1338 lines
30 KiB
C

/*
* drivers/video/tegra/dc/nvhdcp.c
*
* Copyright (c) 2010-2014, NVIDIA CORPORATION, All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/atomic.h>
#include <linux/tegra-soc.h>
#include <video/nvhdcp.h>
#include "dc_reg.h"
#include "dc_priv.h"
#include "hdmi_reg.h"
#include "hdmi.h"
DECLARE_WAIT_QUEUE_HEAD(wq_worker);
/* for 0x40 Bcaps */
#define BCAPS_REPEATER (1 << 6)
#define BCAPS_READY (1 << 5)
#define BCAPS_11 (1 << 1) /* used for both Bcaps and Ainfo */
/* for 0x41 Bstatus */
#define BSTATUS_MAX_DEVS_EXCEEDED (1 << 7)
#define BSTATUS_MAX_CASCADE_EXCEEDED (1 << 11)
#ifdef VERBOSE_DEBUG
#define nvhdcp_vdbg(...) \
pr_debug("nvhdcp: " __VA_ARGS__)
#else
#define nvhdcp_vdbg(...) \
({ \
if (0) \
pr_debug("nvhdcp: " __VA_ARGS__); \
0; \
})
#endif
#define nvhdcp_debug(...) \
pr_debug("nvhdcp: " __VA_ARGS__)
#define nvhdcp_err(...) \
pr_err("nvhdcp: Error: " __VA_ARGS__)
#define nvhdcp_info(...) \
pr_info("nvhdcp: " __VA_ARGS__)
/* for nvhdcp.state */
enum tegra_nvhdcp_state {
STATE_OFF,
STATE_UNAUTHENTICATED,
STATE_LINK_VERIFY,
STATE_RENEGOTIATE,
};
struct tegra_nvhdcp {
struct delayed_work work;
struct tegra_dc_hdmi_data *hdmi;
struct workqueue_struct *downstream_wq;
struct mutex lock;
struct miscdevice miscdev;
char name[12];
unsigned id;
bool plugged; /* true if hotplug detected */
atomic_t policy; /* set policy */
enum tegra_nvhdcp_state state; /* STATE_xxx */
struct i2c_client *client;
struct i2c_board_info info;
int bus;
u32 b_status;
u64 a_n;
u64 c_n;
u64 a_ksv;
u64 b_ksv;
u64 c_ksv;
u64 d_ksv;
u8 v_prime[20];
u64 m_prime;
u32 num_bksv_list;
u64 bksv_list[TEGRA_NVHDCP_MAX_DEVS];
int fail_count;
atomic_t requested;
};
static inline bool nvhdcp_is_plugged(struct tegra_nvhdcp *nvhdcp)
{
rmb();
return nvhdcp->plugged;
}
static inline bool nvhdcp_set_plugged(struct tegra_nvhdcp *nvhdcp, bool plugged)
{
nvhdcp->plugged = plugged;
wmb();
return plugged;
}
static int nvhdcp_i2c_read(struct tegra_nvhdcp *nvhdcp, u8 reg,
size_t len, void *data)
{
int status;
int retries = 15;
struct i2c_msg msg[] = {
{
.addr = 0x74 >> 1, /* primary link */
.flags = 0,
.len = 1,
.buf = &reg,
},
{
.addr = 0x74 >> 1, /* primary link */
.flags = I2C_M_RD,
.len = len,
.buf = data,
},
};
do {
if (!nvhdcp_is_plugged(nvhdcp)) {
nvhdcp_err("disconnect during i2c xfer\n");
return -EIO;
}
status = i2c_transfer(nvhdcp->client->adapter,
msg, ARRAY_SIZE(msg));
if ((status < 0) && (retries > 1))
msleep(250);
} while ((status < 0) && retries--);
if (status < 0) {
nvhdcp_err("i2c xfer error %d\n", status);
return status;
}
return 0;
}
static int nvhdcp_i2c_write(struct tegra_nvhdcp *nvhdcp, u8 reg,
size_t len, const void *data)
{
int status;
u8 buf[len + 1];
struct i2c_msg msg[] = {
{
.addr = 0x74 >> 1, /* primary link */
.flags = 0,
.len = len + 1,
.buf = buf,
},
};
int retries = 15;
buf[0] = reg;
memcpy(buf + 1, data, len);
do {
if (!nvhdcp_is_plugged(nvhdcp)) {
nvhdcp_err("disconnect during i2c xfer\n");
return -EIO;
}
status = i2c_transfer(nvhdcp->client->adapter,
msg, ARRAY_SIZE(msg));
if ((status < 0) && (retries > 1))
