/* * drivers/input/touchscreen/gslX680.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tp_suspend.h" #include "gslx680_pad.h" #include //#define GSL_DEBUG #define REPORT_DATA_ANDROID_4_0 //#define SLEEP_CLEAR_POINT //#define FILTER_POINT #ifdef FILTER_POINT #define FILTER_MAX 9 #endif #define GSLX680_I2C_NAME "gslX680-pad" #define GSLX680_I2C_ADDR 0x40 int g_wake_pin=0; int g_irq_pin=0; #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define TPD_PROC_DEBUG #ifdef TPD_PROC_DEBUG #include #include #include //lzk //static struct proc_dir_entry *gsl_config_proc = NULL; #define GSL_CONFIG_PROC_FILE "gsl_config" #define CONFIG_LEN 31 static char gsl_read[CONFIG_LEN]; static u8 gsl_data_proc[8] = {0}; static u8 gsl_proc_flag = 0; #endif #define PRESS_MAX 255 #define MAX_FINGERS 10 #define MAX_CONTACTS 10 #define DMA_TRANS_LEN 0x20 static struct i2c_client *gsl_client = NULL; struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; u8 *touch_data; u8 device_id; int irq; int irq_pin; int wake_pin; struct tp_device tp; int screen_max_x; int screen_max_y; struct gsl_touch_chip_info *gsl_chip_info; struct work_struct download_fw_work; struct work_struct resume_work; }; #ifdef GSL_DEBUG #define print_info(fmt, args...) \ do{ \ printk(fmt, ##args); \ }while(0) #else #define print_info(fmt, args...) #endif static u32 id_sign[MAX_CONTACTS+1] = {0}; static u8 id_state_flag[MAX_CONTACTS+1] = {0}; static u8 id_state_old_flag[MAX_CONTACTS+1] = {0}; static u16 x_old[MAX_CONTACTS+1] = {0}; static u16 y_old[MAX_CONTACTS+1] = {0}; static u16 x_new = 0; static u16 y_new = 0; static struct gsl_touch_chip_info gsl_chip_info[] = { {GSL680,GSLX680_FW,ARRAY_SIZE(GSLX680_FW),gsl_config_data_id,ARRAY_SIZE(gsl_config_data_id)}, {GSL3676,GSL3675B_FW_HK,ARRAY_SIZE(GSL3675B_FW_HK),gsl3678_config_data_id,ARRAY_SIZE(gsl3678_config_data_id)}, {GSL1686,GSL1686_FW,ARRAY_SIZE(GSL1686_FW),gsl1686_config_data_id,ARRAY_SIZE(gsl1686_config_data_id)}, }; static int gslX680_init(void) { gpio_set_value(g_wake_pin,1); gpio_set_value(g_irq_pin,1); return 0; } static int gslX680_shutdown_low(void) { if(g_wake_pin !=0) { gpio_direction_output(g_wake_pin, 0); gpio_set_value(g_wake_pin,0); } return 0; } static int gslX680_shutdown_high(void) { if(g_wake_pin !=0) { gpio_direction_output(g_wake_pin, 0); gpio_set_value(g_wake_pin,1); } return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; //xfer_msg[0].scl_rate = 400*1000; //RK3066 RK2926 I2C±¨´íʱ´ò¿ªÕâ¸ö return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125) { dev_err(&client->dev,"%s too big datalen = %d!\n", __func__, datalen); return -1; } tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL) { memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; if (datalen > 126) { dev_err(&client->dev, "%s too big datalen = %d!\n", __func__, datalen); return -1; } ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0) { dev_err(&client->dev, "%s set data address fail!\n", __func__); return ret; } return i2c_master_recv(client, pdata, datalen); } static __inline__ void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static void gsl_load_fw(struct i2c_client *client) { u8 buf[DMA_TRANS_LEN*4 + 1] = {0}; u8 send_flag = 1; u8 *cur = buf + 1; u32 source_line = 0; u32 source_len; struct gsl_ts *ts = i2c_get_clientdata(gsl_client); struct fw_data *ptr_fw; ptr_fw = ts->gsl_chip_info->ptr_fw; source_len = ts->gsl_chip_info->ptr_fw_len; for (source_line = 0; source_line < source_len; source_line++) { /* init page trans, set the page val */ if (GSL_PAGE_REG == ptr_fw[source_line].offset) { fw2buf(cur, &ptr_fw[source_line].val); gsl_write_interface(client, GSL_PAGE_REG, buf, 4); //i2c_smbus_write_i2c_block_data(client, GSL_PAGE_REG,4, buf); send_flag = 1; } else { if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) buf[0] = (u8)ptr_fw[source_line].offset; fw2buf(cur, &ptr_fw[source_line].val); cur += 4; if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) { gsl_write_interface(client, buf[0], buf, cur - buf - 1); //i2c_smbus_write_i2c_block_data(client, buf[0], cur - buf - 1, buf); cur = buf + 1; } send_flag++; } } } static int test_i2c(struct i2c_client *client) { u8 read_buf = 0; u8 write_buf = 0x12; int ret, rc = 1; ret = gsl_ts_read( client, 0xf0, &read_buf, sizeof(read_buf) ); if (ret < 0) rc --; else dev_info(&client->dev, "I read reg 0xf0 is %x\n", read_buf); mdelay(2); ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf)); if(ret >= 0 ) dev_info(&client->dev, "I write reg 0xf0 0x12\n"); mdelay(2); ret = gsl_ts_read( client, 0xf0, &read_buf, sizeof(read_buf) ); if(ret < 0 ) rc --; else dev_info(&client->dev, "I read reg 0xf0 is 0x%x\n", read_buf); return rc; } static void startup_chip(struct i2c_client *client) { u8 tmp = 0x00; #ifdef GSL_NOID_VERSION struct gsl_ts *ts = i2c_get_clientdata(client); gsl_DataInit(ts->gsl_chip_info->conf_in); #endif gsl_ts_write(client, 0xe0, &tmp, 1); } static void reset_chip(struct i2c_client *client) { u8 tmp = 0x88; u8 buf[4] = {0x00}; gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp)); mdelay(5); tmp = 0x04; gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp)); mdelay(5); gsl_ts_write(client, 0xbc, buf, sizeof(buf)); } static void clr_reg(struct i2c_client *client) { u8 write_buf[4] = {0}; write_buf[0] = 0x88; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); write_buf[0] = 0x03; gsl_ts_write(client, 0x80, &write_buf[0], 1); msleep(5); write_buf[0] = 0x04; gsl_ts_write(client, 0xe4, &write_buf[0], 1); msleep(5); write_buf[0] = 0x00; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); } static void init_chip(struct i2c_client *client) { int rc; struct gsl_ts *ts = i2c_get_clientdata(client); gslX680_shutdown_low(); mdelay(20); gslX680_shutdown_high(); gpio_set_value(g_irq_pin,1); msleep(20); rc = test_i2c(client); if(rc < 0) { dev_err(&client->dev, "------gslX680 test_i2c error------\n"); return; } queue_work(ts->wq, &ts->download_fw_work); } static void check_mem_data(struct i2c_client *client) { u8 read_buf[4] = {0}; gsl_ts_read(client,0xb0, read_buf, sizeof(read_buf)); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) { dev_info(&client->dev, "#########check mem read 0xb0 = %x %x %x %x #########\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip(client); } } #ifdef TPD_PROC_DEBUG static int char_to_int(char ch) { if(ch>='0' && ch<='9') return (ch-'0'); else return (ch-'a'+10); } static int gsl_read_interface(struct i2c_client *client, u8 reg, u8 *buf, u32 num) { int err = 0; u8 temp = reg; //mutex_lock(&gsl_i2c_lock); if(temp < 0x80) { temp = (temp+8)&0x5c; i2c_master_send(client,&temp,1); err = i2c_master_recv(client,&buf[0],4); temp = reg; i2c_master_send(client,&temp,1); err = i2c_master_recv(client,&buf[0],4); } i2c_master_send(client,®,1); err = i2c_master_recv(client,&buf[0],num); //mutex_unlock(&gsl_i2c_lock); return err; } static int gsl_config_read_proc(struct seq_file *m,void *v) { //char *ptr = page; char temp_data[5] = {0}; unsigned int tmp=0; if('v'==gsl_read[0]&&'s'==gsl_read[1]) { #ifdef GSL_NOID_VERSION tmp=gsl_version_id(); #else tmp=0x20121215; #endif seq_printf(m,"version:%x\n",tmp); } else if('r'==gsl_read[0]&&'e'==gsl_read[1]) { if('i'==gsl_read[3]) { #ifdef GSL_NOID_VERSION tmp=(gsl_data_proc[5]<<8) | gsl_data_proc[4]; #endif } else { gsl_ts_write(gsl_client,0xf0,&gsl_data_proc[4],4); gsl_read_interface(gsl_client,gsl_data_proc[0],temp_data,4); seq_printf(m,"offset : {0x%02x,0x",gsl_data_proc[0]); seq_printf(m,"%02x",temp_data[3]); seq_printf(m,"%02x",temp_data[2]); seq_printf(m,"%02x",temp_data[1]); seq_printf(m,"%02x};\n",temp_data[0]); } } return 0; } static ssize_t gsl_config_write_proc(struct file *file, const char *buffer, size_t count, loff_t *data) { u8 buf[8] = {0}; char temp_buf[CONFIG_LEN]; char *path_buf; int tmp = 0; int tmp1 = 0; struct gsl_ts *ts = i2c_get_clientdata(gsl_client); print_info("[tp-gsl][%s] \n",__func__); if(count > 512) { pr_err("size not match [%d:%zu]\n", CONFIG_LEN, count); return -EFAULT; } path_buf=kzalloc(count,GFP_KERNEL); if(!path_buf) { pr_err("alloc path_buf memory error \n"); } if(copy_from_user(path_buf, buffer, count)) { pr_err("copy from user fail\n"); goto exit_write_proc_out; } memcpy(temp_buf,path_buf,(count=0 && tmp1gsl_chip_info->conf_in_len) { ts->gsl_chip_info->conf_in[tmp1] = tmp; } } #endif exit_write_proc_out: kfree(path_buf); return count; } static int gsl_server_list_open(struct inode *inode,struct file *file) { return single_open(file,gsl_config_read_proc,NULL); } static const struct proc_ops gsl_seq_fops = { .proc_open = gsl_server_list_open, .proc_read = seq_read, .proc_release = single_release, .proc_write = gsl_config_write_proc, }; #endif #ifdef FILTER_POINT static void filter_point(u16 x, u16 y , u8 id) { u16 x_err =0; u16 y_err =0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if(id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x -x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y -y_old[id]) : (y_old[id] - y); if( (x_err > FILTER_MAX && y_err > FILTER_MAX/3) || (x_err > FILTER_MAX/3 && y_err > FILTER_MAX) ) { filter_step_x = x_err; filter_step_y = y_err; } else { if(x_err > FILTER_MAX) filter_step_x = x_err; if(y_err> FILTER_MAX) filter_step_y = y_err; } if(x_err <= 2*FILTER_MAX && y_err <= 2*FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if(x_err <= 3*FILTER_MAX && y_err <= 3*FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if(x_err <= 4*FILTER_MAX && y_err <= 4*FILTER_MAX) { filter_step_x = filter_step_x*3/4; filter_step_y = filter_step_y*3/4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y , u8 id) { u16 x_err =0; u16 y_err =0; return; id_sign[id]=id_sign[id]+1; if(id_sign[id]==1){ x_old[id]=x; y_old[id]=y; } x = (x_old[id] + x)/2; y = (y_old[id] + y)/2; if(x>x_old[id]){ x_err=x -x_old[id]; } else{ x_err=x_old[id]-x; } if(y>y_old[id]){ y_err=y -y_old[id]; } else{ y_err=y_old[id]-y; } if( (x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3) ){ x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else{ if(x_err > 3){ x_new = x; x_old[id] = x; } else x_new = x_old[id]; if(y_err> 3){ y_new = y; y_old[id] = y; } else y_new = y_old[id]; } if(id_sign[id]==1){ x_new= x_old[id]; y_new= y_old[id]; } } #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { if(revert_xy) swap(x, y); if(x > ts->screen_max_x || y > ts->screen_max_y) { return; } if(revert_x) x = ts->screen_max_x-x; if(revert_y) { y = ts->screen_max_y-y; } #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, id); input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); #else input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X,x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); input_mt_sync(ts->input); #endif } static void gslX680_ts_worker(struct work_struct *work) { int rc, i; u8 id, touches; u16 x, y; #ifdef GSL_NOID_VERSION unsigned int tmp1; u8 buf[4] = {0}; struct gsl_touch_info cinfo = {{0}}; #endif struct gsl_ts *ts = container_of(work, struct gsl_ts,work); #ifdef TPD_PROC_DEBUG if(gsl_proc_flag == 1) goto schedule; #endif rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size); if (rc < 0) { dev_err(&ts->client->dev, "read failed\n"); reset_chip(ts->client); startup_chip(ts->client); goto schedule; } touches = ts->touch_data[ts->dd->touch_index]; #ifdef GSL_NOID_VERSION cinfo.finger_num = touches; for(i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i ++) { cinfo.x[i] = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); cinfo.id[i] = ((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf0)>>4); } cinfo.finger_num=(ts->touch_data[3]<<24)|(ts->touch_data[2]<<16) |(ts->touch_data[1]<<8)|(ts->touch_data[0]); gsl_alg_id_main(&cinfo); tmp1=gsl_mask_tiaoping(); if(tmp1>0&&tmp1<0xffffffff) { buf[0]=0xa;buf[1]=0;buf[2]=0;buf[3]=0; gsl_ts_write(ts->client,0xf0,buf,4); buf[0]=(u8)(tmp1 & 0xff); buf[1]=(u8)((tmp1>>8) & 0xff); buf[2]=(u8)((tmp1>>16) & 0xff); buf[3]=(u8)((tmp1>>24) & 0xff); gsl_ts_write(ts->client,0x8,buf,4); } touches = cinfo.finger_num; #endif for(i = 1; i <= MAX_CONTACTS; i ++) { if(touches == 0) id_sign[i] = 0; id_state_flag[i] = 0; } for(i= 0;i < (touches > MAX_FINGERS ? MAX_FINGERS : touches);i ++) { #ifdef GSL_NOID_VERSION { id = cinfo.id[i]; x = cinfo.x[i]; y = cinfo.y[i]; } #else { x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; } #endif if(1 <=id && id <= MAX_CONTACTS) { #ifdef FILTER_POINT filter_point(x, y ,id); #else record_point(x, y , id); #endif //report_data(ts, x_new, y_new, 10, id); report_data(ts, x, y, 10, id); id_state_flag[id] = 1; } } for(i = 1; i <= MAX_CONTACTS; i ++) { if( (0 == touches) || ((0 != id_state_old_flag[i]) && (0 == id_state_flag[i])) ) { #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); #endif id_sign[i]=0; } id_state_old_flag[i] = id_state_flag[i]; } if(0 == touches) { #ifndef REPORT_DATA_ANDROID_4_0 input_mt_sync(ts->input); #endif } input_sync(ts->input); schedule: enable_irq(ts->irq); } static irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = dev_id; disable_irq_nosync(ts->irq); if (!work_pending(&ts->work)) { queue_work(ts->wq, &ts->work); } return IRQ_HANDLED; } static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = kzalloc(ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } input_device = input_allocate_device(); if (!input_device) { rc = -ENOMEM; goto error_alloc_dev; } ts->input = input_device; input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); #ifdef REPORT_DATA_ANDROID_4_0 __set_bit(EV_ABS, input_device->evbit); __set_bit(EV_KEY, input_device->evbit); __set_bit(EV_REP, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_mt_init_slots(input_device, (MAX_CONTACTS+1),0); #else input_set_abs_params(input_device,ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS+1), 0, 0); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif set_bit(ABS_MT_POSITION_X, input_device->absbit); set_bit(ABS_MT_POSITION_Y, input_device->absbit); set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit); set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit); input_set_abs_params(input_device,ABS_MT_POSITION_X, 0, ts->screen_max_x, 0, 0); input_set_abs_params(input_device,ABS_MT_POSITION_Y, 0, ts->screen_max_y, 0, 0); input_set_abs_params(input_device,ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device,ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0); ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "Could not create workqueue\n"); goto error_wq_create; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gslX680_ts_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); error_wq_create: input_free_device(input_device); error_alloc_dev: kfree(ts->touch_data); return rc; } static int gsl_ts_suspend(struct device *dev) { struct gsl_ts *ts = dev_get_drvdata(dev); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 int i; #endif #endif disable_irq_nosync(ts->irq); gslX680_shutdown_low(); #ifdef SLEEP_CLEAR_POINT msleep(10); #ifdef REPORT_DATA_ANDROID_4_0 for(i = 1; i <= MAX_CONTACTS ;i ++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); msleep(10); report_data(ts, 1, 1, 10, 1); input_sync(ts->input); #endif return 0; } static int gsl_ts_resume(struct device *dev) { struct gsl_ts *ts = dev_get_drvdata(dev); queue_work(ts->wq, &ts->resume_work); return 0; } static int gsl_ts_early_suspend(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); gsl_ts_suspend(&ts->client->dev); return 0; } static int gsl_ts_late_resume(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); gsl_ts_resume(&ts->client->dev); return 0; } static void gsl_download_fw_work(struct work_struct *work) { struct gsl_ts *ts = dev_get_drvdata(&gsl_client->dev); clr_reg(ts->client); reset_chip(ts->client); gsl_load_fw(ts->client); startup_chip(ts->client); reset_chip(ts->client); startup_chip(ts->client); } static void gsl_resume_work(struct work_struct *work) { struct gsl_ts *ts = dev_get_drvdata(&gsl_client->dev); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 int i; #endif #endif gslX680_shutdown_high(); msleep(20); //reset_chip(ts->client); //startup_chip(ts->client); check_mem_data(ts->client); check_mem_data(ts->client); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 for(i =1;i<=MAX_CONTACTS;i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); #endif enable_irq(ts->irq); } static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device_node *np = client->dev.of_node; enum of_gpio_flags wake_flags, irq_flags; struct gsl_ts *ts; int rc; int gsl_chip_id = 0; int i,ret; printk("GSLX680 Enter %s\n", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C functionality not supported\n"); return -ENODEV; } ts = kzalloc(sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; ts->client = client; i2c_set_clientdata(client, ts); ts->device_id = id->driver_data; of_property_read_u32(np,"screen_max_x",&(ts->screen_max_x)); of_property_read_u32(np,"screen_max_y",&(ts->screen_max_y)); dev_info(&ts->client->dev, "[tp-gsl] screen_max_x =[%d] \n",ts->screen_max_x); dev_info(&ts->client->dev, "[tp-gsl] screen_max_y =[%d] \n",ts->screen_max_y); of_property_read_u32(np, "revert_x", &revert_x); of_property_read_u32(np, "revert_y", &revert_y); of_property_read_u32(np, "revert_xy", &revert_xy); dev_info(&ts->client->dev, "[tp-gsl] revert_x =[%d] \n",revert_x); dev_info(&ts->client->dev, "[tp-gsl] revert_y =[%d] \n",revert_y); dev_info(&ts->client->dev, "[tp-gsl] revert_xy =[%d] \n",revert_xy); ts->irq_pin=of_get_named_gpio_flags(np, "touch-gpio", 0, &irq_flags); ts->wake_pin=of_get_named_gpio_flags(np, "reset-gpio", 0, &wake_flags); ret = of_property_read_u32(np, "chip_id", &gsl_chip_id); if (ret) gsl_chip_id = GSL680; dev_info(&ts->client->dev, "[tp-gsl] gsl_chip_id =[%d] \n",gsl_chip_id); for (i=0; igsl_chip_info = &gsl_chip_info[i]; break; } } if (gpio_is_valid(ts->wake_pin)) { rc = devm_gpio_request_one(&ts->client->dev, ts->wake_pin, (wake_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH, "gslX680 wake pin"); if (rc != 0) { dev_err(&ts->client->dev, "gslX680 wake pin error\n"); return -EIO; } g_wake_pin = ts->wake_pin; } else { dev_info(&ts->client->dev, "wake pin invalid\n"); } if (gpio_is_valid(ts->irq_pin)) { rc = devm_gpio_request_one(&ts->client->dev, ts->irq_pin, (irq_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH, "gslX680 irq pin"); if (rc != 0) { dev_err(&ts->client->dev, "gslX680 irq pin error\n"); return -EIO; } g_irq_pin = ts->irq_pin; } else { dev_info(&ts->client->dev, "irq pin invalid\n"); } INIT_WORK(&ts->download_fw_work, gsl_download_fw_work); INIT_WORK(&ts->resume_work, gsl_resume_work); gslX680_init(); rc = gslX680_ts_init(client, ts); if (rc < 0) { dev_err(&client->dev, "GSLX680 init failed\n"); goto error_mutex_destroy; } gsl_client = client; init_chip(ts->client); check_mem_data(ts->client); ts->irq=gpio_to_irq(ts->irq_pin); //If not defined in client if (ts->irq) { rc = devm_request_threaded_irq(&client->dev, ts->irq, NULL, gsl_ts_irq, irq_flags | IRQF_ONESHOT, client->name, ts); if (rc != 0) { dev_err(&client->dev, "Cannot allocate ts INT!ERRNO:%d\n", rc); goto error_req_irq_fail; } disable_irq(ts->irq); } else { dev_err(&client->dev, "gsl x680 irq req fail\n"); goto error_req_irq_fail; } /* create debug attribute */ #ifdef TPD_PROC_DEBUG proc_create(GSL_CONFIG_PROC_FILE,0666,NULL,&gsl_seq_fops); gsl_proc_flag = 0; #endif gpio_set_value(ts->irq_pin, 0); enable_irq(ts->irq); ts->tp.tp_resume = gsl_ts_late_resume; ts->tp.tp_suspend = gsl_ts_early_suspend; tp_register_fb(&ts->tp); return 0; //exit_set_irq_mode: error_req_irq_fail: free_irq(ts->irq, ts); error_mutex_destroy: input_free_device(ts->input); kfree(ts); return rc; } static void gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); free_irq(ts->irq, ts); destroy_workqueue(ts->wq); input_unregister_device(ts->input); kfree(ts->touch_data); kfree(ts); } static struct of_device_id gsl_ts_ids[] = { {.compatible = "gslX680-pad"}, {} }; static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); #if !defined(CONFIG_DRM_FBDEV_EMULATION) && defined(CONFIG_PM) static const struct dev_pm_ops gsl_pm_ops = { .suspend = gsl_ts_suspend, .resume = gsl_ts_resume, }; #endif static struct i2c_driver gsl_ts_driver = { .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(gsl_ts_ids), #if !defined(CONFIG_DRM_FBDEV_EMULATION) && defined(CONFIG_PM) .pm = &gsl_pm_ops, #endif }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, }; static int __init gsl_ts_init(void) { int ret; ret = i2c_add_driver(&gsl_ts_driver); return ret; } static void __exit gsl_ts_exit(void) { i2c_del_driver(&gsl_ts_driver); return; } module_init(gsl_ts_init); module_exit(gsl_ts_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver"); MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com"); MODULE_ALIAS("platform:gsl_ts");