// SPDX-License-Identifier: GPL-2.0 /* * Crypto acceleration support for Rockchip Crypto V2 * * Copyright (c) 2018, Fuzhou Rockchip Electronics Co., Ltd * * Author: Lin Jinhan * * Some ideas are from marvell-cesa.c and s5p-sss.c driver. */ #include #include #include #include #include "rk_crypto_core.h" #include "rk_crypto_utils.h" #include "rk_crypto_skcipher_utils.h" #include "rk_crypto_v2.h" #include "rk_crypto_v2_reg.h" #define RK_POLL_PERIOD_US 100 #define RK_POLL_TIMEOUT_US 50000 static const u32 cipher_algo2bc[] = { [CIPHER_ALGO_DES] = CRYPTO_BC_DES, [CIPHER_ALGO_DES3_EDE] = CRYPTO_BC_TDES, [CIPHER_ALGO_AES] = CRYPTO_BC_AES, [CIPHER_ALGO_SM4] = CRYPTO_BC_SM4, }; static const u32 cipher_mode2bc[] = { [CIPHER_MODE_ECB] = CRYPTO_BC_ECB, [CIPHER_MODE_CBC] = CRYPTO_BC_CBC, [CIPHER_MODE_CFB] = CRYPTO_BC_CFB, [CIPHER_MODE_OFB] = CRYPTO_BC_OFB, [CIPHER_MODE_CTR] = CRYPTO_BC_CTR, [CIPHER_MODE_XTS] = CRYPTO_BC_XTS, [CIPHER_MODE_GCM] = CRYPTO_BC_GCM, }; static int rk_crypto_irq_handle(int irq, void *dev_id) { struct rk_crypto_dev *rk_dev = platform_get_drvdata(dev_id); u32 interrupt_status; struct rk_hw_crypto_v2_info *hw_info = (struct rk_hw_crypto_v2_info *)rk_dev->hw_info; struct rk_alg_ctx *alg_ctx = rk_cipher_alg_ctx(rk_dev); interrupt_status = CRYPTO_READ(rk_dev, CRYPTO_DMA_INT_ST); CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_ST, interrupt_status); interrupt_status &= CRYPTO_LOCKSTEP_MASK; if (interrupt_status != CRYPTO_DST_ITEM_DONE_INT_ST) { dev_err(rk_dev->dev, "DMA desc = %p\n", hw_info->hw_desc.lli_head); dev_err(rk_dev->dev, "DMA addr_in = %08x\n", (u32)alg_ctx->addr_in); dev_err(rk_dev->dev, "DMA addr_out = %08x\n", (u32)alg_ctx->addr_out); dev_err(rk_dev->dev, "DMA count = %08x\n", alg_ctx->count); dev_err(rk_dev->dev, "DMA desc_dma = %08x\n", (u32)hw_info->hw_desc.lli_head_dma); dev_err(rk_dev->dev, "DMA Error status = %08x\n", interrupt_status); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_LLI_ADDR status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_LLI_ADDR)); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_ST status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_ST)); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_STATE status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_STATE)); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_LLI_RADDR status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_LLI_RADDR)); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_SRC_RADDR status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_SRC_RADDR)); dev_err(rk_dev->dev, "DMA CRYPTO_DMA_DST_RADDR status = %08x\n", CRYPTO_READ(rk_dev, CRYPTO_DMA_DST_RADDR)); rk_dev->err = -EFAULT; } return 0; } static inline void set_pc_len_reg(struct rk_crypto_dev *rk_dev, u64 pc_len) { u32 chn_base = CRYPTO_CH0_PC_LEN_0; CRYPTO_TRACE("PC length = %lu\n", (unsigned long)pc_len); CRYPTO_WRITE(rk_dev, chn_base, pc_len & 0xffffffff); CRYPTO_WRITE(rk_dev, chn_base + 4, pc_len >> 32); } static inline void set_aad_len_reg(struct rk_crypto_dev *rk_dev, u64 aad_len) { u32 chn_base = CRYPTO_CH0_AAD_LEN_0; CRYPTO_TRACE("AAD length = %lu\n", (unsigned long)aad_len); CRYPTO_WRITE(rk_dev, chn_base, aad_len & 0xffffffff); CRYPTO_WRITE(rk_dev, chn_base + 4, aad_len >> 32); } static void set_iv_reg(struct rk_crypto_dev *rk_dev, const u8 *iv, u32 iv_len) { if (!iv || iv_len == 0) return; CRYPTO_DUMPHEX("set iv", iv, iv_len); rk_crypto_write_regs(rk_dev, CRYPTO_CH0_IV_0, iv, iv_len); CRYPTO_WRITE(rk_dev, CRYPTO_CH0_IV_LEN_0, iv_len); } static void write_key_reg(struct rk_crypto_dev *rk_dev, const u8 *key, u32 key_len) { rk_crypto_write_regs(rk_dev, CRYPTO_CH0_KEY_0, key, key_len); } static void write_tkey_reg(struct rk_crypto_dev *rk_dev, const u8 *key, u32 key_len) { rk_crypto_write_regs(rk_dev, CRYPTO_CH4_KEY_0, key, key_len); } static int get_tag_reg(struct rk_crypto_dev *rk_dev, u8 *tag, u32 tag_len) { int ret; u32 reg_ctrl = 0; CRYPTO_TRACE("tag_len = %u", tag_len); if (tag_len > RK_MAX_TAG_SIZE) return -EINVAL; ret = read_poll_timeout_atomic(CRYPTO_READ, reg_ctrl, reg_ctrl & CRYPTO_CH0_TAG_VALID, 0, RK_POLL_TIMEOUT_US, false, rk_dev, CRYPTO_TAG_VALID); if (ret) goto exit; rk_crypto_read_regs(rk_dev, CRYPTO_CH0_TAG_0, tag, tag_len); exit: return ret; } static bool is_force_fallback(struct rk_crypto_algt *algt, uint32_t key_len) { if (algt->algo != CIPHER_ALGO_AES) return false; /* crypto v2 not support xts with AES-192 */ if (algt->mode == CIPHER_MODE_XTS && key_len == AES_KEYSIZE_192 * 2) return true; if (algt->use_soft_aes192 && key_len == AES_KEYSIZE_192) return true; return false; } static bool is_calc_need_round_up(struct skcipher_request *req) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct rk_crypto_algt *algt = rk_cipher_get_algt(cipher); return (algt->mode == CIPHER_MODE_CFB || algt->mode == CIPHER_MODE_OFB || algt->mode == CIPHER_MODE_CTR) ? true : false; } static void rk_cipher_reset(struct rk_crypto_dev *rk_dev) { int ret; u32 tmp = 0, tmp_mask = 0; unsigned int pool_timeout_us = 1000; CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_EN, 0x00); tmp = CRYPTO_SW_CC_RESET; tmp_mask = tmp << CRYPTO_WRITE_MASK_SHIFT; CRYPTO_WRITE(rk_dev, CRYPTO_RST_CTL, tmp | tmp_mask); /* This is usually done in 20 clock cycles */ ret = read_poll_timeout_atomic(CRYPTO_READ, tmp, !tmp, 0, pool_timeout_us, false, rk_dev, CRYPTO_RST_CTL); if (ret) dev_err(rk_dev->dev, "cipher reset pool timeout %ums.", pool_timeout_us); CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, 0xffff0000); /* clear dma int status */ tmp = CRYPTO_READ(rk_dev, CRYPTO_DMA_INT_ST); CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_ST, tmp); } static void rk_crypto_complete(struct crypto_async_request *base, int err) { struct rk_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx; struct rk_hw_crypto_v2_info *hw_info = ctx->rk_dev->hw_info; struct crypto_lli_desc *lli_desc = hw_info->hw_desc.lli_head; CRYPTO_WRITE(ctx->rk_dev, CRYPTO_BC_CTL, 0xffff0000); if (err) { rk_cipher_reset(ctx->rk_dev); pr_err("aligned = %u, align_size = %u\n", alg_ctx->aligned, alg_ctx->align_size); pr_err("total = %u, left = %u, count = %u\n", alg_ctx->total, alg_ctx->left_bytes, alg_ctx->count); pr_err("lli->src = %08x\n", lli_desc->src_addr); pr_err("lli->src_len = %08x\n", lli_desc->src_len); pr_err("lli->dst = %08x\n", lli_desc->dst_addr); pr_err("lli->dst_len = %08x\n", lli_desc->dst_len); pr_err("lli->dma_ctl = %08x\n", lli_desc->dma_ctrl); pr_err("lli->usr_def = %08x\n", lli_desc->user_define); pr_err("lli->next = %08x\n\n\n", lli_desc->next_addr); } if (base->complete) base->complete(base, err); } static int rk_cipher_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct rk_crypto_algt *algt = rk_cipher_get_algt(tfm); CRYPTO_TRACE("%s total = %u", encrypt ? "encrypt" : "decrypt", req->cryptlen); if (!req->cryptlen) { if (algt->mode == CIPHER_MODE_ECB || algt->mode == CIPHER_MODE_CBC || algt->mode == CIPHER_MODE_CTR || algt->mode == CIPHER_MODE_CFB || algt->mode == CIPHER_MODE_OFB) return 0; else return -EINVAL; } /* XTS data should >= chunksize */ if (algt->mode == CIPHER_MODE_XTS) { if (req->cryptlen < crypto_skcipher_chunksize(tfm)) return -EINVAL; /* force use unalign branch */ ctx->algs_ctx.align_size = ctx->rk_dev->vir_max; /* XTS can't pause when use hardware crypto */ if (req->cryptlen > ctx->rk_dev->vir_max) return rk_cipher_fallback(req, ctx, encrypt); } if (is_force_fallback(algt, ctx->keylen)) return rk_cipher_fallback(req, ctx, encrypt); ctx->mode = cipher_algo2bc[algt->algo] | cipher_mode2bc[algt->mode]; if (!encrypt) ctx->mode |= CRYPTO_BC_DECRYPT; if (algt->algo == CIPHER_ALGO_AES) { uint32_t key_factor; /* The key length of XTS is twice the normal length */ key_factor = algt->mode == CIPHER_MODE_XTS ? 2 : 1; if (ctx->keylen == AES_KEYSIZE_128 * key_factor) ctx->mode |= CRYPTO_BC_128_bit_key; else if (ctx->keylen == AES_KEYSIZE_192 * key_factor) ctx->mode |= CRYPTO_BC_192_bit_key; else if (ctx->keylen == AES_KEYSIZE_256 * key_factor) ctx->mode |= CRYPTO_BC_256_bit_key; } ctx->iv_len = crypto_skcipher_ivsize(tfm); memset(ctx->iv, 0x00, sizeof(ctx->iv)); memcpy(ctx->iv, req->iv, ctx->iv_len); ctx->is_enc = encrypt; CRYPTO_MSG("ctx->mode = %x\n", ctx->mode); return rk_skcipher_handle_req(ctx->rk_dev, req); } static int rk_cipher_encrypt(struct skcipher_request *req) { return rk_cipher_crypt(req, true); } static int rk_cipher_decrypt(struct skcipher_request *req) { return rk_cipher_crypt(req, false); } static int rk_ablk_hw_init(struct rk_crypto_dev *rk_dev, u32 algo, u32 mode) { struct rk_cipher_ctx *ctx = rk_cipher_ctx_cast(rk_dev); rk_cipher_reset(rk_dev); CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, 0x00010000); if (mode == CIPHER_MODE_XTS) { uint32_t tmp_len = ctx->keylen / 2; write_key_reg(ctx->rk_dev, ctx->key, tmp_len); write_tkey_reg(ctx->rk_dev, ctx->key + tmp_len, tmp_len); } else { write_key_reg(ctx->rk_dev, ctx->key, ctx->keylen); } if (mode != CIPHER_MODE_ECB) set_iv_reg(rk_dev, ctx->iv, ctx->iv_len); ctx->mode |= CRYPTO_BC_ENABLE; CRYPTO_WRITE(rk_dev, CRYPTO_FIFO_CTL, 0x00030003); CRYPTO_WRITE(rk_dev, CRYPTO_DMA_INT_EN, 0x7f); CRYPTO_WRITE(rk_dev, CRYPTO_BC_CTL, ctx->mode | CRYPTO_WRITE_MASK_ALL); return 0; } static int crypto_dma_start(struct rk_crypto_dev *rk_dev, uint32_t flag) { struct rk_hw_crypto_v2_info *hw_info = (struct rk_hw_crypto_v2_info *)rk_dev->hw_info; struct skcipher_request *req = skcipher_request_cast(rk_dev->async_req); struct rk_alg_ctx *alg_ctx = rk_cipher_alg_ctx(rk_dev); struct