/* * drivers/input/touchscreen/gslx6801.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tp_suspend.h" #include "gslx6801.h" #include #include #include #define GSL_DEBUG #define REPORT_DATA_ANDROID_4_0 #define HAVE_TOUCH_KEY #ifdef FILTER_POINT #define FILTER_MAX 9 #endif #define GSLX680_I2C_NAME "gslX6801" #define GSLX680_I2C_ADDR 0x40 #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define GSL_MONITOR #define PRESS_MAX 255 #define MAX_FINGERS 5 #define MAX_CONTACTS 10 #define DMA_TRANS_LEN 0x20 #ifdef GSL_MONITOR #define TPD_PROC_DEBUG #ifdef TPD_PROC_DEBUG #include #include #include #define GSL_CONFIG_PROC_FILE "gsl_config" #define CONFIG_LEN 31 static char gsl_read[CONFIG_LEN]; static u8 gsl_data_proc[8] = { 0 }; static u8 gsl_proc_flag; static struct i2c_client *i2c_client; #endif #ifdef RK_GEAR_TOUCH static int g_istouch; #endif static struct workqueue_struct *gsl_monitor_workqueue; static u8 int_1st[4] = { 0 }; static u8 int_2nd[4] = { 0 }; static char b0_counter; static char bc_counter; static char i2c_lock_flag; #endif #define WRITE_I2C_SPEED (350 * 1000) #define I2C_SPEED (200 * 1000) #define CLOSE_TP_POWER 0 #ifdef HAVE_CLICK_TIMER static struct workqueue_struct *gsl_timer_workqueue; bool send_key; struct semaphore my_sem; #endif #ifdef HAVE_TOUCH_KEY static u16 key; static int key_state_flag; struct key_data { u16 key; u16 x_min; u16 x_max; u16 y_min; u16 y_max; }; static const u16 key_array[] = { KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN, KEY_ENTER, }; #define MAX_KEY_NUM ARRAY_SIZE(key_array) static int key_x[512]; static int key_y[512]; static int key_count; static const struct key_data gsl_key_data[MAX_KEY_NUM] = { {KEY_BACK, 550, 650, 1400, 1600}, {KEY_HOMEPAGE, 350, 450, 1400, 1600}, {KEY_MENU, 150, 250, 1400, 1600}, {KEY_SEARCH, 2048, 2048, 2048, 2048}, }; #endif struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; struct regulator *regulator; int flag_irq_is_disable; spinlock_t irq_lock; u8 *touch_data; u8 device_id; struct regulator *tp_regulator; int irq; int rst; struct delayed_work gsl_monitor_work; #if defined(CONFIG_HAS_EARLYSUSPEND) struct early_suspend early_suspend; #endif #if defined(HAVE_CLICK_TIMER) struct work_struct click_work; #endif struct tp_device tp; struct pinctrl *pinctrl; struct pinctrl_state *pins_default; struct pinctrl_state *pins_sleep; struct pinctrl_state *pins_inactive; }; static u32 id_sign[MAX_CONTACTS + 1] = { 0 }; static u8 id_state_flag[MAX_CONTACTS + 1] = { 0 }; static u8 id_state_old_flag[MAX_CONTACTS + 1] = { 0 }; static u16 x_old[MAX_CONTACTS + 1] = { 0 }; static u16 y_old[MAX_CONTACTS + 1] = { 0 }; static u16 x_new; static u16 y_new; static int gslx680_set_pinctrl_state(struct gsl_ts *ts, struct pinctrl_state *state) { int ret = 0; if (!IS_ERR(ts->pinctrl)) return PTR_ERR(ts->pinctrl); if (!IS_ERR(state)) { ret = pinctrl_select_state(ts->pinctrl, state); if (ret) pr_err("could not set pins\n"); } return ret; } static int gslX680_init(struct gsl_ts *ts) { struct device_node *np = ts->client->dev.of_node; int err = 0; ts->irq = of_get_named_gpio_flags(np, "touch-gpio", 0, NULL); ts->rst = of_get_named_gpio_flags(np, "reset-gpio", 0, NULL); /* pinctrl */ ts->pinctrl = devm_pinctrl_get(&ts->client->dev); if (!IS_ERR(ts->pinctrl)) { ts->pins_default = pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_DEFAULT); ts->pins_sleep = pinctrl_lookup_state(ts->pinctrl, PINCTRL_STATE_SLEEP); ts->pins_inactive = pinctrl_lookup_state(ts->pinctrl, "inactive"); gslx680_set_pinctrl_state(ts, ts->pins_default); } err = gpio_request(ts->rst, "tp reset"); if (err) { pr_err("gslx680 reset gpio request failed.\n"); return -1; } gpio_direction_output(ts->rst, 1); gpio_set_value(ts->rst, 1); return 0; } static int gslX680_shutdown_low(struct gsl_ts *ts) { pr_info("gsl gslX680_shutdown_low\n"); gpio_direction_output(ts->rst, 0); gpio_set_value(ts->rst, 0); return 0; } static int gslX680_shutdown_high(struct gsl_ts *ts) { pr_info("gsl gslX680_shutdown_high\n"); gpio_direction_output(ts->rst, 1); gpio_set_value(ts->rst, 1); return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125) { dev_err(&client->dev, "%s big datalen = %d!