msleep(250);
} while ((status < 0) && retries--);
if (status < 0) {
nvhdcp_err("i2c xfer error %d\n", status);
return status;
}
return 0;
}
static inline int nvhdcp_i2c_read8(struct tegra_nvhdcp *nvhdcp, u8 reg, u8 *val)
{
return nvhdcp_i2c_read(nvhdcp, reg, 1, val);
}
static inline int nvhdcp_i2c_write8(struct tegra_nvhdcp *nvhdcp, u8 reg, u8 val)
{
return nvhdcp_i2c_write(nvhdcp, reg, 1, &val);
}
static inline int nvhdcp_i2c_read16(struct tegra_nvhdcp *nvhdcp,
u8 reg, u16 *val)
{
u8 buf[2];
int e;
e = nvhdcp_i2c_read(nvhdcp, reg, sizeof(buf), buf);
if (e)
return e;
if (val)
*val = buf[0] | (u16)buf[1] << 8;
return 0;
}
static int nvhdcp_i2c_read40(struct tegra_nvhdcp *nvhdcp, u8 reg, u64 *val)
{
u8 buf[5];
int e, i;
u64 n;
e = nvhdcp_i2c_read(nvhdcp, reg, sizeof(buf), buf);
if (e)
return e;
for (i = 0, n = 0; i < 5; i++) {
n <<= 8;
n |= buf[4 - i];
}
if (val)
*val = n;
return 0;
}
static int nvhdcp_i2c_write40(struct tegra_nvhdcp *nvhdcp, u8 reg, u64 val)
{
char buf[5];
int i;
for (i = 0; i < 5; i++) {
buf[i] = val;
val >>= 8;
}
return nvhdcp_i2c_write(nvhdcp, reg, sizeof(buf), buf);
}
static int nvhdcp_i2c_write64(struct tegra_nvhdcp *nvhdcp, u8 reg, u64 val)
{
char buf[8];
int i;
for (i = 0; i < 8; i++) {
buf[i] = val;
val >>= 8;
}
return nvhdcp_i2c_write(nvhdcp, reg, sizeof(buf), buf);
}
/* 64-bit link encryption session random number */
static inline u64 get_an(struct tegra_dc_hdmi_data *hdmi)
{
u64 r;
r = (u64)tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_AN_MSB) << 32;
r |= tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_AN_LSB);
return r;
}
/* 64-bit upstream exchange random number */
static inline void set_cn(struct tegra_dc_hdmi_data *hdmi, u64 c_n)
{
tegra_hdmi_writel(hdmi, (u32)c_n, HDMI_NV_PDISP_RG_HDCP_CN_LSB);
tegra_hdmi_writel(hdmi, c_n >> 32, HDMI_NV_PDISP_RG_HDCP_CN_MSB);
}
/* 40-bit transmitter's key selection vector */
static inline u64 get_aksv(struct tegra_dc_hdmi_data *hdmi)
{
u64 r;
r = (u64)tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_AKSV_MSB) << 32;
r |= tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_AKSV_LSB);
return r;
}
/* 40-bit receiver's key selection vector */
static inline void set_bksv(struct tegra_dc_hdmi_data *hdmi, u64 b_ksv,
bool repeater)
{
if (repeater)
b_ksv |= (u64)REPEATER << 32;
tegra_hdmi_writel(hdmi, (u32)b_ksv, HDMI_NV_PDISP_RG_HDCP_BKSV_LSB);
tegra_hdmi_writel(hdmi, b_ksv >> 32, HDMI_NV_PDISP_RG_HDCP_BKSV_MSB);
}
/* 40-bit software's key selection vector */
static inline void set_cksv(struct tegra_dc_hdmi_data *hdmi, u64 c_ksv)
{
tegra_hdmi_writel(hdmi, (u32)c_ksv, HDMI_NV_PDISP_RG_HDCP_CKSV_LSB);
tegra_hdmi_writel(hdmi, c_ksv >> 32, HDMI_NV_PDISP_RG_HDCP_CKSV_MSB);
}
/* 40-bit connection state */
static inline u64 get_cs(struct tegra_dc_hdmi_data *hdmi)
{
u64 r;
r = (u64)tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_CS_MSB) << 32;
r |= tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_CS_LSB);
return r;
}
/* 40-bit upstream key selection vector */
static inline u64 get_dksv(struct tegra_dc_hdmi_data *hdmi)
{
