// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023 Rockchip Electronics Co., Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "minidump_private.h" #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP #include #include #include "../../../kernel/sched/sched.h" #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT #include #endif #include "minidump_memory.h" #endif /* CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP */ #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK #include #ifdef CONFIG_VMAP_STACK #define STACK_NUM_PAGES (THREAD_SIZE / PAGE_SIZE) #else #define STACK_NUM_PAGES 1 #endif /* !CONFIG_VMAP_STACK */ struct md_stack_cpu_data { int stack_mdidx[STACK_NUM_PAGES]; struct md_region stack_mdr[STACK_NUM_PAGES]; } ____cacheline_aligned_in_smp; static int md_current_stack_init __read_mostly; static DEFINE_PER_CPU_SHARED_ALIGNED(struct md_stack_cpu_data, md_stack_data); struct md_suspend_context_data { int task_mdno; int stack_mdidx[STACK_NUM_PAGES]; struct md_region stack_mdr[STACK_NUM_PAGES]; struct md_region task_mdr; bool init; }; static struct md_suspend_context_data md_suspend_context; #endif /* CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK */ static bool is_vmap_stack __read_mostly; #ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE #include #include #define MD_FTRACE_BUF_SIZE SZ_2M static char *md_ftrace_buf_addr; static size_t md_ftrace_buf_current; static bool minidump_ftrace_in_oops; static bool minidump_ftrace_dump = true; #endif #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP /* Rnqueue information */ #define MD_RUNQUEUE_PAGES 8 static bool md_in_oops_handler; static struct seq_buf *md_runq_seq_buf; static int md_align_offset; /* CPU context information */ #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT #define MD_CPU_CNTXT_PAGES 32 static int die_cpu = -1; static struct seq_buf *md_cntxt_seq_buf; #endif /* Meminfo */ static struct seq_buf *md_meminfo_seq_buf; /* Slabinfo */ #ifdef CONFIG_SLUB_DEBUG static struct seq_buf *md_slabinfo_seq_buf; #endif #ifdef CONFIG_PAGE_OWNER size_t md_pageowner_dump_size = SZ_2M; char *md_pageowner_dump_addr; #endif #ifdef CONFIG_SLUB_DEBUG size_t md_slabowner_dump_size = SZ_2M; char *md_slabowner_dump_addr; #endif size_t md_dma_buf_info_size = SZ_256K; char *md_dma_buf_info_addr; size_t md_dma_buf_procs_size = SZ_256K; char *md_dma_buf_procs_addr; /* Modules information */ #ifdef CONFIG_MODULES #define MD_MODULE_PAGES 8 static struct seq_buf *md_mod_info_seq_buf; static DEFINE_SPINLOCK(md_modules_lock); #endif /* CONFIG_MODULES */ #endif static struct md_region note_md_entry; static DEFINE_PER_CPU_SHARED_ALIGNED(struct elf_prstatus *, cpu_epr); static struct elf_prstatus *epr_hang_task[8]; static int register_stack_entry(struct md_region *ksp_entry, u64 sp, u64 size) { struct page *sp_page; int entry; ksp_entry->virt_addr = sp; ksp_entry->size = size; if (is_vmap_stack) { sp_page = vmalloc_to_page((const void *) sp); ksp_entry->phys_addr = page_to_phys(sp_page); } else { ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp); } entry = rk_minidump_add_region(ksp_entry); if (entry < 0) pr_err("Failed to add stack of entry %s in Minidump\n", ksp_entry->name); return entry; } #ifdef CONFIG_ANDROID_DEBUG_SYMBOLS static void register_kernel_sections(void) { struct md_region ksec_entry; char *data_name = "KDATABSS"; char *rodata_name = "KROAIDATA"; size_t static_size; void __percpu *base; unsigned int cpu; void *_sdata, *__bss_stop; void *start_ro, *end_ro; _sdata = android_debug_symbol(ADS_SDATA); __bss_stop = android_debug_symbol(ADS_BSS_END); base = android_debug_symbol(ADS_PER_CPU_START); static_size = (size_t)(android_debug_symbol(ADS_PER_CPU_END) - base); strscpy(ksec_entry.name, data_name, sizeof(ksec_entry.name)); ksec_entry.virt_addr = (u64)_sdata; ksec_entry.phys_addr = virt_to_phys(_sdata); ksec_entry.size = roundup((__bss_stop - _sdata), 4); if (rk_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add data section in Minidump\n"); start_ro = android_debug_symbol(ADS_START_RO_AFTER_INIT); end_ro = android_debug_symbol(ADS_END_RO_AFTER_INIT); strscpy(ksec_entry.name, rodata_name, sizeof(ksec_entry.name)); ksec_entry.virt_addr = (uintptr_t)start_ro; ksec_entry.phys_addr = virt_to_phys(start_ro); ksec_entry.size = roundup((end_ro - start_ro), 4); if (rk_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add rodata section in Minidump\n"); /* Add percpu static sections */ for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); memset(&ksec_entry, 0, sizeof(ksec_entry)); scnprintf(ksec_entry.name, sizeof(ksec_entry.name), "KSPERCPU%d", cpu); ksec_entry.virt_addr = (uintptr_t)start; ksec_entry.phys_addr = per_cpu_ptr_to_phys(start); ksec_entry.size = static_size; if (rk_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add percpu sections in Minidump\n"); } } #endif static inline bool in_stack_range( u64 sp, u64 base_addr, unsigned int stack_size) { u64 min_addr = base_addr; u64 max_addr = base_addr + stack_size; return (min_addr <= sp && sp < max_addr); } static unsigned int calculate_copy_pages(u64 sp, struct vm_struct *stack_area) { u64 tsk_stack_base = (u64) stack_area->addr; u64 offset; unsigned int stack_pages, copy_pages; if (in_stack_range(sp, tsk_stack_base, get_vm_area_size(stack_area))) { offset = sp - tsk_stack_base; stack_pages = get_vm_area_size(stack_area) / PAGE_SIZE; copy_pages = stack_pages - (offset / PAGE_SIZE); } else { copy_pages = 0; } return copy_pages; } void dump_stack_minidump(u64 sp) { struct md_region ksp_entry, ktsk_entry; u32 cpu = smp_processor_id(); struct vm_struct *stack_vm_area; unsigned int i, copy_pages; if (IS_ENABLED(CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK)) return; if (is_idle_task(current)) return; is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK); if (sp < KIMAGE_VADDR || sp > -256UL) sp = current_stack_pointer; /* * Since stacks are now allocated with vmalloc, the translation to * physical address is not a simple linear transformation like it is * for kernel logical addresses, since vmalloc creates a virtual * mapping. Thus, virt_to_phys() should not be used in this context; * instead the page table must be walked to acquire the physical * address of one page of the stack. */ stack_vm_area = task_stack_vm_area(current); if (is_vmap_stack) { sp &= ~(PAGE_SIZE - 1); copy_pages = calculate_copy_pages(sp, stack_vm_area); for (i = 0; i < copy_pages; i++) { scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d_%d", cpu, i); (void)register_stack_entry(&ksp_entry, sp, PAGE_SIZE); sp += PAGE_SIZE; } } else { sp &= ~(THREAD_SIZE - 1); scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d", cpu); (void)register_stack_entry(&ksp_entry, sp, THREAD_SIZE); } scnprintf(ktsk_entry.name, sizeof(ktsk_entry.name), "KTASK%d", cpu); ktsk_entry.virt_addr = (u64)current; ktsk_entry.phys_addr = virt_to_phys((uintptr_t *)current); ktsk_entry.size = sizeof(struct task_struct); if (rk_minidump_add_region(&ktsk_entry) < 0) pr_err("Failed to add current task %d in Minidump\n", cpu); } #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK static void update_stack_entry(struct md_region *ksp_entry, u64 sp, int mdno) { struct page *sp_page; ksp_entry->virt_addr = sp; if (likely(is_vmap_stack)) { sp_page = vmalloc_to_page((const void *) sp); ksp_entry->phys_addr = page_to_phys(sp_page); } else { ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp); } if (rk_minidump_update_region(mdno, ksp_entry) < 0) { pr_err_ratelimited( "Failed to update stack entry %s in minidump\n", ksp_entry->name); } } static void register_vmapped_stack(struct md_region *mdr, int *mdno, u64 sp, char *name_str, bool update) { int i; sp &= ~(PAGE_SIZE - 1); for (i = 0; i < STACK_NUM_PAGES; i++) { if (unlikely(!update)) { scnprintf(mdr->name, sizeof(mdr->name), "%s_%d", name_str, i); *mdno = register_stack_entry(mdr, sp, PAGE_SIZE); } else { update_stack_entry(mdr, sp, *mdno); } sp += PAGE_SIZE; mdr++; mdno++; } } static void register_normal_stack(struct md_region *mdr, int *mdno, u64 sp, char *name_str, bool update) { sp &= ~(THREAD_SIZE - 1); if (unlikely(!update)) { scnprintf(mdr->name, sizeof(mdr->name), name_str); *mdno = register_stack_entry(mdr, sp, THREAD_SIZE); } else { update_stack_entry(mdr, sp, *mdno); } } static void update_md_stack(struct md_region *stack_mdr, int *stack_mdno, u64 sp) { unsigned int i; int *mdno; if (likely(is_vmap_stack)) { for (i = 0; i < STACK_NUM_PAGES; i++) { mdno = stack_mdno + i; if (unlikely(*mdno < 0)) return; } register_vmapped_stack(stack_mdr, stack_mdno, sp, NULL, true); } else { if (unlikely(*stack_mdno < 0)) return; register_normal_stack(stack_mdr, stack_mdno, sp, NULL, true); } } static void update_md_cpu_stack(u32 cpu, u64 sp) { struct md_stack_cpu_data *md_stack_cpu_d = &per_cpu(md_stack_data, cpu); if (!md_current_stack_init) return; update_md_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp); } static void md_current_stack_notifer(void *ignore, bool