crypto_lli_desc *lli_head, *lli_tail, *lli_aad; u32 calc_len = alg_ctx->count; u32 start_flag = CRYPTO_DMA_START; int ret; if (alg_ctx->aligned) ret = rk_crypto_hw_desc_init(&hw_info->hw_desc, alg_ctx->sg_src, alg_ctx->sg_dst, alg_ctx->count); else ret = rk_crypto_hw_desc_init(&hw_info->hw_desc, &alg_ctx->sg_tmp, &alg_ctx->sg_tmp, alg_ctx->count); if (ret) return ret; lli_head = hw_info->hw_desc.lli_head; lli_tail = hw_info->hw_desc.lli_tail; lli_aad = hw_info->hw_desc.lli_aad; /* * the data length is not aligned will use addr_vir to calculate, * so crypto v2 could round up data length to chunk_size */ if (!alg_ctx->is_aead && is_calc_need_round_up(req)) calc_len = round_up(calc_len, alg_ctx->chunk_size); CRYPTO_TRACE("calc_len = %u, cryptlen = %u, assoclen= %u, is_aead = %d", calc_len, alg_ctx->total, alg_ctx->assoclen, alg_ctx->is_aead); lli_head->user_define = LLI_USER_STRING_START | LLI_USER_CIPHER_START; lli_tail->dma_ctrl = LLI_DMA_CTRL_DST_DONE | LLI_DMA_CTRL_LAST; lli_tail->user_define |= LLI_USER_STRING_LAST; lli_tail->src_len += (calc_len - alg_ctx->count); lli_tail->dst_len += (calc_len - alg_ctx->count); if (alg_ctx->is_aead) { lli_aad->src_addr = alg_ctx->addr_aad_in; lli_aad->src_len = alg_ctx->assoclen; lli_aad->user_define = LLI_USER_CIPHER_START | LLI_USER_STRING_START | LLI_USER_STRING_LAST | LLI_USER_STRING_AAD; lli_aad->next_addr = hw_info->hw_desc.lli_head_dma; /* clear cipher start */ lli_head->user_define &= (~((u32)LLI_USER_CIPHER_START)); set_pc_len_reg(rk_dev, alg_ctx->total); set_aad_len_reg(rk_dev, alg_ctx->assoclen); } rk_crypto_dump_hw_desc(&hw_info->hw_desc); dma_wmb(); if (alg_ctx->is_aead) CRYPTO_WRITE(rk_dev, CRYPTO_DMA_LLI_ADDR, hw_info->hw_desc.lli_aad_dma); else CRYPTO_WRITE(rk_dev, CRYPTO_DMA_LLI_ADDR, hw_info->hw_desc.lli_head_dma); CRYPTO_WRITE(rk_dev, CRYPTO_DMA_CTL, start_flag | (start_flag << WRITE_MASK)); return 0; } static int rk_ablk_init_tfm(struct crypto_skcipher *tfm) { struct rk_crypto_algt *algt = rk_cipher_get_algt(tfm); struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm)); struct rk_crypto_dev *rk_dev = algt->rk_dev; struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx; CRYPTO_TRACE(); memset(ctx, 0x00, sizeof(*ctx)); if (!rk_dev->request_crypto) return -EFAULT; rk_dev->request_crypto(rk_dev, alg_name); /* always not aligned for crypto v2 cipher */ alg_ctx->align_size = 64; alg_ctx->chunk_size = crypto_skcipher_chunksize(tfm); alg_ctx->ops.start = rk_ablk_start; alg_ctx->ops.update = rk_ablk_rx; alg_ctx->ops.complete = rk_crypto_complete; alg_ctx->ops.irq_handle = rk_crypto_irq_handle; alg_ctx->ops.hw_init = rk_ablk_hw_init; alg_ctx->ops.hw_dma_start = crypto_dma_start; alg_ctx->ops.hw_write_iv = set_iv_reg; ctx->rk_dev = rk_dev; if (algt->alg.crypto.base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) { CRYPTO_MSG("alloc fallback tfm, name = %s", alg_name); ctx->fallback_tfm = crypto_alloc_skcipher(alg_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback_tfm)) { CRYPTO_MSG("Could not load fallback driver %s : %ld.