\n", __func__, datalen); return -1; } tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL) { memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; if (datalen > 126) { dev_err(&client->dev, "%s too big datalen = %d!\n", __func__, datalen); return -1; } ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0) { dev_err(&client->dev, "%s set data address fail!\n", __func__); return ret; } return i2c_master_recv(client, pdata, datalen); } static void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static void gsl_load_fw(struct i2c_client *client) { u8 buf[DMA_TRANS_LEN * 4 + 1] = { 0 }; u8 send_flag = 1; u8 *cur = buf + 1; u32 source_line = 0; u32 source_len; struct fw_data const *ptr_fw; ptr_fw = GSLX680_FW; source_len = ARRAY_SIZE(GSLX680_FW); for (source_line = 0; source_line < source_len; source_line++) { /* init page trans, set the page val */ if (ptr_fw[source_line].offset == GSL_PAGE_REG) { fw2buf(cur, &ptr_fw[source_line].val); gsl_write_interface(client, GSL_PAGE_REG, buf, 4); send_flag = 1; } else { if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) buf[0] = (u8)ptr_fw[source_line].offset; fw2buf(cur, &ptr_fw[source_line].val); cur += 4; if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) { gsl_write_interface(client, buf[0], buf, cur - buf - 1); cur = buf + 1; } send_flag++; } } } static int test_i2c(struct i2c_client *client) { u8 read_buf = 0; u8 write_buf = 0x12; int ret, rc = 1; ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; else dev_info(&client->dev, "gsl I read reg 0xf0 is %x\n", read_buf); usleep_range(2000, 3000); ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf)); if (ret >= 0) dev_info(&client->dev, "gsl I write reg 0xf0 0x12\n"); usleep_range(2000, 3000); ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; else dev_info(&client->dev, "gsl I read reg 0xf0 is 0x%x\n", read_buf); return rc; } static void startup_chip(struct i2c_client *client) { u8 tmp = 0x00; #ifdef GSL_NOID_VERSION gsl_DataInit(gsl_config_data_id); #endif gsl_ts_write(client, 0xe0, &tmp, 1); mdelay(10); } static void reset_chip(struct i2c_client *client) { u8 tmp = 0x88; u8 buf[4] = { 0x00 }; gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp)); mdelay(20); tmp = 0x04; gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp)); mdelay(10); gsl_ts_write(client, 0xbc, buf, sizeof(buf)); mdelay(10); } static void clr_reg(struct i2c_client *client) { u8 write_buf[4] = { 0 }; write_buf[0] = 0x88; gsl_ts_write(client, 0xe0, &write_buf[0], 1); mdelay(20); write_buf[0] = 0x03; gsl_ts_write(client, 0x80, &write_buf[0], 1); mdelay(5); write_buf[0] = 0x04; gsl_ts_write(client, 0xe4, &write_buf[0], 1); mdelay(5); write_buf[0] = 0x00; gsl_ts_write(client, 0xe0, &write_buf[0], 1); mdelay(20); } #ifdef PEN_ADJUST_FREQ static int gsl_adjust_freq(struct i2c_client *client) { static u32 cpu_start, cpu_end, ret, real_time; u8 buf[4]; struct timeval time_start, time_end; dev_info(&client->dev, "gsl pen test\n"); buf[3] = 0x01; buf[2] = 0xfe; buf[1] = 0x02; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); buf[3] = 0x00; buf[2] = 0x00; buf[1] = 0x00; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0x0c, 4, buf); buf[3] = 0x01; buf[2] = 0xfe; buf[1] = 0x02; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); buf[3] = 0xff; buf[2] = 0xff; buf[1] = 0xff; buf[0] = 0xff; i2c_smbus_write_i2c_block_data(client, 0x04, 4, buf); buf[3] = 0x01; buf[2] = 0xfe; buf[1] = 0x02; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); buf[3] = 0x00; buf[2] = 0x00; buf[1] = 0x00; buf[0] = 0x09; i2c_smbus_write_i2c_block_data(client, 0x08, 4, buf); mdelay(200); buf[3] = 0x01; buf[2] = 0xfe; buf[1] = 0x02; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); i2c_smbus_read_i2c_block_data(client, 