preempt, struct task_struct *prev, struct task_struct *next) { u32 cpu = task_cpu(next); u64 sp = (u64)next->stack; update_md_cpu_stack(cpu, sp); } static void md_current_stack_ipi_handler(void *data) { u32 cpu = smp_processor_id(); struct vm_struct *stack_vm_area; u64 sp = current_stack_pointer; if (is_idle_task(current)) return; if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } update_md_cpu_stack(cpu, sp); } static void update_md_current_task(struct md_region *mdr, int mdno) { mdr->virt_addr = (u64)current; mdr->phys_addr = virt_to_phys((uintptr_t *)current); if (rk_minidump_update_region(mdno, mdr) < 0) pr_err("Failed to update %s current task in minidump\n", mdr->name); } static void update_md_suspend_current_stack(void) { u64 sp = current_stack_pointer; struct vm_struct *stack_vm_area; if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } update_md_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp); } static void update_md_suspend_current_task(void) { if (unlikely(md_suspend_context.task_mdno < 0)) return; update_md_current_task(&md_suspend_context.task_mdr, md_suspend_context.task_mdno); } static void update_md_suspend_currents(void) { if (!md_suspend_context.init) return; update_md_suspend_current_stack(); update_md_suspend_current_task(); } static void register_current_stack(void) { int cpu; u64 sp = current_stack_pointer; struct md_stack_cpu_data *md_stack_cpu_d; struct vm_struct *stack_vm_area; char name_str[MD_MAX_NAME_LENGTH]; /* * Since stacks are now allocated with vmalloc, the translation to * physical address is not a simple linear transformation like it is * for kernel logical addresses, since vmalloc creates a virtual * mapping. Thus, virt_to_phys() should not be used in this context; * instead the page table must be walked to acquire the physical * address of all pages of the stack. */ if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } for_each_possible_cpu(cpu) { /* * Let's register dummies for now, * once system up and running, let the cpu update its currents. */ md_stack_cpu_d = &per_cpu(md_stack_data, cpu); scnprintf(name_str, sizeof(name_str), "KSTACK%d", cpu); if (is_vmap_stack) register_vmapped_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp, name_str, false); else register_normal_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp, name_str, false); } register_trace_sched_switch(md_current_stack_notifer, NULL); md_current_stack_init = 1; smp_call_function(md_current_stack_ipi_handler, NULL, 1); } static void register_suspend_stack(void) { char name_str[MD_MAX_NAME_LENGTH]; u64 sp = current_stack_pointer; struct vm_struct *stack_vm_area = task_stack_vm_area(current); scnprintf(name_str, sizeof(name_str), "KSUSPSTK"); if (is_vmap_stack) { sp = (u64)stack_vm_area->addr; register_vmapped_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp, name_str, false); } else { register_normal_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp, name_str, false); } } static void register_current_task(struct md_region *mdr, int *mdno, char *name_str) { scnprintf(mdr->name, sizeof(mdr->name), name_str); mdr->virt_addr = (u64)current; mdr->phys_addr = virt_to_phys((uintptr_t *)current); mdr->size = sizeof(struct task_struct); *mdno = rk_minidump_add_region(mdr); if (*mdno < 0) pr_err("Failed to add current task %s in Minidump\n", mdr->name); } static void register_suspend_current_task(void) { char name_str[MD_MAX_NAME_LENGTH]; scnprintf(name_str, sizeof(name_str), "KSUSPTASK"); register_current_task(&md_suspend_context.task_mdr, &md_suspend_context.task_mdno, name_str); } #if !defined(MODULE) && defined(CONFIG_ARM64) static void register_irq_stacks(void) { struct md_region md_entry; int cpu, ret; struct page *sp_page; for_each_possible_cpu(cpu) { scnprintf(md_entry.name, sizeof(md_entry.name), "KIRQSTACK%d", cpu); md_entry.virt_addr = (u64)per_cpu(irq_stack_ptr, cpu); if (is_vmap_stack) { sp_page = vmalloc_to_page((const void *) md_entry.virt_addr); md_entry.phys_addr = page_to_phys(sp_page); } else { md_entry.phys_addr = virt_to_phys((const volatile void *)md_entry.virt_addr); } md_entry.size = IRQ_STACK_SIZE; ret = rk_minidump_add_region(&md_entry); if (ret < 0) pr_err("Failed to add %s entry in Minidump\n", md_entry.name); } } #else static inline void register_irq_stacks(void) { } #endif static int minidump_pm_notifier(struct notifier_block *nb, unsigned long event, void *unused) { switch (event) { case PM_SUSPEND_PREPARE: update_md_suspend_currents(); break; } return