/* * drivers/input/touchscreen/gslX680.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../tp_suspend.h" #include "rockchip_gslX680_88v.h" #include "rockchip_gsl3670.h" #define REPORT_DATA_ANDROID_4_0 #define SLEEP_CLEAR_POINT #ifdef FILTER_POINT #define FILTER_MAX 9 #endif #define GSLX680_I2C_NAME "gslX680-d708" #define GSLX680_I2C_ADDR 0x40 #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define PRESS_MAX 255 #define MAX_FINGERS 5 #define MAX_CONTACTS 10 #define DMA_TRANS_LEN 0x20 #ifdef GSL_MONITOR static struct delayed_work gsl_monitor_work; static struct workqueue_struct *gsl_monitor_workqueue; static u8 int_1st[4] = {0}; static u8 int_2nd[4] = {0}; static char dac_counter; static char b0_counter; static char bc_counter; static char i2c_lock_flag; #endif /* Will@20150707 + click tp can wake up lcd when lcd suspend. */ /* if define enable this function */ /* #define BND_GESTURE */ #ifdef BND_GESTURE extern void rk_send_wakeup_key(void); static int gsl_lcd_flag = -1; static int gsl_gesture_flag = -1; #endif #define TPD_PROC_DEBUG #ifdef TPD_PROC_DEBUG #include #include #define GSL_CONFIG_PROC_FILE "gsl_config" #define CONFIG_LEN 31 static char gsl_read[CONFIG_LEN]; static u8 gsl_data_proc[8] = {0}; static u8 gsl_proc_flag; #endif static struct i2c_client *gsl_client; int g_wake_pin; /* EXPORT_SYNBOL(g_wake_pin); */ #ifdef HAVE_TOUCH_KEY static u16 key; static int key_state_flag; struct key_data { u16 key; u16 x_min; u16 x_max; u16 y_min; u16 y_max; }; const u16 key_array[] = { KEY_BACK, KEY_HOME, KEY_MENU, KEY_SEARCH, }; #define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0])) struct key_data gsl_key_data[MAX_KEY_NUM] = { {KEY_BACK, 2048, 2048, 2048, 2048}, {KEY_HOME, 2048, 2048, 2048, 2048}, {KEY_MENU, 2048, 2048, 2048, 2048}, {KEY_SEARCH, 2048, 2048, 2048, 2048}, }; #endif struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; u8 *touch_data; u8 device_id; int irq; int irq_pin; int wake_pin; struct tp_device tp; int screen_max_x; int screen_max_y; #if defined(CONFIG_HAS_EARLYSUSPEND) struct early_suspend early_suspend; #endif struct regulator *rst; }; #ifdef GSL_DEBUG #define print_info(fmt, args...) \ do { \ printk(fmt, ##args); \ } while (0) #else #define print_info(fmt, args...) #endif static u32 id_sign[MAX_CONTACTS + 1] = {0}; static u8 id_state_flag[MAX_CONTACTS + 1] = {0}; static u8 id_state_old_flag[MAX_CONTACTS + 1] = {0}; static u16 x_old[MAX_CONTACTS + 1] = {0}; static u16 y_old[MAX_CONTACTS + 1] = {0}; static u16 x_new; static u16 y_new; static int revert_x; static int revert_y = 1; static int revert_xy = 1; static u8 chip_type; static u8 is_noid_version = 1; int is_zet62xx; static int gslX680_shutdown_low(void) { if (g_wake_pin != 0) { gpio_direction_output(g_wake_pin, 0); } return 0; } static int gslX680_shutdown_high(void) { if (g_wake_pin != 0) { gpio_direction_output(g_wake_pin, 1); } return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125) { printk("%s too big datalen = %d!\n", __func__, datalen); return -1; } tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL) { memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; if (datalen > 126) { printk("%s too big datalen = %d!\n", __func__, datalen); return -1; } ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0) { printk("%s set data address fail!