0, 4, buf); i2c_smbus_read_i2c_block_data(client, 0, 4, buf); cpu_start = (buf[3] << 24) + (buf[2] << 16) + (buf[1] << 8) + buf[0]; do_gettimeofday(&time_start); /* start count time */ mdelay(1200); buf[3] = 0x01; buf[2] = 0xfe; buf[1] = 0x02; buf[0] = 0x00; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); i2c_smbus_read_i2c_block_data(client, 0, 4, buf); i2c_smbus_read_i2c_block_data(client, 0, 4, buf); cpu_end = (buf[3] << 24) + (buf[2] << 16) + (buf[1] << 8) + buf[0]; do_gettimeofday(&time_end); real_time = ((time_end.tv_sec - time_start.tv_sec) * 10000 + (time_end.tv_usec - time_start.tv_usec) / 100); if (real_time > 10000) { ret = (u32)((cpu_start - cpu_end) * 100 / real_time) * 0x1000 / 9245; if (ret >= 0x1000 / 2 && ret <= 0x1000 * 2) { buf[3] = 0x00; buf[2] = 0x00; buf[1] = 0x00; buf[0] = 0x03; i2c_smbus_write_i2c_block_data(client, 0xf0, 4, buf); buf[3] = (u8)((ret >> 24) & 0xff); buf[2] = (u8)((ret >> 16) & 0xff); buf[1] = (u8)((ret >> 8) & 0xff); buf[0] = (u8)(ret & 0xff); i2c_smbus_write_i2c_block_data(client, 0x7c, 4, buf); } else { return -1; } } return 0; } #endif static void init_chip(struct i2c_client *client, struct gsl_ts *ts) { int rc; #ifdef PEN_ADJUST_FREQ int rc1; #endif dev_info(&client->dev, "gsl init_chip\n"); gslX680_shutdown_low(ts); mdelay(20); gslX680_shutdown_high(ts); mdelay(20); rc = test_i2c(client); if (rc < 0) { dev_err(&client->dev, "gslX680 test_i2c error\n"); return; } clr_reg(client); reset_chip(client); gsl_load_fw(client); startup_chip(client); #ifdef PEN_ADJUST_FREQ rc1 = gsl_adjust_freq(client); if (rc1 < 0) { dev_info(&client->dev, "SL_Adjust_Freq error\n"); gsl_adjust_freq(client); } #endif reset_chip(client); startup_chip(client); } static void check_mem_data(struct i2c_client *client, struct gsl_ts *ts) { u8 read_buf[4] = { 0 }; mdelay(30); gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf)); dev_info(&client->dev, "check mem read 0xb0 = %x %x %x %x\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) { init_chip(client, ts); } } #ifdef TPD_PROC_DEBUG static int char_to_int(char ch) { if (ch >= '0' && ch <= '9') return (ch - '0'); else return (ch - 'a' + 10); } static int gsl_config_read_proc(struct seq_file *m, void *v) { char temp_data[5] = { 0 }; unsigned int tmp = 0; if ('v' == gsl_read[0] && 's' == gsl_read[1]) { #ifdef GSL_NOID_VERSION tmp = gsl_version_id(); #else tmp = 0x20121215; #endif seq_printf(m, "version:%x\n", tmp); } else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) { if ('i' == gsl_read[3]) { #ifdef GSL_NOID_VERSION tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4]; seq_printf(m, "gsl_config_data_id[%d] = ", tmp); if (tmp >= 0 && tmp < 512) seq_printf(m, "%d\n", gsl_config_data_id[tmp]); #endif } else { i2c_smbus_write_i2c_block_data(i2c_client, 0xf0, 4, &gsl_data_proc[4]); if (gsl_data_proc[0] < 0x80) i2c_smbus_read_i2c_block_data(i2c_client, gsl_data_proc[0], 4, temp_data); i2c_smbus_read_i2c_block_data(i2c_client, gsl_data_proc[0], 4, temp_data); seq_printf(m, "offset : {0x%02x,0x", gsl_data_proc[0]); seq_printf(m, "%02x", temp_data[3]); seq_printf(m, "%02x", temp_data[2]); seq_printf(m, "%02x", temp_data[1]); seq_printf(m, "%02x};\n", temp_data[0]); } } return 0; } static ssize_t gsl_config_write_proc(struct file *file, const char *buffer, size_t count, loff_t *data) { u8 buf[8] = { 0 }; char temp_buf[CONFIG_LEN]; char *path_buf; int tmp = 0; int tmp1 = 0; if (count > 512) return -EFAULT; path_buf = kzalloc(count, GFP_KERNEL); if (!path_buf) { pr_err("alloc path_buf memory error\n"); return -ENOMEM; } if (copy_from_user(path_buf, buffer, count)) { pr_err("copy from user fail\n"); goto