\n", alg_name, PTR_ERR(ctx->fallback_tfm)); ctx->fallback_tfm = NULL; } } return 0; } static void rk_ablk_exit_tfm(struct crypto_skcipher *tfm) { struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm)); CRYPTO_TRACE(); if (ctx->fallback_tfm) { CRYPTO_MSG("free fallback tfm"); crypto_free_skcipher(ctx->fallback_tfm); } ctx->rk_dev->release_crypto(ctx->rk_dev, alg_name); } static int rk_aead_init_tfm(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct rk_crypto_algt *algt = container_of(alg, struct rk_crypto_algt, alg.aead); struct rk_cipher_ctx *ctx = crypto_tfm_ctx(&tfm->base); const char *alg_name = crypto_tfm_alg_name(&tfm->base); struct rk_crypto_dev *rk_dev = algt->rk_dev; struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx; CRYPTO_TRACE(); if (!rk_dev->request_crypto) return -EFAULT; rk_dev->request_crypto(rk_dev, alg_name); alg_ctx->align_size = 64; alg_ctx->chunk_size = crypto_aead_chunksize(tfm); alg_ctx->ops.start = rk_aead_start; alg_ctx->ops.update = rk_ablk_rx; alg_ctx->ops.complete = rk_crypto_complete; alg_ctx->ops.irq_handle = rk_crypto_irq_handle; alg_ctx->ops.hw_init = rk_ablk_hw_init; alg_ctx->ops.hw_dma_start = crypto_dma_start; alg_ctx->ops.hw_write_iv = set_iv_reg; alg_ctx->ops.hw_get_result = get_tag_reg; ctx->rk_dev = rk_dev; alg_ctx->is_aead = 1; if (algt->alg.crypto.base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) { CRYPTO_MSG("alloc fallback tfm, name = %s", alg_name); ctx->fallback_aead = crypto_alloc_aead(alg_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback_aead)) { dev_err(rk_dev->dev, "Load fallback driver %s err: %ld.\n", alg_name, PTR_ERR(ctx->fallback_aead)); ctx->fallback_aead = NULL; crypto_aead_set_reqsize(tfm, sizeof(struct aead_request)); } else { crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) + crypto_aead_reqsize(ctx->fallback_aead)); } } return 0; } static void rk_aead_exit_tfm(struct crypto_aead *tfm) { struct rk_cipher_ctx *ctx = crypto_tfm_ctx(&tfm->base); CRYPTO_TRACE(); if (ctx->fallback_aead) { CRYPTO_MSG("free fallback tfm"); crypto_free_aead(ctx->fallback_aead); } ctx->rk_dev->release_crypto(ctx->rk_dev, crypto_tfm_alg_name(&tfm->base)); } static int rk_aead_crypt(struct aead_request *req, bool encrypt) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct rk_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct rk_crypto_algt *algt = rk_aead_get_algt(tfm); struct scatterlist *sg_src, *sg_dst; struct scatterlist src[2], dst[2]; u64 data_len; bool aligned; int ret = -EINVAL; CRYPTO_TRACE("%s cryptlen = %u, assoclen = %u", encrypt ? "encrypt" : "decrypt", req->cryptlen, req->assoclen); data_len = encrypt ? req->cryptlen : (req->cryptlen - crypto_aead_authsize(tfm)); if (req->assoclen == 0 || req->cryptlen == 0 || data_len == 0 || is_force_fallback(algt, ctx->keylen)) return rk_aead_fallback(req, ctx, encrypt); /* point sg_src and sg_dst skip assoc data */ sg_src = scatterwalk_ffwd(src, req->src, req->assoclen); sg_dst = (req->src == req->dst) ? sg_src : scatterwalk_ffwd(dst, req->dst, req->assoclen); aligned = rk_crypto_check_align(sg_src, sg_nents_for_len(sg_src, data_len), sg_dst, sg_nents_for_len(sg_dst, data_len), 64); if (sg_nents_for_len(sg_src, data_len) > RK_DEFAULT_LLI_CNT || sg_nents_for_len(sg_dst, data_len) > RK_DEFAULT_LLI_CNT) return