\n", __func__); return ret; } return i2c_master_recv(client, pdata, datalen); } static __inline__ void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static void gsl_load_fw(struct i2c_client *client) { u8 buf[DMA_TRANS_LEN*4 + 1] = {0}; u8 send_flag = 1; u8 *cur = buf + 1; u32 source_line = 0; u32 source_len; const struct fw_data *ptr_fw; int ret = 0; int error_count = 0; printk("=============gsl_load_fw start==============\n"); printk(" Enter gsl1680f \n"); ptr_fw = GSL1680F_FW; source_len = ARRAY_SIZE(GSL1680F_FW); for (source_line = 0; source_line < source_len; source_line++) { /* init page trans, set the page val */ if (GSL_PAGE_REG == ptr_fw[source_line].offset) { fw2buf(cur, &ptr_fw[source_line].val); ret = gsl_write_interface(client, GSL_PAGE_REG, buf, 4); if (ret != 0) { error_count++; } send_flag = 1; } else { if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) buf[0] = (u8)ptr_fw[source_line].offset; fw2buf(cur, &ptr_fw[source_line].val); cur += 4; if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) { ret = gsl_write_interface(client, buf[0], buf, cur - buf - 1); if (ret != 0) { error_count++; } cur = buf + 1; } if (error_count >= 20) return; send_flag++; } } printk("=============gsl_load_fw end==============\n"); } static int test_i2c(struct i2c_client *client) { u8 read_buf = 0; u8 write_buf = 0x12; int ret, rc = 1; ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; else printk("I read reg 0xf0 is %x\n", read_buf); msleep(2); ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf)); if (ret >= 0) printk("I write reg 0xf0 0x12\n"); msleep(2); ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; else printk("I read reg 0xf0 is 0x%x\n", read_buf); return rc; } static void startup_chip(struct i2c_client *client) { u8 tmp = 0x00; if (2 == is_noid_version) { gsl_DataInit(gsl_config_data_id_1680f); } if (1 == is_noid_version) { gsl_DataInit(gsl_config_data_id); } gsl_ts_write(client, 0xe0, &tmp, 1); msleep(10); } static void reset_chip(struct i2c_client *client) { u8 tmp = 0x88; u8 buf[4] = {0x00}; gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp)); msleep(20); tmp = 0x04; gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp)); msleep(10); gsl_ts_write(client, 0xbc, buf, sizeof(buf)); msleep(10); } static void clr_reg(struct i2c_client *client) { u8 write_buf[4] = {0}; write_buf[0] = 0x88; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); write_buf[0] = 0x03; /*jzx@20131109 for old tp ic control.*/ gsl_ts_write(client, 0x80, &write_buf[0], 1); msleep(5); write_buf[0] = 0x04; gsl_ts_write(client, 0xe4, &write_buf[0], 1); msleep(5); write_buf[0] = 0x00; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); } static void init_chip(struct i2c_client *client) { int rc; gslX680_shutdown_low(); msleep(20); gslX680_shutdown_high(); msleep(20); rc = test_i2c(client); if (rc < 0) { printk("------ GslX680 test_i2c error, now touch id is Zet62xx ------\n"); is_zet62xx = 1; return; } clr_reg(client); reset_chip(client); reset_chip(client); clr_reg(client); reset_chip(client); gsl_load_fw(client); startup_chip(client); reset_chip(client); startup_chip(client); } static void check_mem_data(struct i2c_client *client) { u8 read_buf[4] = {0}; msleep(30); gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf)); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) { print_info("#########check mem read 0xb0 = %x %x %x %x #########\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip(client); } } #ifdef TPD_PROC_DEBUG static int char_to_int(char ch) { if (ch >= '0' && ch <= '9') return (ch - '0'); else return (ch - 'a' + 10); } /* static int gsl_config_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) */ static int gsl_config_read_proc(struct seq_file *m, void *v) { /* char *ptr = page; */ char temp_data[5] = {0}; unsigned int tmp = 0; if ('v' == gsl_read[0] && 's' == gsl_read[1]) { #ifdef GSL_NOID_VERSION tmp = gsl_version_id(); #else tmp = 0x20121215; #endif /* ptr += sprintf(ptr,"version:%x\n",tmp); */ seq_printf(m, "version:%x\n", tmp); } else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) { if ('i' == gsl_read[3]) { #ifdef GSL_NOID_VERSION tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4]; /*ptr +=sprintf(ptr,"gsl_config_data_id[%d] = ",tmp);*/ seq_printf(m, "gsl_config_data_id[%d] = ", tmp); if (tmp >= 0 && tmp < 512) { /* ptr +=sprintf(ptr,"%d\n",gsl_config_data_id[tmp]); */ seq_printf(m, "%d\n", gsl_config_data_id[tmp]); } #endif } else { i2c_smbus_write_i2c_block_data(gsl_client, 0xf0, 4, &gsl_data_proc[4]); if (gsl_data_proc[0] < 0x80) i2c_smbus_read_i2c_block_data(gsl_client, gsl_data_proc[0], 4, temp_data); i2c_smbus_read_i2c_block_data(gsl_client, gsl_data_proc[0], 4, temp_data); /* ptr +=sprintf(ptr,"offset : {0x%02x,0x",gsl_data_proc[0]); ptr +=sprintf(ptr,"%02x",temp_data[3]); ptr +=sprintf(ptr,"%02x",temp_data[2]); ptr +=sprintf(ptr,"%02x",temp_data[1]); ptr +=sprintf(ptr,"%02x};\n",temp_data[0]); */ seq_printf(m, "offset : {0x%02x,0x", gsl_data_proc[0]); seq_printf(m, "%02x", temp_data[3]); seq_printf(m, "%02x", temp_data[2]); seq_printf(m, "%02x", temp_data[1]); seq_printf(m, "%02x};\n", temp_data[0]); } } /* *eof = 1; return (ptr - page); */ return 0; } static int gsl_config_write_proc(struct file *file, const char *buffer, size_t count, loff_t *data) { u8 buf[8] = {0}; char temp_buf[CONFIG_LEN]; char *path_buf; int tmp = 0; int tmp1 = 0; print_info("[tp-gsl][%s] \n", __func__); if (count > 512) { print_info("size not match [%d:%ld]\n", CONFIG_LEN, count); return -EFAULT; } path_buf = kzalloc(count, GFP_KERNEL); if (!path_buf) { printk("alloc path_buf memory error \n"); } if (copy_from_user(path_buf, buffer, count)) { print_info("copy from user fail\n"); goto exit_write_proc_out; } memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN)); print_info("[tp-gsl][%s][%s]\n", __func__, temp_buf); buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]); buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]); buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]); buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]); buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]); buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]); buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]); buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]); if ('v' == temp_buf[0] && 's' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); printk("gsl version\n"); } else if ('s' == temp_buf[0] && 't' == temp_buf[1]) { gsl_proc_flag = 1; reset_chip(gsl_client); } else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) { msleep(20); reset_chip(gsl_client); startup_chip(gsl_client); #ifdef GSL_NOID_VERSION gsl_DataInit(gsl_config_data_id); #endif gsl_proc_flag = 0; } else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); memcpy(gsl_data_proc, buf, 8); } else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) { gsl_ts_write(gsl_client, buf[4], buf, 4); } #ifdef GSL_NOID_VERSION else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) { tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4]; tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; if (tmp1 >= 0 && tmp1 < 512) { gsl_config_data_id[tmp1] = tmp; } } #endif exit_write_proc_out: kfree(path_buf); return count; } static int gsl_server_list_open(struct inode *inode, struct file *file) { return single_open(file, gsl_config_read_proc, NULL); } static const struct file_operations gsl_seq_fops = { .open = gsl_server_list_open, .read = seq_read, .release = single_release, .write = gsl_config_write_proc, .owner = THIS_MODULE, }; #endif /* Will@20130514 - */ #ifdef FILTER_POINT static void filter_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y); if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) || (x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) { filter_step_x = x_err; filter_step_y = y_err; } else { if (x_err > FILTER_MAX) filter_step_x = x_err; if (y_err > FILTER_MAX) filter_step_y = y_err; } if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) { filter_step_x = filter_step_x * 3 / 4; filter_step_y = filter_step_y * 3 / 4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x = (x_old[id] + x) / 2; y = (y_old[id] + y) / 2; if (x > x_old[id]) { x_err = x - x_old[id]; } else { x_err = x_old[id] - x; } if (y > y_old[id]) { y_err = y - y_old[id]; } else { y_err = y_old[id] - y; } if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) { x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else { if (x_err > 3) { x_new = x; x_old[id] = x; } else x_new = x_old[id]; if (y_err > 3) { y_new = y; y_old[id] = y; } else y_new = y_old[id]; } if (id_sign[id] == 1) { x_new = x_old[id]; y_new = y_old[id]; } } #endif #ifdef HAVE_TOUCH_KEY static void report_key(struct gsl_ts *ts, u16 x, u16 y) { u16 i = 0; for (i = 0; i < MAX_KEY_NUM; i++) { if ((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max) && (gsl_key_data[i].y_min < y) && (y < gsl_key_data[i].y_max)) { key = gsl_key_data[i].key; input_report_key(ts->input, key, 1); input_sync(ts->input); key_state_flag = 1; break; } } } #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { if (revert_xy) swap(x, y); if (revert_x) x = ts->screen_max_x - x; if (revert_y) y = ts->screen_max_y - y; print_info("#####id=%d,x=%d,y=%d######\n", id, x, y); print_info("#####revert_xy=%d,revert_x=%d,revert_y=%d######\n", revert_xy, revert_x, revert_y); if (x > ts->screen_max_x || y > ts->screen_max_y) { #ifdef HAVE_TOUCH_KEY report_key(ts, x, y); #endif return; } #ifdef BND_GESTURE print_info("\n gsl_lcd_flag = %d ---- gsl_gesture_flag = %d \n\n", gsl_lcd_flag, gsl_gesture_flag); if (1 == gsl_lcd_flag && 1 == gsl_gesture_flag) { print_info("auto wake up lcd\n"); rk_send_wakeup_key(); } else { gsl_gesture_flag = 0; } #endif #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, id); input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); #else input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); input_mt_sync(ts->input); #endif } static void gslX680_ts_worker(struct work_struct *work) { int rc, i; u8 id, touches/*, read_buf[4] = {0}*/; u16 x, y; struct gsl_touch_info cinfo = { { 0 } }; u32 tmp1 = 0; u8 buf[4] = {0}; struct gsl_ts *ts = container_of(work, struct gsl_ts, work); print_info("=====gslX680_ts_worker=====\n"); #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) goto schedule; #endif #ifdef GSL_MONITOR if (i2c_lock_flag != 0) goto i2c_lock_schedule; else i2c_lock_flag = 1; #endif rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size); if (rc < 0) { dev_err(&ts->client->dev, "read failed\n"); goto schedule; } touches = ts->touch_data[ts->dd->touch_index]; print_info("-----touches: %d -----\n", touches); if (is_noid_version) { cinfo.finger_num = touches; print_info("tp-gsl finger_num = %d\n", cinfo.finger_num); for (i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) { cinfo.x[i] = join_bytes((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); print_info("tp-gsl x = %d y = %d \n", cinfo.x[i], cinfo.y[i]); } cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16) | (ts->touch_data[1] << 8) | (ts->touch_data[0]); gsl_alg_id_main(&cinfo); tmp1 = gsl_mask_tiaoping(); print_info("[tp-gsl] tmp1=%x\n", tmp1); if (tmp1 > 0 && tmp1 < 0xffffffff) { buf[0] = 0xa; buf[1] = 0; buf[2] = 0; buf[3] = 0; gsl_ts_write(gsl_client, 0xf0, buf, 4); buf[0] = (u8)(tmp1 & 0xff); buf[1] = (u8)((tmp1>>8) & 0xff); buf[2] = (u8)((tmp1>>16) & 0xff); buf[3] = (u8)((tmp1>>24) & 0xff); printk("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02x\n", tmp1, buf[0], buf[1], buf[2], buf[3]); gsl_ts_write(gsl_client, 0x8, buf, 4); } touches = cinfo.finger_num; } for (i = 1; i <= MAX_CONTACTS; i++) { if (touches == 0) id_sign[i] = 0; id_state_flag[i] = 0; } for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) { if (is_noid_version) { id = cinfo.id[i]; x = cinfo.x[i]; y = cinfo.y[i]; } else { x = join_bytes((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; } if (1 <= id && id <= MAX_CONTACTS) { #ifdef FILTER_POINT filter_point(x, y, id); #else record_point(x, y, id); #endif report_data(ts, x_new, y_new, 10, id); id_state_flag[id] = 1; } } for (i = 1; i <= MAX_CONTACTS; i++) { if ((0 == touches) || ((0 != id_state_old_flag[i]) && (0 == id_state_flag[i]))) { #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); #endif id_sign[i] = 0; } id_state_old_flag[i] = id_state_flag[i]; } #ifndef REPORT_DATA_ANDROID_4_0 if (0 == touches) { input_mt_sync(ts->input); #ifdef HAVE_TOUCH_KEY if (key_state_flag) { input_report_key(ts->input, key, 0); input_sync(ts->input); key_state_flag = 0; } #endif } #endif input_sync(ts->input); schedule: #ifdef GSL_MONITOR i2c_lock_flag = 0; i2c_lock_schedule: #endif enable_irq(ts->irq); } #ifdef GSL_MONITOR static void gsl_monitor_worker(struct work_struct *work) { u8 write_buf[4] = {0}; u8 read_buf[4] = {0}; char init_chip_flag = 0; print_info("----------------gsl_monitor_worker-----------------\n"); #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) { return; } #endif if (i2c_lock_flag != 0) goto queue_monitor_work; else i2c_lock_flag = 1; gsl_ts_read(gsl_client, 0xb0, read_buf, 4); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) b0_counter++; else b0_counter = 0; if (b0_counter > 1) { printk("======read 0xb0: %x %x %x %x ======\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; b0_counter = 0; goto queue_monitor_init_chip; } gsl_ts_read(gsl_client, 0xb4, read_buf, 4); int_2nd[3] = int_1st[3]; int_2nd[2] = int_1st[2]; int_2nd[1] = int_1st[1]; int_2nd[0] = int_1st[0]; int_1st[3] = read_buf[3]; int_1st[2] = read_buf[2]; int_1st[1] = read_buf[1]; int_1st[0] = read_buf[0]; if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] && int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) { printk("======int_1st: %x %x %x %x , int_2nd: %x %x %x %x ======\n", int_1st[3], int_1st[2], int_1st[1], int_1st[0], int_2nd[3], int_2nd[2], int_2nd[1], int_2nd[0]); init_chip_flag = 1; goto queue_monitor_init_chip; } #if 1 gsl_ts_read(gsl_client, 0xbc, read_buf, 4); if (read_buf[3] != 0 || read_buf[2] != 0 || read_buf[1] != 0 || read_buf[0] != 0) bc_counter++; else bc_counter = 0; if (bc_counter > 1) { printk("======read 0xbc: %x %x %x %x======\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; bc_counter = 0; } #else write_buf[3] = 0x01; write_buf[2] = 0xfe; write_buf[1] = 0x10; write_buf[0] = 0x00; gsl_ts_write(gsl_client, 0xf0, write_buf, 4); gsl_ts_read(gsl_client, 0x10, read_buf, 4); gsl_ts_read(gsl_client, 0x10, read_buf, 4); if (read_buf[3] < 10 && read_buf[2] < 10 && read_buf[1] < 10 && read_buf[0] < 10) dac_counter++; else dac_counter = 0; if (dac_counter > 1) { printk("======read DAC1_0: %x %x %x %x ======\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; dac_counter = 0; } #endif queue_monitor_init_chip: if (init_chip_flag) { #ifdef GSLX680_COMPATIBLE judge_chip_type(gsl_client); #endif init_chip(gsl_client); reset_chip(gsl_client); startup_chip(gsl_client); check_mem_data(gsl_client); } i2c_lock_flag = 0; queue_monitor_work: queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 100); } #endif static irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = dev_id; print_info("========gslX680 Interrupt=========\n"); #ifdef BND_GESTURE if (1 == gsl_lcd_flag) gsl_gesture_flag = 1; #endif disable_irq_nosync(ts->irq); if (!work_pending(&ts->work)) { queue_work(ts->wq, &ts->work); } return IRQ_HANDLED; } static int gsl_ts_init_ts(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; printk("[GSLX680] Enter %s\n", __func__); ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = devm_kzalloc(&client->dev, ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } input_device = input_allocate_device(); if (!input_device) { rc = -ENOMEM; goto error_alloc_dev; } ts->input = input_device; input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); #ifdef REPORT_DATA_ANDROID_4_0 __set_bit(EV_ABS, input_device->evbit); __set_bit(EV_KEY, input_device->evbit); __set_bit(EV_REP, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_mt_init_slots(input_device, (MAX_CONTACTS+1), 