NOTIFY_DONE; } static struct notifier_block minidump_pm_nb = { .notifier_call = minidump_pm_notifier, }; static void register_suspend_context(void) { register_suspend_stack(); register_suspend_current_task(); register_pm_notifier(&minidump_pm_nb); md_suspend_context.init = true; } #endif /* CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK */ static Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type, size_t data_len) { struct elf_note *note = (struct elf_note *)buf; note->n_namesz = strlen(name) + 1; note->n_descsz = data_len; note->n_type = type; buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word)); memcpy(buf, name, note->n_namesz); buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word)); return buf; } static void register_note_section(void) { int ret = 0, i = 0, j = 0; size_t data_len; Elf_Word *buf; void *buffer_start; struct elf_prstatus *epr; struct user_pt_regs *regs; struct md_region *mdr = ¬e_md_entry; buffer_start = kzalloc(PAGE_SIZE * 2, GFP_KERNEL); if (!buffer_start) return; memcpy(mdr->name, "note", 5); mdr->virt_addr = (uintptr_t)buffer_start; mdr->phys_addr = virt_to_phys(buffer_start); buf = (Elf_Word *)mdr->virt_addr; data_len = sizeof(struct elf_prstatus); for_each_possible_cpu(i) { buf = append_elf_note(buf, "CORE", NT_PRSTATUS, data_len); epr = (struct elf_prstatus *)buf; epr->pr_pid = i; per_cpu(cpu_epr, i) = epr; regs = (struct user_pt_regs *)&epr->pr_reg; regs->pc = (u64)register_note_section; /* just for fun */ buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word)); } j = i; for (; i < 16; i++) { buf = append_elf_note(buf, "TASK", NT_PRSTATUS, data_len); epr = (struct elf_prstatus *)buf; epr->pr_pid = i; epr_hang_task[i - j] = epr; regs = (struct user_pt_regs *)&epr->pr_reg; regs->pc = (u64)register_note_section; /* just for fun */ buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word)); } mdr->size = (u64)buf - mdr->virt_addr; rk_md_flush_dcache_area((void *)mdr->virt_addr, mdr->size); ret = rk_minidump_add_region(mdr); if (ret < 0) pr_err("Failed to add %s entry in Minidump\n", mdr->name); } static int md_register_minidump_entry(char *name, u64 virt_addr, u64 phys_addr, u64 size) { struct md_region md_entry; int ret; strscpy(md_entry.name, name, sizeof(md_entry.name)); md_entry.virt_addr = virt_addr; md_entry.phys_addr = phys_addr; md_entry.size = size; ret = rk_minidump_add_region(&md_entry); if (ret < 0) pr_err("Failed to add %s entry in Minidump\n", name); return ret; } static struct page *md_vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; if (pgd_none(*pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; pud = pud_offset(p4d, addr); if (pud_none(*pud) || pud_bad(*pud)) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd) || pmd_bad(*pmd)) return NULL; ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); return page; } static bool md_is_kernel_address(u64 addr) { u32 data; u64 phys_addr = 0; struct page *page; if (!is_ttbr1_addr(addr)) return false; if (addr >= (u64)_text && addr < (u64)_end) return false; if (__is_lm_address(addr)) { phys_addr = virt_to_phys((void *)addr); } else if (is_vmalloc_or_module_addr((const void *)addr)) { page = md_vmalloc_to_page((const void *) addr); if (page) phys_addr = page_to_phys(page); else return false; } else { return false; } if (!md_is_ddr_address(phys_addr)) return false; if (aarch64_insn_read((void *)addr, &data)) return false; else return true; } static int md_save_page(u64 addr, bool flush) { u64 phys_addr, virt_addr; struct page *page; char buf[32]; int ret; if (md_is_kernel_address(addr)) { if (!md_is_in_the_region(addr)) { virt_addr = addr & PAGE_MASK; sprintf(buf, "%x", (u32)(virt_addr >> 12)); if (__is_lm_address(virt_addr)) { phys_addr = virt_to_phys((void *)virt_addr); } else if (is_vmalloc_or_module_addr((const void *)virt_addr)) { page = md_vmalloc_to_page((const void *) virt_addr); phys_addr = page_to_phys(page); } else { return -1; } ret = md_register_minidump_entry(buf, (uintptr_t)virt_addr, phys_addr, PAGE_SIZE); if (ret > 0 && flush) rk_md_flush_dcache_area((void *)virt_addr, PAGE_SIZE); } else { if (flush) rk_md_flush_dcache_area((void *)(addr & PAGE_MASK), PAGE_SIZE); } return 0; } return -1; } static void md_save_pages(u64 addr, bool flush) { u64 *p, *end; if (!md_save_page(addr, flush)) { addr &= ~0x7; p = (u64 *)addr; end = (u64 *)((addr & ~(PAGE_SIZE - 1)) + PAGE_SIZE); while (p < end) { if (!md_is_kernel_address((u64)p)) break; md_save_page(*p++, flush); } } } void