SELECT, 0x00); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_REG_VTS_H, ((ctrl->val) >> 8) & 0x1f); ret |= gc2375h_write_reg(gc2375h->client, GC2375H_REG_VTS_L, (ctrl->val & 0xff)); break; default: dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n", __func__, ctrl->id, ctrl->val); break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops gc2375h_ctrl_ops = { .s_ctrl = gc2375h_set_ctrl, }; static int gc2375h_initialize_controls(struct gc2375h *gc2375h) { const struct gc2375h_mode *mode; struct v4l2_ctrl_handler *handler; struct v4l2_ctrl *ctrl; s64 exposure_max, vblank_def; u32 h_blank; int ret; struct device *dev = &gc2375h->client->dev; dev_info(dev, "Enter %s(%d) !\n", __func__, __LINE__); handler = &gc2375h->ctrl_handler; mode = gc2375h->cur_mode; ret = v4l2_ctrl_handler_init(handler, 8); if (ret) return ret; handler->lock = &gc2375h->mutex; ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ, 0, 0, link_freq_menu_items); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE, 0, GC2375H_PIXEL_RATE, 1, GC2375H_PIXEL_RATE); h_blank = mode->hts_def - mode->width; gc2375h->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (gc2375h->hblank) gc2375h->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; vblank_def = mode->vts_def - mode->height; gc2375h->vblank = v4l2_ctrl_new_std(handler, &gc2375h_ctrl_ops, V4L2_CID_VBLANK, vblank_def, GC2375H_VTS_MAX - mode->height, 1, vblank_def); exposure_max = mode->vts_def - 4; gc2375h->exposure = v4l2_ctrl_new_std(handler, &gc2375h_ctrl_ops, V4L2_CID_EXPOSURE, GC2375H_EXPOSURE_MIN, exposure_max, GC2375H_EXPOSURE_STEP, mode->exp_def); gc2375h->anal_gain = v4l2_ctrl_new_std(handler, &gc2375h_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, GC2375H_GAIN_MIN, GC2375H_GAIN_MAX, GC2375H_GAIN_STEP, GC2375H_GAIN_DEFAULT); if (handler->error) { ret = handler->error; dev_err(&gc2375h->client->dev, "Failed to init controls(%d)\n", ret); goto err_free_handler; } gc2375h->subdev.ctrl_handler = handler; return 0; err_free_handler: v4l2_ctrl_handler_free(handler); return ret; } static int gc2375h_check_sensor_id(struct gc2375h *gc2375h, struct i2c_client *client) { struct device *dev = &gc2375h->client->dev; u8 pid, ver = 0x00; int ret; unsigned short id; ret = gc2375h_read_reg(client, GC2375H_REG_CHIP_ID_H, &pid); if (ret) { dev_err(dev, "Read chip ID H register error\n"); return ret; } ret = gc2375h_read_reg(client, GC2375H_REG_CHIP_ID_L, &ver); if (ret) { dev_err(dev, "Read chip ID L register error\n"); return ret; } id = SENSOR_ID(pid, ver); if (id != CHIP_ID) { dev_err(dev, "Unexpected sensor id(%06x), ret(%d)\n", id, ret); return ret; } dev_info(dev, "detected gc%04x sensor\n", id); return 0; } static int gc2375h_configure_regulators(struct gc2375h *gc2375h) { unsigned int i; for (i = 0; i < GC2375H_NUM_SUPPLIES; i++) gc2375h->supplies[i].supply = gc2375h_supply_names[i]; return devm_regulator_bulk_get(&gc2375h->client->dev, GC2375H_NUM_SUPPLIES, gc2375h->supplies); } static int gc2375h_parse_of(struct gc2375h *gc2375h) { struct device *dev = &gc2375h->client->dev; struct device_node *endpoint; struct fwnode_handle *fwnode; int rval; endpoint = of_graph_get_next_endpoint(dev->of_node, NULL); if (!endpoint) { dev_err(dev, "Failed to get endpoint\n"); return -EINVAL; } fwnode = of_fwnode_handle(endpoint); rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0); of_node_put(endpoint); if (rval <= 0) { dev_warn(dev, " Get mipi lane num failed!\n"); return -1; } gc2375h->lane_num = rval; if (1 == gc2375h->lane_num) { gc2375h->cur_mode = &supported_modes_1lane[0]; supported_modes = supported_modes_1lane; gc2375h->cfg_num = ARRAY_SIZE(supported_modes_1lane); /* pixel rate = link frequency * 2 * lanes / BITS_PER_SAMPLE */ gc2375h->pixel_rate = MIPI_FREQ * 2U * gc2375h->lane_num / 10U; dev_info(dev, "lane_num(%d) pixel_rate(%u)\n", gc2375h->lane_num, gc2375h->pixel_rate); } else { dev_err(dev, "unsupported lane_num(%d)\n", gc2375h->lane_num); return -1; } return 0; } static int gc2375h_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device_node *node = dev->of_node; struct gc2375h *gc2375h; struct v4l2_subdev *sd; char facing[2]; int ret; dev_info(dev, "driver version: %02x.%02x.