exit_write_proc_out; } memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN)); pr_debug("[tp-gsl][%s][%s]\n", __func__, temp_buf); buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]); buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]); buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]); buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]); buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]); buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]); buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]); buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]); if ('v' == temp_buf[0] && 's' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); pr_info("gsl version\n"); } else if ('s' == temp_buf[0] && 't' == temp_buf[1]) { gsl_proc_flag = 1; reset_chip(i2c_client); } else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) { mdelay(20); reset_chip(i2c_client); startup_chip(i2c_client); gsl_proc_flag = 0; } else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); memcpy(gsl_data_proc, buf, 8); } else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) { i2c_smbus_write_i2c_block_data(i2c_client, buf[4], 4, buf); } #ifdef GSL_NOID_VERSION else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) { tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4]; tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; if (tmp1 >= 0 && tmp1 < 512) gsl_config_data_id[tmp1] = tmp; } #endif exit_write_proc_out: kfree(path_buf); return count; } static int gsl_server_list_open(struct inode *inode, struct file *file) { return single_open(file, gsl_config_read_proc, NULL); } static const struct file_operations gsl_seq_fops = { .open = gsl_server_list_open, .read = seq_read, .release = single_release, .write = gsl_config_write_proc, .owner = THIS_MODULE, }; #endif #ifdef FILTER_POINT static void filter_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y); if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) || (x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) { filter_step_x = x_err; filter_step_y = y_err; } else { if (x_err > FILTER_MAX) filter_step_x = x_err; if (y_err > FILTER_MAX) filter_step_y = y_err; } if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) { filter_step_x = filter_step_x * 3 / 4; filter_step_y = filter_step_y * 3 / 4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x = (x_old[id] + x) / 2; y = (y_old[id] + y) / 2; if (x > x_old[id]) x_err = x - x_old[id]; else x_err = x_old[id] - x; if (y > y_old[id]) y_err = y - y_old[id]; else y_err = y_old[id] - y; if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) { x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else { if (x_err > 3) { x_new = x; x_old[id] = x; } else { x_new = x_old[id]; } if (y_err > 3) { y_new = y; y_old[id] = y; } else { y_new = y_old[id]; } } if (id_sign[id] == 1) { x_new = x_old[id]; y_new = y_old[id]; } } #endif #ifdef SLEEP_CLEAR_POINT #ifdef HAVE_TOUCH_KEY static void report_key(struct gsl_ts *ts, u16 x, u16 y) { u16 i = 0; for (i = 0; i < MAX_KEY_NUM; i++) { if ((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max) && (gsl_key_data[i].y_min < y) && (y < gsl_key_data[i].y_max)) { key = gsl_key_data[i].key; input_report_key(ts->input, key, 1); input_sync(ts->input); key_state_flag = 1; break; } } } #endif #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { #ifdef RK_GEAR_TOUCH int delt_x; int delt_y; static int old_x; static int old_y; #endif #ifdef RK_GEAR_TOUCH if (g_istouch == 0) { g_istouch = 1; input_event(ts->input, EV_MSC, MSC_SCAN, 0x90001); input_report_key(ts->input, 0x110, 1); input_sync(ts->input); } delt_x = (int)x - old_x; delt_y = (int)y - old_y; delt_x /= 10; delt_y /= 10; input_report_rel(ts->input, REL_Y, -delt_x); input_report_rel(ts->input, REL_X, -delt_y); input_sync(ts->input); old_x = x; old_y = y; return; #endif #ifdef REPORT_DATA_ANDROID_4_0 y = 1920 - y; swap(x, y); input_mt_slot(ts->input, id); input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); #else input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); input_mt_sync(ts->input); #endif } static void glsx680_ts_irq_disable(struct gsl_ts *ts) { unsigned long