rk_minidump_update_cpu_regs(struct pt_regs *regs) { int cpu = raw_smp_processor_id(); struct user_pt_regs *old_regs; int i = 0; struct elf_prstatus *epr = per_cpu(cpu_epr, cpu); if (!epr) return; if (system_state == SYSTEM_RESTART) return; old_regs = (struct user_pt_regs *)&epr->pr_reg; /* if epr has been saved, don't save it again in panic notifier*/ if (old_regs->sp != 0) return; memcpy((void *)&epr->pr_reg, (void *)regs, sizeof(elf_gregset_t)); rk_md_flush_dcache_area((void *)&epr->pr_reg, sizeof(elf_gregset_t)); rk_md_flush_dcache_area((void *)(regs->sp & ~(PAGE_SIZE - 1)), PAGE_SIZE); /* dump sp */ md_save_pages(regs->sp, true); /*dump x0-x28, x29 is lr, x30 is fp*/ for (i = 0; i < 29; i++) md_save_pages(regs->regs[i], true); } EXPORT_SYMBOL(rk_minidump_update_cpu_regs); #ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE static void minidump_add_trace_event(char *buf, size_t size) { char *addr; if (!READ_ONCE(md_ftrace_buf_addr) || (size > (size_t)MD_FTRACE_BUF_SIZE)) return; if ((md_ftrace_buf_current + size) > (size_t)MD_FTRACE_BUF_SIZE) md_ftrace_buf_current = 0; addr = md_ftrace_buf_addr + md_ftrace_buf_current; memcpy(addr, buf, size); md_ftrace_buf_current += size; } static void md_trace_oops_enter(void *unused, bool *enter_check) { if (!minidump_ftrace_in_oops) { minidump_ftrace_in_oops = true; *enter_check = false; } else { *enter_check = true; } } static void md_trace_oops_exit(void *unused, bool *exit_check) { minidump_ftrace_in_oops = false; } static void md_update_trace_fmt(void *unused, bool *format_check) { *format_check = false; } static void md_buf_size_check(void *unused, unsigned long buffer_size, bool *size_check) { if (!minidump_ftrace_dump) { *size_check = true; return; } if (buffer_size > (SZ_256K + PAGE_SIZE)) { pr_err("Skip md ftrace buffer dump for: %#lx\n", buffer_size); minidump_ftrace_dump = false; *size_check = true; } } static void md_dump_trace_buf(void *unused, struct trace_seq *trace_buf, bool *printk_check) { if (minidump_ftrace_in_oops && minidump_ftrace_dump) { minidump_add_trace_event(trace_buf->buffer, trace_buf->seq.len); *printk_check = false; } } static void md_register_trace_buf(void) { struct md_region md_entry; void *buffer_start; buffer_start = kzalloc(MD_FTRACE_BUF_SIZE, GFP_KERNEL); if (!buffer_start) return; strscpy(md_entry.name, "KFTRACE", sizeof(md_entry.name)); md_entry.virt_addr = (uintptr_t)buffer_start; md_entry.phys_addr = virt_to_phys(buffer_start); md_entry.size = MD_FTRACE_BUF_SIZE; if (rk_minidump_add_region(&md_entry) < 0) pr_err("Failed to add ftrace buffer entry in Minidump\n"); register_trace_android_vh_ftrace_oops_enter(md_trace_oops_enter, NULL); register_trace_android_vh_ftrace_oops_exit(md_trace_oops_exit, NULL); register_trace_android_vh_ftrace_size_check(md_buf_size_check, NULL); register_trace_android_vh_ftrace_format_check(md_update_trace_fmt, NULL); register_trace_android_vh_ftrace_dump_buffer(md_dump_trace_buf, NULL); /* Complete registration before adding entries */ smp_mb(); WRITE_ONCE(md_ftrace_buf_addr, buffer_start); } #endif #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP static void md_dump_align(void) { int tab_offset = md_align_offset; while (tab_offset--) seq_buf_printf(md_runq_seq_buf, " | "); seq_buf_printf(md_runq_seq_buf, " |--"); } static void md_dump_task_info(struct task_struct *task, char *status, struct task_struct *curr) { struct sched_entity *se; md_dump_align(); if (!task) { seq_buf_printf(md_runq_seq_buf, "%s : None(0)\n", status); return; } se = &task->se; if (task == curr) { seq_buf_printf(md_runq_seq_buf, "[status: curr] pid: %d comm: %s preempt: %#llx\n", task_pid_nr(task), task->comm, (u64)task->thread_info.preempt_count); return; } seq_buf_printf(md_runq_seq_buf, "[status: %s] pid: %d tsk: %#lx comm: %s stack: %#lx", status, task_pid_nr(task), (unsigned long)task, task->comm, (unsigned long)task->stack); seq_buf_printf(md_runq_seq_buf, " prio: %d aff: %*pb", task->prio, cpumask_pr_args(&task->cpus_mask)); #ifdef CONFIG_SCHED_WALT seq_buf_printf(md_runq_seq_buf, " enq: %lu wake: %lu sleep: %lu", task->wts.last_enqueued_ts, task->wts.last_wake_ts, task->wts.last_sleep_ts); #endif seq_buf_printf(md_runq_seq_buf, " vrun: %lu arr: %lu sum_ex: %lu\n", (unsigned long)se->vruntime, (unsigned long)se->exec_start, (unsigned long)se->sum_exec_runtime); } static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr); static void md_dump_cgroup_state(char *status, struct sched_entity *se_p, struct task_struct *curr) { struct task_struct *task; struct cfs_rq *my_q = NULL; unsigned int nr_running; if (!se_p) { md_dump_task_info(NULL, status, NULL); return; } #ifdef CONFIG_FAIR_GROUP_SCHED my_q = se_p->my_q; #endif if (!my_q) { task = container_of(se_p, struct task_struct, se); md_dump_task_info(task, status, curr); return; } nr_running = my_q->nr_running; md_dump_align(); seq_buf_printf(md_runq_seq_buf, "%s: %d process is grouping\n", status, nr_running); md_align_offset++; md_dump_cfs_rq(my_q, curr); md_align_offset--; } static void md_dump_cfs_node_func(struct rb_node *node, struct task_struct *curr) { struct sched_entity *se_p = container_of(node, struct sched_entity, run_node); md_dump_cgroup_state("pend", se_p, curr); } static void md_rb_walk_cfs(struct rb_root_cached *rb_root_cached_p, struct task_struct *curr) { int max_walk = 200; /* Bail out, in case of loop */ struct rb_node *leftmost = rb_root_cached_p->rb_leftmost; struct rb_root *root = &rb_root_cached_p->rb_root; struct rb_node *rb_node = rb_first(root); if (!leftmost) return; while (rb_node && max_walk--) { md_dump_cfs_node_func(rb_node, curr); rb_node = rb_next(rb_node); } } static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr) { struct rb_root_cached *rb_root_cached_p = &cfs->tasks_timeline; md_dump_cgroup_state("curr", cfs->curr, curr); md_dump_cgroup_state("next", cfs->next, curr); md_dump_cgroup_state("last", cfs->last, curr); md_dump_cgroup_state("skip", cfs->skip, curr); md_rb_walk_cfs(rb_root_cached_p, curr); } static void md_dump_rt_rq(struct rt_rq *rt_rq, struct task_struct *curr) { struct rt_prio_array *array = &rt_rq->active; struct sched_rt_entity *rt_se; int idx; /* Lifted most of the below code from dump_throttled_rt_tasks() */ if (bitmap_empty(array->bitmap, MAX_RT_PRIO)) return; idx = sched_find_first_bit(array->bitmap); while (idx < MAX_RT_PRIO) { list_for_each_entry(rt_se, array->queue + idx, run_list) { struct task_struct *p; #ifdef CONFIG_RT_GROUP_SCHED if (rt_se->my_q) continue; #endif p = container_of(rt_se, struct task_struct, rt); md_dump_task_info(p, "pend", curr); } idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1); } } static void md_dump_runqueues(void) { int cpu; struct rq *rq; struct rt_rq *rt; struct cfs_rq *cfs; if (!md_runq_seq_buf) return; for_each_possible_cpu(cpu) { rq = cpu_rq(cpu); rt = &rq->rt; cfs = &rq->cfs; seq_buf_printf(md_runq_seq_buf, "CPU%d %d process is running\n", cpu, rq->nr_running); md_dump_task_info(cpu_curr(cpu), "curr", NULL); seq_buf_printf(md_runq_seq_buf, "CFS %d process is pending\n", cfs->nr_running); md_dump_cfs_rq(cfs, cpu_curr(cpu)); seq_buf_printf(md_runq_seq_buf, "RT %d process is pending\n", rt->rt_nr_running); md_dump_rt_rq(rt, cpu_curr(cpu)); seq_buf_printf(md_runq_seq_buf, "\n"); } rk_md_flush_dcache_area((void *)md_runq_seq_buf->buffer, md_runq_seq_buf->len); } #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT /* * dump a block of kernel memory from around the given address. * Bulk of the code is lifted from arch/arm64/kernel/process.c. */ static void md_dump_data(unsigned long addr, int nbytes, const char *name) { int i, j; int nlines; u32 *p; /* * don't attempt to dump non-kernel addresses or * values that are probably just small negative numbers */ if (addr < PAGE_OFFSET || addr > -256UL) return; seq_buf_printf(md_cntxt_seq_buf, "\n%s: %#lx:\n", name, addr); /* * round address down to a 32 bit boundary * and always dump a multiple of 32 bytes */ p = (u32 *)(addr & ~(sizeof(u32) - 1)); nbytes += (addr & (sizeof(u32) - 1)); nlines = (nbytes + 31) / 32; for (i = 0; i < nlines; i++) { /* * just display low 16 bits of address to keep * each line of the dump < 80 characters */ seq_buf_printf(md_cntxt_seq_buf, "%04lx ", (unsigned long)p & 0xffff); for (j = 0; j < 8; j++) { u32 data = 0; if (get_kernel_nofault(data, p)) seq_buf_printf(md_cntxt_seq_buf, " ********"); else seq_buf_printf(md_cntxt_seq_buf, " %08x", data); ++p; } seq_buf_printf(md_cntxt_seq_buf, "\n"); } } static void md_reg_context_data(struct pt_regs *regs) { mm_segment_t fs; unsigned int i; int nbytes = 128; if (user_mode(regs) || !regs->pc) return; rk_minidump_update_cpu_regs(regs); fs = get_fs(); set_fs(KERNEL_DS); md_dump_data(regs->pc - nbytes, nbytes * 2, "PC"); md_dump_data(regs->regs[30] - nbytes, nbytes * 2, "LR"); md_dump_data(regs->sp - nbytes, nbytes * 2, "SP"); for (i = 0; i < 30; i++) { char name[4]; snprintf(name, sizeof(name), "X%u", i); md_dump_data(regs->regs[i] - nbytes, nbytes * 