u64 r;
r = (u64)tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_DKSV_MSB) << 32;
r |= tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_DKSV_LSB);
return r;
}
/* 64-bit encrypted M0 value */
static inline u64 get_mprime(struct tegra_dc_hdmi_data *hdmi)
{
u64 r;
r = (u64)tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_MPRIME_MSB) << 32;
r |= tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_MPRIME_LSB);
return r;
}
static inline u16 get_transmitter_ri(struct tegra_dc_hdmi_data *hdmi)
{
return tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_RI);
}
static inline int get_receiver_ri(struct tegra_nvhdcp *nvhdcp, u16 *r)
{
return nvhdcp_i2c_read16(nvhdcp, 0x8, r); /* long read */
}
static int get_bcaps(struct tegra_nvhdcp *nvhdcp, u8 *b_caps)
{
return nvhdcp_i2c_read8(nvhdcp, 0x40, b_caps);
}
static int get_ksvfifo(struct tegra_nvhdcp *nvhdcp,
unsigned num_bksv_list, u64 *ksv_list)
{
u8 *buf, *p;
int e;
unsigned i;
size_t buf_len = num_bksv_list * 5;
if (!ksv_list || num_bksv_list > TEGRA_NVHDCP_MAX_DEVS)
return -EINVAL;
if (num_bksv_list == 0)
return 0;
buf = kmalloc(buf_len, GFP_KERNEL);
if (IS_ERR_OR_NULL(buf))
return -ENOMEM;
e = nvhdcp_i2c_read(nvhdcp, 0x43, buf_len, buf);
if (e) {
kfree(buf);
return e;
}
/* load 40-bit keys from repeater into array of u64 */
p = buf;
for (i = 0; i < num_bksv_list; i++) {
ksv_list[i] = p[0] | ((u64)p[1] << 8) | ((u64)p[2] << 16)
| ((u64)p[3] << 24) | ((u64)p[4] << 32);
p += 5;
}
kfree(buf);
return 0;
}
/* get V' 160-bit SHA-1 hash from repeater */
static int get_vprime(struct tegra_nvhdcp *nvhdcp, u8 *v_prime)
{
int e, i;
for (i = 0; i < 20; i += 4) {
e = nvhdcp_i2c_read(nvhdcp, 0x20 + i, 4, v_prime + i);
if (e)
return e;
}
return 0;
}
/* set or clear RUN_YES */
static void hdcp_ctrl_run(struct tegra_dc_hdmi_data *hdmi, bool v)
{
u32 ctrl;
if (v) {
ctrl = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_CTRL);
ctrl |= HDCP_RUN_YES;
} else {
ctrl = 0;
}
tegra_hdmi_writel(hdmi, ctrl, HDMI_NV_PDISP_RG_HDCP_CTRL);
}
/* wait for any bits in mask to be set in HDMI_NV_PDISP_RG_HDCP_CTRL
* sleeps up to 120mS */
static int wait_hdcp_ctrl(struct tegra_dc_hdmi_data *hdmi, u32 mask, u32 *v)
{
int retries = 13;
u32 ctrl;
do {
ctrl = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_CTRL);
if ((ctrl & mask)) {
if (v)
*v = ctrl;
break;
}
if (retries > 1)
msleep(10);
} while (--retries);
if (!retries) {
nvhdcp_err("ctrl read timeout (mask=0x%x)\n", mask);
return -EIO;
}
return 0;
}
/* wait for bits in mask to be set to value in HDMI_NV_PDISP_KEY_CTRL
* waits up to 100mS */
static int wait_key_ctrl(struct tegra_dc_hdmi_data *hdmi, u32 mask, u32 value)
{
int retries = 101;
u32 ctrl;
do {
msleep(1);
ctrl = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_KEY_CTRL);
if (((ctrl ^ value) & mask) == 0)
break;
} while (--retries);
if (!retries) {
nvhdcp_err("key ctrl read timeout (mask=0x%x)\n", mask);
return -EIO;
}
return 0;
}
/* check that key selection vector is well formed.
* NOTE: this function assumes KSV has already been checked against
* revocation list.