0); #else input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS+1), 0, 0); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif #ifdef HAVE_TOUCH_KEY input_device->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < MAX_KEY_NUM; i++) set_bit(key_array[i], input_device->keybit); #endif set_bit(ABS_MT_POSITION_X, input_device->absbit); set_bit(ABS_MT_POSITION_Y, input_device->absbit); set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit); set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit); input_set_abs_params(input_device, ABS_MT_POSITION_X, 0, ts->screen_max_x, 0, 0); input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0, ts->screen_max_y, 0, 0); input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0); ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "Could not create workqueue\n"); goto error_wq_create; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gslX680_ts_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); error_wq_create: input_free_device(input_device); error_alloc_dev: return rc; } static int gsl_ts_suspend(struct device *dev) { struct gsl_ts *ts = dev_get_drvdata(dev); int i; int tmp = 0; #ifdef GSL_NOID_VERSION tmp = gsl_version_id(); #endif #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) { return -1; } #endif #ifdef GSL_MONITOR cancel_delayed_work_sync(&gsl_monitor_work); #endif /* #ifdef BND_GESTURE // disable_irq_nosync(ts->irq); #else disable_irq_nosync(ts->irq); #endif*/ #ifdef BND_GESTURE /* gslX680_shutdown_low(); */ #else gslX680_shutdown_low(); #endif #ifdef SLEEP_CLEAR_POINT msleep(10); #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); msleep(10); report_data(ts, 1, 1, 10, 1); input_sync(ts->input); #endif return 0; } static int gsl_ts_resume(struct device *dev) { struct gsl_ts *ts = dev_get_drvdata(dev); int i; #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) { return -1; } #endif if ((!IS_ERR(ts->rst)) && regulator_is_enabled(ts->rst) > 0) regulator_disable(ts->rst); gslX680_shutdown_high(); msleep(20); reset_chip(ts->client); startup_chip(ts->client); check_mem_data(ts->client); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1 ; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); #endif #ifdef GSL_MONITOR queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 300); #endif /* #ifdef BND_GESTURE enable_irq(ts->irq); #else enable_irq(ts->irq); #endif*/ return 0; } #if 1 static int gsl_ts_early_suspend(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); #ifdef BND_GESTURE gsl_lcd_flag = 1; #endif return gsl_ts_suspend(&ts->client->dev); } static int gsl_ts_late_resume(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); #ifdef BND_GESTURE gsl_lcd_flag = 0; gsl_gesture_flag = 0; #endif return gsl_ts_resume(&ts->client->dev); } #endif void judge_chip_type(struct i2c_client *client) { u8 read_buf[4] = {0}; msleep(100); gsl_ts_read(client, 0xfc, read_buf, 4); printk("read 0xfc = %x %x %x %x\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); if (read_buf[2] != 0x91 && read_buf[2] != 0x88 && read_buf[2] != 0x82) { msleep(100); gsl_ts_read(client, 0xfc, read_buf, 4); printk("read 0xfc = %x %x %x %x\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); } if (read_buf[2] == 0x91) { chip_type = 2; is_noid_version = 1; } #ifdef GSL1680F_COMPATIBLE else if ((read_buf[3]&0xf0) == 0xb0 && read_buf[2] == 0x82) { chip_type = 3; is_noid_version = 2; } #endif #ifdef GSL1680E_COMPATIBLE else if (read_buf[2] == 0x82) { chip_type = 1; is_noid_version = 0; } #endif else { chip_type = 0; is_noid_version = 0; } } static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct gsl_ts *ts; int rc; struct device_node *np = client->dev.of_node; enum of_gpio_flags wake_flags; printk("GSLX680 Enter %s\n", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C functionality not supported\n"); return -ENODEV; } ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; ts->client = client; i2c_set_clientdata(client, ts); ts->device_id = id->driver_data; of_property_read_u32(np, "screen_max_x", &(ts->screen_max_x)); of_property_read_u32(np, "screen_max_y", &(ts->screen_max_y)); of_property_read_u32(np, "revert_x", &revert_x); of_property_read_u32(np, "revert_y", &revert_y); ts->irq_pin = of_get_named_gpio_flags(np, "touch-gpio", 0, NULL); ts->wake_pin = of_get_named_gpio_flags(np, "wake-gpio", 0, &wake_flags); if (gpio_is_valid(ts->wake_pin)) { rc = devm_gpio_request_one(&client->dev, ts->wake_pin, (wake_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH, "gslX680 wake pin"); if (rc != 0) { dev_err(&client->dev, "gslX680 wake pin error\n"); return -EIO; } g_wake_pin = ts->wake_pin; } else { dev_info(&client->dev, "wake pin invalid\n"); } if (!gpio_is_valid(ts->irq_pin)) { dev_info(&client->dev, "irq pin invalid\n"); goto error_mutex_destroy; } ts->rst = devm_regulator_get(&client->dev, "rst"); if (IS_ERR(ts->rst)) { dev_err(&client->dev, "failed to get regulator, %ld\n", PTR_ERR(ts->rst)); } rc = gsl_ts_init_ts(client, ts); if (rc < 0) { dev_err(&client->dev, "GSLX680 init failed\n"); goto error_mutex_destroy; } gsl_client = client; /* gslX680_init(); gpio_set_value(ts->irq_pin,1); msleep(20); */ gslX680_shutdown_low(); msleep(20); gslX680_shutdown_high(); msleep(20); judge_chip_type(ts->client); init_chip(ts->client); check_mem_data(ts->client); ts->irq = gpio_to_irq(ts->irq_pin); if (ts->irq) { rc = devm_request_threaded_irq(&client->dev, ts->irq, NULL, gsl_ts_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, client->name, ts); if (rc != 0) { printk(KERN_ALERT "Cannot allocate ts INT!ERRNO:%d\n", rc); goto error_req_irq_fail; } disable_irq(ts->irq); } else { printk("gslx680 irq req fail\n"); goto error_req_irq_fail; } enable_irq(ts->irq); /* create debug attribute */ /* rc = device_create_file(&ts->input->dev, &dev_attr_debug_enable); */ ts->tp.tp_resume = gsl_ts_late_resume; ts->tp.tp_suspend = gsl_ts_early_suspend; tp_register_fb(&ts->tp); #ifdef CONFIG_HAS_EARLYSUSPEND ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; ts->early_suspend.suspend = gsl_ts_early_suspend; ts->early_suspend.resume = gsl_ts_late_resume; register_early_suspend(&ts->early_suspend); #endif #ifdef GSL_MONITOR INIT_DELAYED_WORK(&gsl_monitor_work, gsl_monitor_worker); gsl_monitor_workqueue = create_singlethread_workqueue("gsl_monitor_workqueue"); queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 1000); #endif #ifdef TPD_PROC_DEBUG proc_create(GSL_CONFIG_PROC_FILE, 0644, NULL, &gsl_seq_fops); gsl_proc_flag = 0; #endif if (1 == is_zet62xx) { printk(" touch id is zet62xx,so free gpio!\n"); gpio_free(g_wake_pin); free_irq(ts->irq, ts); } printk("[GSLX680] End %s\n", __func__); return 0; error_req_irq_fail: free_irq(ts->irq, ts); error_mutex_destroy: input_free_device(ts->input); return rc; } static void gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); #ifdef CONFIG_HAS_EARLYSUSPEND unregister_early_suspend(&ts->early_suspend); #endif #ifdef GSL_MONITOR cancel_delayed_work_sync(&gsl_monitor_work); destroy_workqueue(gsl_monitor_workqueue); #endif device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); free_irq(ts->irq, ts); destroy_workqueue(ts->wq); input_unregister_device(ts->input); } static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); static struct i2c_driver gsl_ts_driver = { .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, }; static int __init gsl_ts_init(void) { int ret; ret = i2c_add_driver(&gsl_ts_driver); return ret; } static void __exit gsl_ts_exit(void) { i2c_del_driver(&gsl_ts_driver); return; } module_init(gsl_ts_init); module_exit(gsl_ts_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver"); MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com"); MODULE_ALIAS("platform:gsl_ts");