2, name); } set_fs(fs); rk_md_flush_dcache_area((void *)md_cntxt_seq_buf->buffer, md_cntxt_seq_buf->len); } static inline void md_dump_panic_regs(void) { struct pt_regs regs; u64 tmp1, tmp2; /* Lifted from crash_setup_regs() */ __asm__ __volatile__ ( "stp x0, x1, [%2, #16 * 0]\n" "stp x2, x3, [%2, #16 * 1]\n" "stp x4, x5, [%2, #16 * 2]\n" "stp x6, x7, [%2, #16 * 3]\n" "stp x8, x9, [%2, #16 * 4]\n" "stp x10, x11, [%2, #16 * 5]\n" "stp x12, x13, [%2, #16 * 6]\n" "stp x14, x15, [%2, #16 * 7]\n" "stp x16, x17, [%2, #16 * 8]\n" "stp x18, x19, [%2, #16 * 9]\n" "stp x20, x21, [%2, #16 * 10]\n" "stp x22, x23, [%2, #16 * 11]\n" "stp x24, x25, [%2, #16 * 12]\n" "stp x26, x27, [%2, #16 * 13]\n" "stp x28, x29, [%2, #16 * 14]\n" "mov %0, sp\n" "stp x30, %0, [%2, #16 * 15]\n" "/* faked current PSTATE */\n" "mrs %0, CurrentEL\n" "mrs %1, SPSEL\n" "orr %0, %0, %1\n" "mrs %1, DAIF\n" "orr %0, %0, %1\n" "mrs %1, NZCV\n" "orr %0, %0, %1\n" /* pc */ "adr %1, 1f\n" "1:\n" "stp %1, %0, [%2, #16 * 16]\n" : "=&r" (tmp1), "=&r" (tmp2) : "r" (®s) : "memory" ); seq_buf_printf(md_cntxt_seq_buf, "PANIC CPU : %d\n", raw_smp_processor_id()); if (in_interrupt()) md_reg_context_data(get_irq_regs()); else md_reg_context_data(®s); } static int md_die_context_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; if (md_in_oops_handler) return NOTIFY_DONE; md_in_oops_handler = true; if (!md_cntxt_seq_buf) { md_in_oops_handler = false; return NOTIFY_DONE; } die_cpu = raw_smp_processor_id(); seq_buf_printf(md_cntxt_seq_buf, "\nDIE CPU : %d\n", die_cpu); md_reg_context_data(args->regs); md_in_oops_handler = false; return NOTIFY_DONE; } static struct notifier_block md_die_context_nb = { .notifier_call = md_die_context_notify, .priority = INT_MAX - 2, /* < rk watchdog die notifier */ }; #endif static int rk_minidump_collect_hang_task(void) { struct task_struct *g, *p; struct elf_prstatus *epr; struct user_pt_regs *regs; int idx = 0, i = 0; for_each_process_thread(g, p) { touch_nmi_watchdog(); touch_all_softlockup_watchdogs(); if (p->state == TASK_UNINTERRUPTIBLE && p->state != TASK_IDLE) { epr = epr_hang_task[idx++]; regs = (struct user_pt_regs *)&epr->pr_reg; regs->regs[19] = (unsigned long)(p->thread.cpu_context.x19); regs->regs[20] = (unsigned long)(p->thread.cpu_context.x20); regs->regs[21] = (unsigned long)(p->thread.cpu_context.x21); regs->regs[22] = (unsigned long)(p->thread.cpu_context.x22); regs->regs[23] = (unsigned long)(p->thread.cpu_context.x23); regs->regs[24] = (unsigned long)(p->thread.cpu_context.x24); regs->regs[25] = (unsigned long)(p->thread.cpu_context.x25); regs->regs[26] = (unsigned long)(p->thread.cpu_context.x26); regs->regs[27] = (unsigned long)(p->thread.cpu_context.x27); regs->regs[28] = (unsigned long)(p->thread.cpu_context.x28); regs->regs[29] = (unsigned long)(p->thread.cpu_context.fp); regs->sp = (unsigned long)(p->thread.cpu_context.sp); regs->pc = (unsigned long)p->thread.cpu_context.pc; md_save_pages(regs->sp, true); for (i = 19; i < 29; i++) md_save_pages(regs->regs[i], true); rk_md_flush_dcache_area((void *)epr, sizeof(struct elf_prstatus)); } if (idx >= 8) return 0; } return 0; } static int md_panic_handler(struct notifier_block *this, unsigned long event, void *ptr) { if (md_in_oops_handler) return NOTIFY_DONE; md_in_oops_handler = true; #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT if (!md_cntxt_seq_buf) goto dump_rq; if (raw_smp_processor_id() != die_cpu) md_dump_panic_regs(); dump_rq: #endif md_dump_runqueues(); if (md_meminfo_seq_buf) md_dump_meminfo(md_meminfo_seq_buf); #ifdef CONFIG_SLUB_DEBUG if (md_slabinfo_seq_buf) md_dump_slabinfo(md_slabinfo_seq_buf); #endif #ifdef CONFIG_PAGE_OWNER if (md_pageowner_dump_addr) md_dump_pageowner(md_pageowner_dump_addr, md_pageowner_dump_size); #endif #ifdef CONFIG_SLUB_DEBUG if (md_slabowner_dump_addr) md_dump_slabowner(md_slabowner_dump_addr, md_slabowner_dump_size); #endif if (md_dma_buf_info_addr) md_dma_buf_info(md_dma_buf_info_addr, md_dma_buf_info_size); if (md_dma_buf_procs_addr) md_dma_buf_procs(md_dma_buf_procs_addr, md_dma_buf_procs_size); rk_minidump_collect_hang_task(); rk_minidump_flush_elfheader(); md_in_oops_handler = false; return NOTIFY_DONE; } static struct notifier_block md_panic_blk = { .notifier_call = md_panic_handler, .priority = INT_MAX - 2, }; static int md_register_panic_entries(int num_pages, char *name, struct seq_buf **global_buf) { char *buf; struct seq_buf *seq_buf_p; int ret; buf = kzalloc(num_pages * PAGE_SIZE, GFP_KERNEL); if (!buf) return -EINVAL; seq_buf_p = kzalloc(sizeof(*seq_buf_p), GFP_KERNEL); if (!seq_buf_p) { ret = -EINVAL; goto err_seq_buf; } ret = md_register_minidump_entry(name, (uintptr_t)buf, virt_to_phys(buf), num_pages * PAGE_SIZE); if (ret < 0) goto err_entry_reg; seq_buf_init(seq_buf_p, buf, num_pages * PAGE_SIZE); /* Complete registration before populating data */ smp_mb(); WRITE_ONCE(*global_buf, seq_buf_p); return 0; err_entry_reg: kfree(seq_buf_p); err_seq_buf: kfree(buf); return ret; } static void md_register_panic_data(void) { struct dentry *minidump_dir = NULL; md_register_panic_entries(MD_RUNQUEUE_PAGES, "KRUNQUEUE", &md_runq_seq_buf); #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT md_register_panic_entries(MD_CPU_CNTXT_PAGES, "KCNTXT", &md_cntxt_seq_buf); #endif md_register_panic_entries(MD_MEMINFO_PAGES, "MEMINFO", &md_meminfo_seq_buf); #ifdef CONFIG_SLUB_DEBUG md_register_panic_entries(MD_SLABINFO_PAGES, "SLABINFO", &md_slabinfo_seq_buf); #endif if (!minidump_dir) minidump_dir = debugfs_create_dir("minidump", NULL); #ifdef CONFIG_PAGE_OWNER if (is_page_owner_enabled()) { md_register_memory_dump(md_pageowner_dump_size, "PAGEOWNER"); md_debugfs_pageowner(minidump_dir); } #endif #ifdef CONFIG_SLUB_DEBUG if (is_slub_debug_enabled()) { md_register_memory_dump(md_slabowner_dump_size, "SLABOWNER"); md_debugfs_slabowner(minidump_dir); } #endif md_register_memory_dump(md_dma_buf_info_size, "DMABUF_INFO"); md_debugfs_dmabufinfo(minidump_dir); md_register_memory_dump(md_dma_buf_procs_size, "DMABUF_PROCS"); md_debugfs_dmabufprocs(minidump_dir); } static int print_module(const char *name, void *mod_addr, void *data) { if (!md_mod_info_seq_buf) { pr_err("md_mod_info_seq_buf is NULL\n"); return -EINVAL; } seq_buf_printf(md_mod_info_seq_buf, "name: %s, base: %#lx\n", name, (uintptr_t)mod_addr); return 0; } static int md_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; spin_lock(&md_modules_lock); switch (mod->state) { case MODULE_STATE_LIVE: print_module(mod->name, mod->core_layout.base, data); break; case MODULE_STATE_GOING: print_module(mod->name, mod->core_layout.base, data); break; default: break; } spin_unlock(&md_modules_lock); return 0; } static struct notifier_block md_module_nb = { .notifier_call = md_module_notify, }; static void md_register_module_data(void) { int ret; ret = md_register_panic_entries(MD_MODULE_PAGES, "KMODULES", &md_mod_info_seq_buf); if (ret) { pr_err("Failed to register minidump module buffer\n"); return; } seq_buf_printf(md_mod_info_seq_buf, "=== MODULE INFO ===\n"); ret = register_module_notifier(&md_module_nb); if (ret) { pr_err("Failed to register minidump module notifier\n"); return; } android_debug_for_each_module(print_module, NULL); } #endif /* CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP */ #ifdef CONFIG_HARDLOCKUP_DETECTOR int rk_minidump_hardlock_notify(struct notifier_block *nb, unsigned long event, void *p) { struct elf_prstatus *epr; struct user_pt_regs *regs; unsigned long hardlock_cpu = event; #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK int i = 0; struct md_stack_cpu_data *md_stack_cpu_d; struct md_region *mdr; #endif if (hardlock_cpu >= num_possible_cpus()) return NOTIFY_DONE; #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK md_stack_cpu_d = &per_cpu(md_stack_data, hardlock_cpu); for (i = 0; i < STACK_NUM_PAGES; i++) { mdr = &md_stack_cpu_d->stack_mdr[i]; if (md_is_kernel_address(mdr->virt_addr)) rk_md_flush_dcache_area((void *)mdr->virt_addr, mdr->size); } #endif epr = per_cpu(cpu_epr, hardlock_cpu); if (!epr) return NOTIFY_DONE; regs = (struct user_pt_regs *)&epr->pr_reg; regs->pc = (u64)p; #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK regs->sp = mdr->virt_addr + mdr->size; #endif rk_md_flush_dcache_area((void *)epr, sizeof(struct elf_prstatus)); return NOTIFY_OK; } #endif int rk_minidump_log_init(void) { is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK); register_note_section(); #ifdef CONFIG_ANDROID_DEBUG_SYMBOLS register_kernel_sections(); #endif #ifdef CONFIG_ROCKCHIP_DYN_MINIDUMP_STACK register_current_stack(); register_suspend_context(); register_irq_stacks(); #endif #ifdef CONFIG_ROCKCHIP_MINIDUMP_FTRACE md_register_trace_buf(); #endif #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_DUMP md_register_module_data(); md_register_panic_data(); atomic_notifier_chain_register(&panic_notifier_list, &md_panic_blk); #ifdef CONFIG_ROCKCHIP_MINIDUMP_PANIC_CPU_CONTEXT register_die_notifier(&md_die_context_nb); #endif #endif return 0; }