*/
static int verify_ksv(u64 k)
{
unsigned i;
/* count set bits, must be exactly 20 set to be valid */
for (i = 0; k; i++)
k ^= k & -k;
return (i != 20) ? -EINVAL : 0;
}
static int get_nvhdcp_state(struct tegra_nvhdcp *nvhdcp,
struct tegra_nvhdcp_packet *pkt)
{
int i;
mutex_lock(&nvhdcp->lock);
if (nvhdcp->state != STATE_LINK_VERIFY) {
memset(pkt, 0, sizeof(*pkt));
pkt->packet_results = TEGRA_NVHDCP_RESULT_LINK_FAILED;
} else {
pkt->num_bksv_list = nvhdcp->num_bksv_list;
for (i = 0; i < pkt->num_bksv_list; i++)
pkt->bksv_list[i] = nvhdcp->bksv_list[i];
pkt->b_status = nvhdcp->b_status;
pkt->b_ksv = nvhdcp->b_ksv;
memcpy(pkt->v_prime, nvhdcp->v_prime, sizeof(nvhdcp->v_prime));
pkt->packet_results = TEGRA_NVHDCP_RESULT_SUCCESS;
}
mutex_unlock(&nvhdcp->lock);
return 0;
}
/* get Status and Kprime signature - READ_S on TMDS0_LINK0 only */
static int get_s_prime(struct tegra_nvhdcp *nvhdcp,
struct tegra_nvhdcp_packet *pkt)
{
struct tegra_dc_hdmi_data *hdmi = nvhdcp->hdmi;
u32 sp_msb, sp_lsb1, sp_lsb2;
int e;
/* if connection isn't authenticated ... */
mutex_lock(&nvhdcp->lock);
if (nvhdcp->state != STATE_LINK_VERIFY) {
memset(pkt, 0, sizeof(*pkt));
pkt->packet_results = TEGRA_NVHDCP_RESULT_LINK_FAILED;
e = 0;
goto err;
}
pkt->packet_results = TEGRA_NVHDCP_RESULT_UNSUCCESSFUL;
/* we will be taking c_n, c_ksv as input */
if (!(pkt->value_flags & TEGRA_NVHDCP_FLAG_CN)
|| !(pkt->value_flags & TEGRA_NVHDCP_FLAG_CKSV)) {
nvhdcp_err("missing value_flags (0x%x)\n", pkt->value_flags);
e = -EINVAL;
goto err;
}
pkt->value_flags = 0;
pkt->a_ksv = nvhdcp->a_ksv;
pkt->a_n = nvhdcp->a_n;
pkt->value_flags = TEGRA_NVHDCP_FLAG_AKSV | TEGRA_NVHDCP_FLAG_AN;
nvhdcp_vdbg("%s():cn %llx cksv %llx\n", __func__, pkt->c_n, pkt->c_ksv);
set_cn(hdmi, pkt->c_n);
tegra_hdmi_writel(hdmi, TMDS0_LINK0 | READ_S,
HDMI_NV_PDISP_RG_HDCP_CMODE);
set_cksv(hdmi, pkt->c_ksv);
e = wait_hdcp_ctrl(hdmi, SPRIME_VALID, NULL);
if (e) {
nvhdcp_err("Sprime read timeout\n");
pkt->packet_results = TEGRA_NVHDCP_RESULT_UNSUCCESSFUL;
e = -EIO;
goto err;
}
msleep(50);
/* read 56-bit Sprime plus 16 status bits */
sp_msb = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_SPRIME_MSB);
sp_lsb1 = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_SPRIME_LSB1);
sp_lsb2 = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_SPRIME_LSB2);
/* top 8 bits of LSB2 and bottom 8 bits of MSB hold status bits. */
pkt->hdcp_status = (sp_msb << 8) | (sp_lsb2 >> 24);
pkt->value_flags |= TEGRA_NVHDCP_FLAG_S;
/* 56-bit Kprime */
pkt->k_prime = ((u64)(sp_lsb2 & 0xffffff) << 32) | sp_lsb1;
pkt->value_flags |= TEGRA_NVHDCP_FLAG_KP;
/* is connection state supported? */
if (sp_msb & STATUS_CS) {
pkt->cs = get_cs(hdmi);
pkt->value_flags |= TEGRA_NVHDCP_FLAG_CS;
}
/* load Dksv */
pkt->d_ksv = get_dksv(hdmi);
if (verify_ksv(pkt->d_ksv)) {
nvhdcp_err("Dksv invalid!\n");
pkt->packet_results = TEGRA_NVHDCP_RESULT_UNSUCCESSFUL;
e = -EIO; /* treat bad Dksv as I/O error */
}
pkt->value_flags |= TEGRA_NVHDCP_FLAG_DKSV;
/* copy current Bksv */
pkt->b_ksv = nvhdcp->b_ksv;
pkt->value_flags |= TEGRA_NVHDCP_FLAG_BKSV;
pkt->packet_results = TEGRA_NVHDCP_RESULT_SUCCESS;
