237 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
 | 
						|
 *
 | 
						|
 * Copyright (C) 2011-2012 International Business Machines Inc.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; version 2 only.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
						|
 *
 | 
						|
 * Author: Kent Yoder <yoder1@us.ibm.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <crypto/internal/hash.h>
 | 
						|
#include <crypto/aes.h>
 | 
						|
#include <crypto/algapi.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/crypto.h>
 | 
						|
#include <asm/vio.h>
 | 
						|
 | 
						|
#include "nx_csbcpb.h"
 | 
						|
#include "nx.h"
 | 
						|
 | 
						|
 | 
						|
struct xcbc_state {
 | 
						|
	u8 state[AES_BLOCK_SIZE];
 | 
						|
	unsigned int count;
 | 
						|
	u8 buffer[AES_BLOCK_SIZE];
 | 
						|
};
 | 
						|
 | 
						|
static int nx_xcbc_set_key(struct crypto_shash *desc,
 | 
						|
			   const u8            *in_key,
 | 
						|
			   unsigned int         key_len)
 | 
						|
{
 | 
						|
	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
 | 
						|
 | 
						|
	switch (key_len) {
 | 
						|
	case AES_KEYSIZE_128:
 | 
						|
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int nx_xcbc_init(struct shash_desc *desc)
 | 
						|
{
 | 
						|
	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | 
						|
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | 
						|
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | 
						|
	struct nx_sg *out_sg;
 | 
						|
 | 
						|
	nx_ctx_init(nx_ctx, HCOP_FC_AES);
 | 
						|
 | 
						|
	memset(sctx, 0, sizeof *sctx);
 | 
						|
 | 
						|
	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
 | 
						|
	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
 | 
						|
 | 
						|
	memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
 | 
						|
	memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
 | 
						|
 | 
						|
	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
 | 
						|
				  AES_BLOCK_SIZE, nx_ctx->ap->sglen);
 | 
						|
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int nx_xcbc_update(struct shash_desc *desc,
 | 
						|
			  const u8          *data,
 | 
						|
			  unsigned int       len)
 | 
						|
{
 | 
						|
	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | 
						|
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | 
						|
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | 
						|
	struct nx_sg *in_sg;
 | 
						|
	u32 to_process, leftover;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 | 
						|
		/* we've hit the nx chip previously and we're updating again,
 | 
						|
		 * so copy over the partial digest */
 | 
						|
		memcpy(csbcpb->cpb.aes_xcbc.cv,
 | 
						|
		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	/* 2 cases for total data len:
 | 
						|
	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
 | 
						|
	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
 | 
						|
	 */
 | 
						|
	if (len + sctx->count <= AES_BLOCK_SIZE) {
 | 
						|
		memcpy(sctx->buffer + sctx->count, data, len);
 | 
						|
		sctx->count += len;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* to_process: the AES_BLOCK_SIZE data chunk to process in this
 | 
						|
	 * update */
 | 
						|
	to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
 | 
						|
	leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
 | 
						|
 | 
						|
	/* the hardware will not accept a 0 byte operation for this algorithm
 | 
						|
	 * and the operation MUST be finalized to be correct. So if we happen
 | 
						|
	 * to get an update that falls on a block sized boundary, we must
 | 
						|
	 * save off the last block to finalize with later. */
 | 
						|
	if (!leftover) {
 | 
						|
		to_process -= AES_BLOCK_SIZE;
 | 
						|
		leftover = AES_BLOCK_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sctx->count) {
 | 
						|
		in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
 | 
						|
					 sctx->count, nx_ctx->ap->sglen);
 | 
						|
		in_sg = nx_build_sg_list(in_sg, (u8 *)data,
 | 
						|
					 to_process - sctx->count,
 | 
						|
					 nx_ctx->ap->sglen);
 | 
						|
		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
 | 
						|
					sizeof(struct nx_sg);
 | 
						|
	} else {
 | 
						|
		in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
 | 
						|
					 nx_ctx->ap->sglen);
 | 
						|
		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
 | 
						|
					sizeof(struct nx_sg);
 | 
						|
	}
 | 
						|
 | 
						|
	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 | 
						|
 | 
						|
	if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | 
						|
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | 
						|
	if (rc)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	atomic_inc(&(nx_ctx->stats->aes_ops));
 | 
						|
 | 
						|
	/* copy the leftover back into the state struct */
 | 
						|
	memcpy(sctx->buffer, data + len - leftover, leftover);
 | 
						|
	sctx->count = leftover;
 | 
						|
 | 
						|
	/* everything after the first update is continuation */
 | 
						|
	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
 | 
						|
{
 | 
						|
	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | 
						|
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | 
						|
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | 
						|
	struct nx_sg *in_sg, *out_sg;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 | 
						|
		/* we've hit the nx chip previously, now we're finalizing,
 | 
						|
		 * so copy over the partial digest */
 | 
						|
		memcpy(csbcpb->cpb.aes_xcbc.cv,
 | 
						|
		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 | 
						|
	} else if (sctx->count == 0) {
 | 
						|
		/* we've never seen an update, so this is a 0 byte op. The
 | 
						|
		 * hardware cannot handle a 0 byte op, so just copy out the
 | 
						|
		 * known 0 byte result. This is cheaper than allocating a
 | 
						|
		 * software context to do a 0 byte op */
 | 
						|
		u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
 | 
						|
			      0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
 | 
						|
		memcpy(out, data, sizeof(data));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* final is represented by continuing the operation and indicating that
 | 
						|
	 * this is not an intermediate operation */
 | 
						|
	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
 | 
						|
 | 
						|
	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
 | 
						|
				 sctx->count, nx_ctx->ap->sglen);
 | 
						|
	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
 | 
						|
				  nx_ctx->ap->sglen);
 | 
						|
 | 
						|
	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
 | 
						|
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | 
						|
 | 
						|
	if (!nx_ctx->op.outlen) {
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | 
						|
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | 
						|
	if (rc)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	atomic_inc(&(nx_ctx->stats->aes_ops));
 | 
						|
 | 
						|
	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
struct shash_alg nx_shash_aes_xcbc_alg = {
 | 
						|
	.digestsize = AES_BLOCK_SIZE,
 | 
						|
	.init       = nx_xcbc_init,
 | 
						|
	.update     = nx_xcbc_update,
 | 
						|
	.final      = nx_xcbc_final,
 | 
						|
	.setkey     = nx_xcbc_set_key,
 | 
						|
	.descsize   = sizeof(struct xcbc_state),
 | 
						|
	.statesize  = sizeof(struct xcbc_state),
 | 
						|
	.base       = {
 | 
						|
		.cra_name        = "xcbc(aes)",
 | 
						|
		.cra_driver_name = "xcbc-aes-nx",
 | 
						|
		.cra_priority    = 300,
 | 
						|
		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
 | 
						|
		.cra_blocksize   = AES_BLOCK_SIZE,
 | 
						|
		.cra_module      = THIS_MODULE,
 | 
						|
		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
 | 
						|
		.cra_init        = nx_crypto_ctx_aes_xcbc_init,
 | 
						|
		.cra_exit        = nx_crypto_ctx_exit,
 | 
						|
	}
 | 
						|
};
 |