rk_aead_fallback(req, ctx, encrypt); if (!aligned) { if (req->assoclen > ctx->rk_dev->aad_max || data_len > ctx->rk_dev->vir_max) return rk_aead_fallback(req, ctx, encrypt); } ctx->mode = cipher_algo2bc[algt->algo] | cipher_mode2bc[algt->mode]; if (!encrypt) ctx->mode |= CRYPTO_BC_DECRYPT; if (algt->algo == CIPHER_ALGO_AES) { if (ctx->keylen == AES_KEYSIZE_128) ctx->mode |= CRYPTO_BC_128_bit_key; else if (ctx->keylen == AES_KEYSIZE_192) ctx->mode |= CRYPTO_BC_192_bit_key; else if (ctx->keylen == AES_KEYSIZE_256) ctx->mode |= CRYPTO_BC_256_bit_key; } ctx->iv_len = crypto_aead_ivsize(tfm); memset(ctx->iv, 0x00, sizeof(ctx->iv)); memcpy(ctx->iv, req->iv, ctx->iv_len); ctx->is_enc = encrypt; CRYPTO_MSG("ctx->mode = %x\n", ctx->mode); ret = rk_aead_handle_req(ctx->rk_dev, req); return ret; } static int rk_aead_encrypt(struct aead_request *req) { return rk_aead_crypt(req, true); } static int rk_aead_decrypt(struct aead_request *req) { return rk_aead_crypt(req, false); } struct rk_crypto_algt rk_v2_ecb_sm4_alg = RK_CIPHER_ALGO_INIT(SM4, ECB, ecb(sm4), ecb-sm4-rk); struct rk_crypto_algt rk_v2_cbc_sm4_alg = RK_CIPHER_ALGO_INIT(SM4, CBC, cbc(sm4), cbc-sm4-rk); struct rk_crypto_algt rk_v2_xts_sm4_alg = RK_CIPHER_ALGO_XTS_INIT(SM4, xts(sm4), xts-sm4-rk); struct rk_crypto_algt rk_v2_cfb_sm4_alg = RK_CIPHER_ALGO_INIT(SM4, CFB, cfb(sm4), cfb-sm4-rk); struct rk_crypto_algt rk_v2_ofb_sm4_alg = RK_CIPHER_ALGO_INIT(SM4, OFB, ofb(sm4), ofb-sm4-rk); struct rk_crypto_algt rk_v2_ctr_sm4_alg = RK_CIPHER_ALGO_INIT(SM4, CTR, ctr(sm4), ctr-sm4-rk); struct rk_crypto_algt rk_v2_gcm_sm4_alg = RK_AEAD_ALGO_INIT(SM4, GCM, gcm(sm4), gcm-sm4-rk); struct rk_crypto_algt rk_v2_ecb_aes_alg = RK_CIPHER_ALGO_INIT(AES, ECB, ecb(aes), ecb-aes-rk); struct rk_crypto_algt rk_v2_cbc_aes_alg = RK_CIPHER_ALGO_INIT(AES, CBC, cbc(aes), cbc-aes-rk); struct rk_crypto_algt rk_v2_xts_aes_alg = RK_CIPHER_ALGO_XTS_INIT(AES, xts(aes), xts-aes-rk); struct rk_crypto_algt rk_v2_cfb_aes_alg = RK_CIPHER_ALGO_INIT(AES, CFB, cfb(aes), cfb-aes-rk); struct rk_crypto_algt rk_v2_ofb_aes_alg = RK_CIPHER_ALGO_INIT(AES, OFB, ofb(aes), ofb-aes-rk); struct rk_crypto_algt rk_v2_ctr_aes_alg = RK_CIPHER_ALGO_INIT(AES, CTR, ctr(aes), ctr-aes-rk); struct rk_crypto_algt rk_v2_gcm_aes_alg = RK_AEAD_ALGO_INIT(AES, GCM, gcm(aes), gcm-aes-rk); struct rk_crypto_algt rk_v2_ecb_des_alg = RK_CIPHER_ALGO_INIT(DES, ECB, ecb(des), ecb-des-rk); struct rk_crypto_algt rk_v2_cbc_des_alg = RK_CIPHER_ALGO_INIT(DES, CBC, cbc(des), cbc-des-rk); struct rk_crypto_algt rk_v2_cfb_des_alg = RK_CIPHER_ALGO_INIT(DES, CFB, cfb(des), cfb-des-rk); struct rk_crypto_algt rk_v2_ofb_des_alg = RK_CIPHER_ALGO_INIT(DES, OFB, ofb(des), ofb-des-rk); struct rk_crypto_algt rk_v2_ecb_des3_ede_alg = RK_CIPHER_ALGO_INIT(DES3_EDE, ECB, ecb(des3_ede), ecb-des3_ede-rk); struct rk_crypto_algt rk_v2_cbc_des3_ede_alg = RK_CIPHER_ALGO_INIT(DES3_EDE, CBC, cbc(des3_ede), cbc-des3_ede-rk); struct rk_crypto_algt rk_v2_cfb_des3_ede_alg = RK_CIPHER_ALGO_INIT(DES3_EDE, CFB, cfb(des3_ede), cfb-des3_ede-rk); struct rk_crypto_algt rk_v2_ofb_des3_ede_alg = RK_CIPHER_ALGO_INIT(DES3_EDE, OFB, ofb(des3_ede), ofb-des3_ede-rk);