%02x", DRIVER_VERSION >> 16, (DRIVER_VERSION & 0xff00) >> 8, DRIVER_VERSION & 0x00ff); gc2375h = devm_kzalloc(dev, sizeof(*gc2375h), GFP_KERNEL); if (!gc2375h) return -ENOMEM; ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX, &gc2375h->module_index); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING, &gc2375h->module_facing); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME, &gc2375h->module_name); ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME, &gc2375h->len_name); if (ret) { dev_err(dev, "could not get module information!\n"); return -EINVAL; } gc2375h->client = client; gc2375h->cur_mode = &supported_modes[0]; gc2375h->xvclk = devm_clk_get(dev, "xvclk"); if (IS_ERR(gc2375h->xvclk)) { dev_err(dev, "Failed to get xvclk\n"); return -EINVAL; } gc2375h->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(gc2375h->reset_gpio)) dev_warn(dev, "Failed to get reset-gpios\n"); gc2375h->pwdn_gpio = devm_gpiod_get(dev, "pwdn", GPIOD_OUT_HIGH); if (IS_ERR(gc2375h->pwdn_gpio)) dev_warn(dev, "Failed to get pwdn-gpios\n"); ret = gc2375h_parse_of(gc2375h); if (ret != 0) return -EINVAL; gc2375h->pinctrl = devm_pinctrl_get(dev); if (!IS_ERR(gc2375h->pinctrl)) { gc2375h->pins_default = pinctrl_lookup_state(gc2375h->pinctrl, OF_CAMERA_PINCTRL_STATE_DEFAULT); if (IS_ERR(gc2375h->pins_default)) dev_err(dev, "could not get default pinstate\n"); gc2375h->pins_sleep = pinctrl_lookup_state(gc2375h->pinctrl, OF_CAMERA_PINCTRL_STATE_SLEEP); if (IS_ERR(gc2375h->pins_sleep)) dev_err(dev, "could not get sleep pinstate\n"); } else { dev_err(dev, "no pinctrl\n"); } ret = gc2375h_configure_regulators(gc2375h); if (ret) { dev_err(dev, "Failed to get power regulators\n"); return ret; } mutex_init(&gc2375h->mutex); sd = &gc2375h->subdev; v4l2_i2c_subdev_init(sd, client, &gc2375h_subdev_ops); ret = gc2375h_initialize_controls(gc2375h); if (ret) goto err_destroy_mutex; ret = __gc2375h_power_on(gc2375h); if (ret) goto err_free_handler; ret = gc2375h_check_sensor_id(gc2375h, client); if (ret) goto err_power_off; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API sd->internal_ops = &gc2375h_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; #endif #if defined(CONFIG_MEDIA_CONTROLLER) gc2375h->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sd->entity, 1, &gc2375h->pad); if (ret < 0) goto err_power_off; #endif memset(facing, 0, sizeof(facing)); if (strcmp(gc2375h->module_facing, "back") == 0) facing[0] = 'b'; else facing[0] = 'f'; snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s", gc2375h->module_index, facing, GC2375H_NAME, dev_name(sd->dev)); ret = v4l2_async_register_subdev_sensor(sd); if (ret) { dev_err(dev, "v4l2 async register subdev failed\n"); goto err_clean_entity; } pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_idle(dev); return 0; err_clean_entity: #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif err_power_off: __gc2375h_power_off(gc2375h); err_free_handler: v4l2_ctrl_handler_free(&gc2375h->ctrl_handler); err_destroy_mutex: mutex_destroy(&gc2375h->mutex); return ret; } static void gc2375h_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct gc2375h *gc2375h = to_gc2375h(sd); v4l2_async_unregister_subdev(sd); #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif v4l2_ctrl_handler_free(&gc2375h->ctrl_handler); mutex_destroy(&gc2375h->mutex); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) __gc2375h_power_off(gc2375h); pm_runtime_set_suspended(&client->dev); } #if IS_ENABLED(CONFIG_OF) static const struct of_device_id gc2375h_of_match[] = { { .compatible = "galaxycore,gc2375h" }, {}, }; MODULE_DEVICE_TABLE(of, gc2375h_of_match); #endif static const struct i2c_device_id gc2375h_match_id[] = { { "galaxycore,gc2375h", 0 }, { }, }; static struct i2c_driver gc2375h_i2c_driver = { .driver = { .name = GC2375H_NAME, .pm = &gc2375h_pm_ops, .of_match_table = of_match_ptr(gc2375h_of_match), }, .probe = &gc2375h_probe, .remove = &gc2375h_remove, .id_table = gc2375h_match_id, }; static int __init sensor_mod_init(void) { return i2c_add_driver(&gc2375h_i2c_driver); } static void __exit sensor_mod_exit(void) { i2c_del_driver(&gc2375h_i2c_driver); } device_initcall_sync(sensor_mod_init); module_exit(sensor_mod_exit); MODULE_DESCRIPTION("GC2375H CMOS Image Sensor driver"); MODULE_LICENSE("GPL v2");