mutex_unlock(&nvhdcp->lock);
return 0;
err:
mutex_unlock(&nvhdcp->lock);
return e;
}
/* get M prime - READ_M on TMDS0_LINK0 only */
static inline int get_m_prime(struct tegra_nvhdcp *nvhdcp,
struct tegra_nvhdcp_packet *pkt)
{
struct tegra_dc_hdmi_data *hdmi = nvhdcp->hdmi;
int e;
pkt->packet_results = TEGRA_NVHDCP_RESULT_UNSUCCESSFUL;
/* if connection isn't authenticated ... */
mutex_lock(&nvhdcp->lock);
if (nvhdcp->state != STATE_LINK_VERIFY) {
memset(pkt, 0, sizeof(*pkt));
pkt->packet_results = TEGRA_NVHDCP_RESULT_LINK_FAILED;
e = 0;
goto err;
}
pkt->a_ksv = nvhdcp->a_ksv;
pkt->a_n = nvhdcp->a_n;
pkt->value_flags = TEGRA_NVHDCP_FLAG_AKSV | TEGRA_NVHDCP_FLAG_AN;
set_cn(hdmi, pkt->c_n);
tegra_hdmi_writel(hdmi, TMDS0_LINK0 | READ_M,
HDMI_NV_PDISP_RG_HDCP_CMODE);
/* Cksv write triggers Mprime update */
set_cksv(hdmi, pkt->c_ksv);
e = wait_hdcp_ctrl(hdmi, MPRIME_VALID, NULL);
if (e) {
nvhdcp_err("Mprime read timeout\n");
e = -EIO;
goto err;
}
msleep(50);
/* load Mprime */
pkt->m_prime = get_mprime(hdmi);
pkt->value_flags |= TEGRA_NVHDCP_FLAG_MP;
pkt->b_status = nvhdcp->b_status;
pkt->value_flags |= TEGRA_NVHDCP_FLAG_BSTATUS;
/* copy most recent KSVFIFO, if it is non-zero */
pkt->num_bksv_list = nvhdcp->num_bksv_list;
if (nvhdcp->num_bksv_list) {
BUILD_BUG_ON(sizeof(pkt->bksv_list) !=
sizeof(nvhdcp->bksv_list));
memcpy(pkt->bksv_list, nvhdcp->bksv_list,
nvhdcp->num_bksv_list * sizeof(*pkt->bksv_list));
pkt->value_flags |= TEGRA_NVHDCP_FLAG_BKSVLIST;
}
/* copy v_prime */
BUILD_BUG_ON(sizeof(pkt->v_prime) != sizeof(nvhdcp->v_prime));
memcpy(pkt->v_prime, nvhdcp->v_prime, sizeof(nvhdcp->v_prime));
pkt->value_flags |= TEGRA_NVHDCP_FLAG_V;
/* load Dksv */
pkt->d_ksv = get_dksv(hdmi);
if (verify_ksv(pkt->d_ksv)) {
nvhdcp_err("Dksv invalid!\n");
e = -EIO;
goto err;
}
pkt->value_flags |= TEGRA_NVHDCP_FLAG_DKSV;
/* copy current Bksv */
pkt->b_ksv = nvhdcp->b_ksv;
pkt->value_flags |= TEGRA_NVHDCP_FLAG_BKSV;
pkt->packet_results = TEGRA_NVHDCP_RESULT_SUCCESS;
mutex_unlock(&nvhdcp->lock);
return 0;
err:
mutex_unlock(&nvhdcp->lock);
return e;
}
static int load_kfuse(struct tegra_dc_hdmi_data *hdmi)
{
unsigned buf[TEGRA_KFUSE_DATA_SZ / 4];
int e, i;
u32 ctrl;
u32 tmp;
int retries;
/* copy load kfuse into buffer - only needed for early Tegra parts */
e = tegra_kfuse_read(buf, sizeof(buf));
if (e) {
nvhdcp_err("Kfuse read failure\n");
return e;
}
/* write the kfuse to HDMI SRAM */
tegra_hdmi_writel(hdmi, 1, HDMI_NV_PDISP_KEY_CTRL); /* LOAD_KEYS */
/* issue a reload */
ctrl = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_KEY_CTRL);
e = wait_key_ctrl(hdmi, PKEY_LOADED, PKEY_LOADED);
if (e) {
nvhdcp_err("key reload timeout\n");
return -EIO;
}
tegra_hdmi_writel(hdmi, 0, HDMI_NV_PDISP_KEY_SKEY_INDEX);
/* wait for SRAM to be cleared */
retries = 6;
do {
tmp = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_KEY_DEBUG0);
if ((tmp & 1) == 0)
break;
if (retries > 1)
mdelay(1);
} while (--retries);
if (!retries) {
nvhdcp_err("key SRAM clear timeout\n");
return -EIO;
}
for (i = 0; i < TEGRA_KFUSE_DATA_SZ / 4; i += 4) {
/* load 128-bits*/
tegra_hdmi_writel(hdmi, buf[i], HDMI_NV_PDISP_KEY_HDCP_KEY_0);