irqflags; spin_lock_irqsave(&ts->irq_lock, irqflags); if (!ts->flag_irq_is_disable) { disable_irq_nosync(ts->client->irq); ts->flag_irq_is_disable = 1; } spin_unlock_irqrestore(&ts->irq_lock, irqflags); } static void glsx680_ts_irq_enable(struct gsl_ts *ts) { unsigned long irqflags = 0; spin_lock_irqsave(&ts->irq_lock, irqflags); if (ts->flag_irq_is_disable) { enable_irq(ts->client->irq); ts->flag_irq_is_disable = 0; } spin_unlock_irqrestore(&ts->irq_lock, irqflags); } static void gslX680_ts_worker(struct work_struct *work) { int rc, i; u8 id, touches; u16 x, y; #ifdef GSL_NOID_VERSION u32 tmp1; u8 buf[4] = { 0 }; struct gsl_touch_info cinfo; #endif struct gsl_ts *ts = container_of(work, struct gsl_ts, work); #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) goto schedule; #endif #ifdef GSL_MONITOR if (i2c_lock_flag != 0) goto i2c_lock_schedule; else i2c_lock_flag = 1; #endif rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size); if (rc < 0) { dev_err(&ts->client->dev, "read failed\n"); goto schedule; } touches = ts->touch_data[ts->dd->touch_index]; #ifdef GSL_NOID_VERSION cinfo.finger_num = touches; for (i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) { cinfo.x[i] = join_bytes((ts-> touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); cinfo.id[i] = ((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf0) >> 4); } cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16) | (ts->touch_data[1] << 8) | (ts->touch_data[0]); gsl_alg_id_main(&cinfo); tmp1 = gsl_mask_tiaoping(); if (tmp1 > 0 && tmp1 < 0xffffffff) { buf[0] = 0xa; buf[1] = 0; buf[2] = 0; buf[3] = 0; gsl_ts_write(ts->client, 0xf0, buf, 4); buf[0] = (u8)(tmp1 & 0xff); buf[1] = (u8)((tmp1 >> 8) & 0xff); buf[2] = (u8)((tmp1 >> 16) & 0xff); buf[3] = (u8)((tmp1 >> 24) & 0xff); gsl_ts_write(ts->client, 0x8, buf, 4); } touches = cinfo.finger_num; #endif for (i = 1; i <= MAX_CONTACTS; i++) { if (touches == 0) id_sign[i] = 0; id_state_flag[i] = 0; } for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) { #ifdef GSL_NOID_VERSION id = cinfo.id[i]; x = cinfo.x[i]; y = cinfo.y[i]; #else x = join_bytes((ts-> touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; #endif if (id >= i && id <= MAX_CONTACTS) { #ifdef FILTER_POINT filter_point(x, y, id); #else record_point(x, y, id); #endif report_data(ts, x, y, 10, id); if (key_count < 512) { key_x[key_count] = x_new; key_y[key_count] = y_new; key_count++; } id_state_flag[id] = 1; } } for (i = 1; i <= MAX_CONTACTS; i++) { if ((touches == 0) || ((id_state_old_flag[i] != 0) && (id_state_flag[i] == 0))) { #ifdef RK_GEAR_TOUCH if (g_istouch == 1) { g_istouch = 0; input_event(ts->input, EV_MSC, MSC_SCAN, 0x90001); input_report_key(ts->input, 0x110, 0); input_sync(ts->input); } g_istouch = 0; #endif #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); #endif id_sign[i] = 0; } id_state_old_flag[i] = id_state_flag[i]; } if (touches == 0) { #ifndef REPORT_DATA_ANDROID_4_0 input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 0); input_mt_sync(ts->input); int temp_x = 0; int temp_y = 0; temp_x = (((key_x[key_count - 1] - key_x[0]) > 0) ? (key_x[key_count - 1] - key_x[0]) : (key_x[0] - key_x[key_count - 1])); temp_y = (((key_y[key_count - 1] - key_y[0]) > 0) ? (key_y[key_count - 1] - key_y[0]) : (key_y[0] - key_y[key_count - 1])); if (key_count <= 512) { if (temp_x > temp_y) { if ((key_x[key_count - 1] - key_x[0]) > 100) { pr_debug("send up key\n"); input_report_key(ts->input, key_array[2], 1); input_sync(ts->input); input_report_key(ts->input, key_array[2], 0); input_sync(ts->input); } else if ((key_x[0] - key_x[key_count - 1]) > 100) { pr_debug("send down key\n"); input_report_key(ts->input, key_array[3], 1); input_sync(ts->input); input_report_key(ts->input, key_array[3], 0); input_sync(ts->input); } } else if (temp_x <= temp_y) { if ((key_y[key_count - 1] - key_y[0]) > 100) { pr_debug("send left key\n"); input_report_key(ts->input, key_array[0], 