tegra_hdmi_writel(hdmi, buf[i+1], HDMI_NV_PDISP_KEY_HDCP_KEY_1);
tegra_hdmi_writel(hdmi, buf[i+2], HDMI_NV_PDISP_KEY_HDCP_KEY_2);
tegra_hdmi_writel(hdmi, buf[i+3], HDMI_NV_PDISP_KEY_HDCP_KEY_3);
/* trigger LOAD_HDCP_KEY */
tegra_hdmi_writel(hdmi, 0x100, HDMI_NV_PDISP_KEY_HDCP_KEY_TRIG);
tmp = LOCAL_KEYS | WRITE16;
if (i)
tmp |= AUTOINC;
tegra_hdmi_writel(hdmi, tmp, HDMI_NV_PDISP_KEY_CTRL);
/* wait for WRITE16 to complete */
e = wait_key_ctrl(hdmi, 0x10, 0); /* WRITE16 */
if (e) {
nvhdcp_err("key write timeout\n");
return -EIO;
}
}
return 0;
}
static int verify_link(struct tegra_nvhdcp *nvhdcp, bool wait_ri)
{
struct tegra_dc_hdmi_data *hdmi = nvhdcp->hdmi;
int retries = 3;
u16 old, rx, tx;
int e;
old = 0;
rx = 0;
tx = 0;
/* retry 3 times to deal with I2C link issues */
do {
if (!nvhdcp_is_plugged(nvhdcp)) {
nvhdcp_err("abort verify link: lost hdmi connection\n");
return -EIO;
}
if (wait_ri)
old = get_transmitter_ri(hdmi);
e = get_receiver_ri(nvhdcp, &rx);
if (!e) {
if (!rx) {
nvhdcp_err("Ri is 0!\n");
return -EINVAL;
}
tx = get_transmitter_ri(hdmi);
} else {
rx = ~tx;
msleep(50);
}
} while (wait_ri && --retries && old != tx);
nvhdcp_debug("R0 Ri poll:rx=0x%04x tx=0x%04x\n", rx, tx);
if (rx != tx)
return -EINVAL;
return 0;
}
static int get_repeater_info(struct tegra_nvhdcp *nvhdcp)
{
int e, retries;
u8 b_caps;
u16 b_status;
nvhdcp_vdbg("repeater found:fetching repeater info\n");
/* wait up to 5 seconds for READY on repeater */
retries = 51;
do {
if (!nvhdcp_is_plugged(nvhdcp)) {
nvhdcp_err("disconnect while waiting for repeater\n");
return -EIO;
}
e = get_bcaps(nvhdcp, &b_caps);
if (!e && (b_caps & BCAPS_READY)) {
nvhdcp_debug("Bcaps READY from repeater\n");
break;
}
if (retries > 1)
msleep(100);
} while (--retries);
if (!retries) {
nvhdcp_err("repeater Bcaps read timeout\n");
return -ETIMEDOUT;
}
memset(nvhdcp->v_prime, 0, sizeof(nvhdcp->v_prime));
e = get_vprime(nvhdcp, nvhdcp->v_prime);
if (e) {
nvhdcp_err("repeater Vprime read failure!\n");
return e;
}
e = nvhdcp_i2c_read16(nvhdcp, 0x41, &b_status);
if (e) {
nvhdcp_err("Bstatus read failure!\n");
return e;
}
if (b_status & BSTATUS_MAX_DEVS_EXCEEDED) {
nvhdcp_err("repeater:max devices (0x%04x)\n", b_status);
return -EINVAL;
}
if (b_status & BSTATUS_MAX_CASCADE_EXCEEDED) {
nvhdcp_err("repeater:max cascade (0x%04x)\n", b_status);
return -EINVAL;
}
nvhdcp->b_status = b_status;
nvhdcp->num_bksv_list = b_status & 0x7f;
nvhdcp_vdbg("Bstatus 0x%x (devices: %d)\n",
b_status, nvhdcp->num_bksv_list);
memset(nvhdcp->bksv_list, 0, sizeof(nvhdcp->bksv_list));
e = get_ksvfifo(nvhdcp, nvhdcp->num_bksv_list, nvhdcp->bksv_list);
if (e) {
nvhdcp_err("repeater:could not read KSVFIFO (err %d)\n", e);
return e;
}
return 0;
}
static void nvhdcp_downstream_worker(struct work_struct *work)
{
struct tegra_nvhdcp *nvhdcp =
container_of(to_delayed_work(work), struct tegra_nvhdcp, work);
struct tegra_dc_hdmi_data *hdmi = nvhdcp->hdmi;
struct tegra_dc *dc = tegra_dc_hdmi_get_dc(hdmi);
int e;
u8 b_caps;
u32 tmp;
u32 res;
nvhdcp_vdbg("%s():started thread %s\n", __func__, nvhdcp->name);
tegra_dc_io_start(dc);
mutex_lock(&nvhdcp->lock);
if (!dc->enabled)
goto err;
if (nvhdcp->state == STATE_OFF) {
nvhdcp_err("nvhdcp failure - giving up\n");
goto err;
}
nvhdcp->state = STATE_UNAUTHENTICATED;
/* check plug state to terminate early in case flush_workqueue() */
if (!nvhdcp_is_plugged(nvhdcp)) {
nvhdcp_err("worker started while unplugged!\n");
goto lost_hdmi;
}
nvhdcp_vdbg("%s():hpd=%d\n", __func__, nvhdcp->plugged);
nvhdcp->a_ksv = 0;
nvhdcp->b_ksv = 0;
nvhdcp->a_n = 0;
e = get_bcaps(nvhdcp, &b_caps);
if (e) {
nvhdcp_err("Bcaps read failure\n");
goto failure;
}
nvhdcp_vdbg("read Bcaps = 0x%02x\n", b_caps);
nvhdcp_vdbg("kfuse loading ...\n");
/* repeater flag in Bskv must be configured before loading fuses */
set_bksv(hdmi, 0, (b_caps & BCAPS_REPEATER));
e = load_kfuse(hdmi);
if (e) {
nvhdcp_err("kfuse could not be loaded\n");
goto failure;
}
hdcp_ctrl_run(hdmi, 1);
nvhdcp_vdbg("wait AN_VALID ...\n");
/* wait for hardware to generate HDCP values */
e = wait_hdcp_ctrl(hdmi, AN_VALID | SROM_ERR, &res);
if (e) {
nvhdcp_err("An key generation timeout\n");
goto failure;
}
if (res & SROM_ERR) {
nvhdcp_err("SROM error\n");
goto failure;
}
msleep(25);
nvhdcp->a_ksv = get_aksv(hdmi);
nvhdcp->a_n = get_an(hdmi);
nvhdcp_vdbg("Aksv is 0x%016llx\n", nvhdcp->a_ksv);
nvhdcp_vdbg("An is 0x%016llx\n", nvhdcp->a_n);
if (verify_ksv(nvhdcp->a_ksv)) {
nvhdcp_err("Aksv verify failure! (0x%016llx)\n", nvhdcp->a_ksv);
goto disable;
}
/* write Ainfo to receiver - set 1.1 only if b_caps supports it */
e = nvhdcp_i2c_write8(nvhdcp, 0x15, b_caps & BCAPS_11);
if (e) {
nvhdcp_err("Ainfo write failure\n");
goto failure;
}
/* write An to receiver */
e = nvhdcp_i2c_write64(nvhdcp, 0x18, nvhdcp->a_n);
if (e) {
nvhdcp_err("An write failure\n");
goto failure;
}
nvhdcp_vdbg("wrote An = 0x%016llx\n", nvhdcp->a_n);
/* write Aksv to receiver - triggers auth sequence */
e = nvhdcp_i2c_write40(nvhdcp, 0x10, nvhdcp->a_ksv);
if (e) {
nvhdcp_err("Aksv write failure\n");
goto failure;
}
nvhdcp_vdbg("wrote Aksv = 0x%010llx\n", nvhdcp->a_ksv);
/* bail out if unplugged in the middle of negotiation */
if (!nvhdcp_is_plugged(nvhdcp))
goto lost_hdmi;
/* get Bksv from receiver */
e = nvhdcp_i2c_read40(nvhdcp, 0x00, &nvhdcp->b_ksv);
if (e) {
nvhdcp_err("Bksv read failure\n");
goto failure;
}
nvhdcp_vdbg("Bksv is 0x%016llx\n", nvhdcp->b_ksv);
if (verify_ksv(nvhdcp->b_ksv)) {
nvhdcp_err("Bksv verify failure!\n");
goto failure;
}
nvhdcp_vdbg("read Bksv = 0x%010llx from device\n", nvhdcp->b_ksv);
set_bksv(hdmi, nvhdcp->b_ksv, (b_caps & BCAPS_REPEATER));
nvhdcp_vdbg("loaded Bksv into controller\n");
e = wait_hdcp_ctrl(hdmi, R0_VALID, NULL);
if (e) {
nvhdcp_err("R0 read failure!\n");
goto failure;
}
nvhdcp_vdbg("R0 valid\n");
msleep(100); /* can't read R0' within 100ms of writing Aksv */
nvhdcp_vdbg("verifying links ...\n");
e = verify_link(nvhdcp, false);
if (e) {
nvhdcp_err("link verification failed err %d\n", e);
goto failure;
}
/* if repeater then get repeater info */
if (b_caps & BCAPS_REPEATER) {
e = get_repeater_info(nvhdcp);
if (e) {
nvhdcp_err("get repeater info failed\n");
goto failure;
}
}
tmp = tegra_hdmi_readl(hdmi, HDMI_NV_PDISP_RG_HDCP_CTRL);
tmp |= CRYPT_ENABLED;