1); input_sync(ts->input); input_report_key(ts->input, key_array[0], 0); input_sync(ts->input); } else if ((key_y[0] - key_y[key_count - 1]) > 100) { pr_debug("send right key\n"); input_report_key(ts->input, key_array[1], 1); input_sync(ts->input); input_report_key(ts->input, key_array[1], 0); input_sync(ts->input); } } if ((key_x[key_count - 1] - key_x[0] < 50) && (key_x[key_count - 1] - key_x[0] >= -50) && (key_y[key_count - 1] - key_y[0] < 50) && (key_y[key_count - 1] - key_y[0] >= -50) && (key_x[0] != 0) && (key_y[0] != 0)) { queue_work(gsl_timer_workqueue, &ts->click_work); pr_debug("send enter2 key by yuandan\n"); if (send_key) { pr_debug("send enter key\n"); input_report_key(ts->input, key_array[4], 1); input_sync(ts->input); input_report_key(ts->input, key_array[4], 0); input_sync(ts->input); } else { down(&my_sem); send_key = true; up(&my_sem); } } } else if (key_count > 512) { if (temp_x > temp_y) { if ((key_x[511] - key_x[0]) > 100) { pr_debug("send up key\n"); input_report_key(ts->input, key_array[2], 1); input_sync(ts->input); input_report_key(ts->input, key_array[2], 0); input_sync(ts->input); } else if ((key_x[0] - key_x[511]) > 100) { pr_debug("send down key\n"); input_report_key(ts->input, key_array[3], 1); input_sync(ts->input); input_report_key(ts->input, key_array[3], 0); input_sync(ts->input); } } else if (temp_x <= temp_y) { if ((key_y[511] - key_y[0]) > 100) { pr_debug("send left key\n"); input_report_key(ts->input, key_array[0], 1); input_sync(ts->input); input_report_key(ts->input, key_array[0], 0); input_sync(ts->input); } else if ((key_y[0] - key_y[511]) > 100) { pr_debug("send right key\n"); input_report_key(ts->input, key_array[1], 1); input_sync(ts->input); input_report_key(ts->input, key_array[1], 0); input_sync(ts->input); } } } memset(key_y, 0, sizeof(int) * 512); memset(key_x, 0, sizeof(int) * 512); key_count = 0; #endif #ifdef HAVE_TOUCH_KEY if (key_state_flag) { input_report_key(ts->input, key, 0); input_sync(ts->input); key_state_flag = 0; } #endif } input_sync(ts->input); schedule: #ifdef GSL_MONITOR i2c_lock_flag = 0; i2c_lock_schedule: #endif glsx680_ts_irq_enable(ts); } #ifdef HAVE_CLICK_TIMER static void click_timer_worker(struct work_struct *work) { while (true) { mdelay(500); send_key = false; } } #endif #ifdef GSL_MONITOR static void gsl_monitor_worker(struct work_struct *work) { u8 read_buf[4] = { 0 }; char init_chip_flag = 0; struct gsl_ts *ts = container_of(work, struct gsl_ts, gsl_monitor_work.work); if (i2c_lock_flag != 0) i2c_lock_flag = 1; else i2c_lock_flag = 1; gsl_ts_read(ts->client, 0xb0, read_buf, 4); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) b0_counter++; else b0_counter = 0; if (b0_counter > 1) { init_chip_flag = 1; b0_counter = 0; } gsl_ts_read(ts->client, 0xb4, read_buf, 4); int_2nd[3] = int_1st[3]; int_2nd[2] = int_1st[2]; int_2nd[1] = int_1st[1]; int_2nd[0] = int_1st[0]; int_1st[3] = read_buf[3]; int_1st[2] = read_buf[2]; int_1st[1] = read_buf[1]; int_1st[0] = read_buf[0]; if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] && int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) { pr_info("int_1st: %x %x %x %x , int_2nd: %x %x %x %x\n", int_1st[3], int_1st[2], int_1st[1], int_1st[0], int_2nd[3], int_2nd[2], int_2nd[1], int_2nd[0]); init_chip_flag = 1; } gsl_ts_read(ts->client, 0xbc, read_buf, 4); if (read_buf[3] != 0 || read_buf[2] != 0 || read_buf[1] != 0 || read_buf[0] != 0) bc_counter++; else bc_counter = 0; if (bc_counter > 1) { pr_info("======read 0xbc: %x %x %x %x======\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; bc_counter = 0; } if (init_chip_flag) init_chip(ts->client, ts); i2c_lock_flag = 0; } #endif static irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = (struct gsl_ts *)dev_id; glsx680_ts_irq_disable(ts); if (!work_pending(&ts->work)) queue_work(ts->wq, &ts->work); return IRQ_HANDLED; } static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; int i = 0; pr_info("[GSLX680] Enter %s\n", __func__); ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = devm_kzalloc(&client->dev, ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } input_device = devm_input_allocate_device(&ts->client->dev); if (!input_device) { rc = -ENOMEM; goto init_err_ret; } ts->input = input_device; input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); #ifdef REPORT_DATA_ANDROID_4_0 __set_bit(EV_ABS, input_device->evbit); __set_bit(EV_KEY, input_device->evbit); __set_bit(EV_REP, input_device->evbit); __set_bit(EV_SYN, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); __set_bit(MT_TOOL_FINGER, input_device->keybit); input_mt_init_slots(input_device, (MAX_CONTACTS + 1), 0); #else input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS + 1), 0, 0); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif #ifdef HAVE_TOUCH_KEY input_device->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < MAX_KEY_NUM; i++) set_bit(key_array[i], input_device->keybit); #endif #ifdef RK_GEAR_TOUCH set_bit(EV_REL, input_device->evbit); input_set_capability(input_device, EV_REL, REL_X); input_set_capability(input_device, EV_REL, REL_Y); input_set_capability(input_device, EV_MSC, MSC_SCAN); input_set_capability(input_device, EV_KEY, 0x110); #endif set_bit(ABS_MT_POSITION_X, input_device->absbit); set_bit(ABS_MT_POSITION_Y, input_device->absbit); set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit); set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit); input_set_abs_params(input_device, ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0); input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0); input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0); /* ts->irq = client->irq; */ ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "gsl Could not create workqueue\n"); goto init_err_ret; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gslX680_ts_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); init_err_ret: return rc; } static int gsl_ts_early_suspend(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); #ifdef GSL_MONITOR pr_info("gsl_ts_suspend () : cancel gsl_monitor_work\n"); cancel_delayed_work_sync(&ts->gsl_monitor_work); int_1st[0] = 0; int_1st[1] = 0; int_1st[2] = 0; int_1st[3] = 0; #endif glsx680_ts_irq_disable(ts); cancel_work_sync(&ts->work); #ifdef SLEEP_CLEAR_POINT usleep_range(5000, 10000); #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); usleep_range(5000, 10000); report_data(ts, 1, 1, 10, 1); input_sync(ts->input); #endif gslX680_shutdown_low(ts); return 0; } static int gsl_ts_late_resume(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); pr_debug("I'am in gsl_ts_resume() start\n"); gslX680_shutdown_high(ts); msleep(20); reset_chip(ts->client); startup_chip(ts->client); check_mem_data(ts->client, ts); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); #endif #ifdef GSL_MONITOR pr_info("gsl_ts_resume () : queue gsl_monitor_work\n"); queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300); #endif glsx680_ts_irq_enable(ts); return 0; } #ifdef CONFIG_HAS_EARLYSUSPEND static void gsl_ts_early_suspend(struct early_suspend *h) { struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend); #ifdef GSL_MONITOR pr_info("gsl_ts_suspend () : cancel gsl_monitor_work\n"); cancel_delayed_work_sync(&ts->gsl_monitor_work); #endif glsx680_ts_irq_disable(ts); cancel_work_sync(&ts->work); #ifdef SLEEP_CLEAR_POINT usleep_range(5000, 10000); #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); usleep_range(5000, 10000); report_data(ts, 1, 1, 10, 1); input_sync(ts->input); #endif gslX680_shutdown_low(ts); msleep(20); return 0; } static void gsl_ts_late_resume(struct early_suspend *h) { struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend); int i; pr_debug("I'am in gsl_ts_resume() start\n"); gslX680_shutdown_high(ts); msleep(20); reset_chip(ts->client); startup_chip(ts->client); check_mem_data(ts->client, ts); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); #endif #ifdef GSL_MONITOR pr_info("gsl_ts_resume () : queue gsl_monitor_work\n"); queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 300); #endif glsx680_ts_irq_enable(ts); } #endif static void gsl_ts_power_on(struct gsl_ts *ts, bool enable) { int ret = 0; if (enable) { ret = regulator_enable(ts->regulator); if (ret) dev_err(&ts->client->dev, "%s failed to enable touch regulator\n", __func__); } else { ret = regulator_disable(ts->regulator); if (ret) dev_err(&ts->client->dev, "%s failed to disable touch regulator", __func__); } } static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct gsl_ts *ts; int rc; pr_info("GSLX680 Enter %s\n", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "gsl I2C functionality not supported\n"); return -ENODEV; } ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; msleep(20); /* get touch for regulator */ ts->regulator = devm_regulator_get_optional(&client->dev, "power"); if (IS_ERR(ts->regulator)) { if (PTR_ERR(ts->regulator) == -EPROBE_DEFER) dev_err(&client->dev, "get touch regulator is fail, may no need.\n"); ts->regulator = NULL; } else { gsl_ts_power_on(ts, true); } ts->tp.tp_suspend = gsl_ts_early_suspend; ts->tp.tp_resume = gsl_ts_late_resume; tp_register_fb(&ts->tp); ts->client = client; i2c_set_clientdata(client, ts); /* ts->device_id = id->driver_data; */ gslX680_init(ts); rc = gslX680_ts_init(client, ts); if (rc < 0) { dev_err(&client->dev, "gsl GSLX680 init failed\n"); goto porbe_err_ret; } init_chip(ts->client, ts); check_mem_data(ts->client, ts); spin_lock_init(&ts->irq_lock); client->irq = gpio_to_irq(ts->irq); rc = request_irq(client->irq, gsl_ts_irq, IRQF_TRIGGER_RISING, client->name, ts); if (rc < 0) { pr_err("gsl_probe: request irq failed\n"); goto porbe_err_ret; } glsx680_ts_irq_enable(ts); #ifdef CONFIG_HAS_EARLYSUSPEND ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; ts->early_suspend.suspend = gsl_ts_early_suspend; ts->early_suspend.resume = gsl_ts_late_resume; register_early_suspend(&ts->early_suspend); #endif #ifdef GSL_MONITOR INIT_DELAYED_WORK(&ts->gsl_monitor_work, gsl_monitor_worker); gsl_monitor_workqueue = create_singlethread_workqueue("gsl_monitor_workqueue"); queue_delayed_work(gsl_monitor_workqueue, &ts->gsl_monitor_work, 1000); #endif #ifdef HAVE_CLICK_TIMER sema_init(&my_sem, 1); INIT_WORK(&ts->click_work, click_timer_worker); gsl_timer_workqueue = create_singlethread_workqueue("click_timer"); queue_work(gsl_timer_workqueue, &ts->click_work); #endif #ifdef TPD_PROC_DEBUG i2c_client = client; /* proc_create(GSL_CONFIG_PROC_FILE, 0666, NULL, &gsl_seq_fops); */ #endif gsl_proc_flag = 0; pr_info("[GSLX680] End %s\n", __func__); return 0; porbe_err_ret: return rc; } static void gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); #ifdef CONFIG_HAS_EARLYSUSPEND unregister_early_suspend(&ts->early_suspend); #endif #ifdef GSL_MONITOR cancel_delayed_work_sync(&ts->gsl_monitor_work); destroy_workqueue(gsl_monitor_workqueue); #endif #ifdef HAVE_CLICK_TIMER cancel_work_sync(&ts->click_work); destroy_workqueue(gsl_timer_workqueue); #endif device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); free_irq(ts->client->irq, ts); destroy_workqueue(ts->wq); gsl_ts_power_on(ts, false); } static const struct of_device_id gsl_ts_ids[] = { {.compatible = "gslX6801"}, {} }; static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); static struct i2c_driver gsl_ts_driver = { .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(gsl_ts_ids), .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, }; static int __init gsl_ts_init(void) { int ret; ret = i2c_add_driver(&gsl_ts_driver); return ret; } static void __exit gsl_ts_exit(void) { i2c_del_driver(&gsl_ts_driver); } module_init(gsl_ts_init); module_exit(gsl_ts_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver"); MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com"); MODULE_ALIAS("platform:gsl_ts");