if (b_caps & BCAPS_11) /* HDCP 1.1 ? */
tmp |= ONEONE_ENABLED;
tegra_hdmi_writel(hdmi, tmp, HDMI_NV_PDISP_RG_HDCP_CTRL);
nvhdcp_vdbg("CRYPT enabled\n");
nvhdcp->state = STATE_LINK_VERIFY;
nvhdcp_info("link verified!\n");
while (1) {
if (!nvhdcp_is_plugged(nvhdcp))
goto lost_hdmi;
if (nvhdcp->state != STATE_LINK_VERIFY)
goto failure;
e = verify_link(nvhdcp, true);
if (e) {
nvhdcp_err("link verification failed err %d\n", e);
goto failure;
}
mutex_unlock(&nvhdcp->lock);
tegra_dc_io_end(dc);
wait_event_interruptible_timeout(wq_worker,
!nvhdcp_is_plugged(nvhdcp), msecs_to_jiffies(1500));
tegra_dc_io_start(dc);
mutex_lock(&nvhdcp->lock);
}
failure:
nvhdcp->fail_count++;
if (nvhdcp->fail_count > 5) {
nvhdcp_err("nvhdcp failure - too many failures, giving up!\n");
} else {
nvhdcp_err("nvhdcp failure - renegotiating in 1 second\n");
if (!nvhdcp_is_plugged(nvhdcp))
goto lost_hdmi;
queue_delayed_work(nvhdcp->downstream_wq, &nvhdcp->work,
msecs_to_jiffies(1000));
}
lost_hdmi:
nvhdcp->state = STATE_UNAUTHENTICATED;
hdcp_ctrl_run(hdmi, 0);
err:
mutex_unlock(&nvhdcp->lock);
tegra_dc_io_end(dc);
return;
disable:
nvhdcp->state = STATE_OFF;
nvhdcp_set_plugged(nvhdcp, false);
mutex_unlock(&nvhdcp->lock);
tegra_dc_io_end(dc);
return;
}
static int tegra_nvhdcp_on(struct tegra_nvhdcp *nvhdcp)
{
if (delayed_work_pending(&nvhdcp->work))
return 0;
mutex_lock(&nvhdcp->lock);
nvhdcp->state = STATE_UNAUTHENTICATED;
if (nvhdcp_is_plugged(nvhdcp)) {
nvhdcp->fail_count = 0;
mutex_unlock(&nvhdcp->lock);
queue_delayed_work(nvhdcp->downstream_wq, &nvhdcp->work,
msecs_to_jiffies(100));
mutex_lock(&nvhdcp->lock);
}
mutex_unlock(&nvhdcp->lock);
return 0;
}
static int tegra_nvhdcp_off(struct tegra_nvhdcp *nvhdcp)
{
mutex_lock(&nvhdcp->lock);
nvhdcp->state = STATE_OFF;
nvhdcp_set_plugged(nvhdcp, false);
mutex_unlock(&nvhdcp->lock);
wake_up_interruptible(&wq_worker);
cancel_delayed_work_sync(&nvhdcp->work);
return 0;
}
struct mutex *tegra_nvhdcp_get_lock(struct tegra_dc_hdmi_data *hdmi)
{
if (!IS_ERR_OR_NULL(hdmi) && !IS_ERR_OR_NULL(hdmi->nvhdcp))
return &hdmi->nvhdcp->lock;
else
return NULL;
}
void tegra_nvhdcp_set_plug(struct tegra_nvhdcp *nvhdcp, bool hpd)
{
nvhdcp_debug("hdmi hotplug detected (hpd = %d)\n", hpd);
if (hpd) {
nvhdcp_set_plugged(nvhdcp, true);
if (atomic_read(&nvhdcp->policy) ==
TEGRA_NVHDCP_POLICY_ON_DEMAND &&
!atomic_read(&nvhdcp->requested))
return;
tegra_nvhdcp_on(nvhdcp);
} else {
nvhdcp_set_plugged(nvhdcp, false);
tegra_nvhdcp_off(nvhdcp);
}
}
int tegra_nvhdcp_set_policy(struct tegra_nvhdcp *nvhdcp, int pol)
{
if (pol == TEGRA_NVHDCP_POLICY_ON_DEMAND) {
nvhdcp_info("using \"on demand\" policy.\n");
if (atomic_xchg(&nvhdcp->policy, pol) != pol)
tegra_nvhdcp_off(nvhdcp);
} else if (pol == TEGRA_NVHDCP_POLICY_ALWAYS_ON) {
nvhdcp_info("using \"always on\" policy.\n");
if (atomic_xchg(&nvhdcp->policy, pol) != pol) {
/* policy changed, start working */
tegra_nvhdcp_on(nvhdcp);
}
} else {
/* unsupported policy */
return -EINVAL;
}
return 0;
}
static int tegra_nvhdcp_renegotiate(struct tegra_nvhdcp *nvhdcp)
{
mutex_lock(&nvhdcp->lock);
nvhdcp->state = STATE_RENEGOTIATE;
mutex_unlock(&nvhdcp->lock);
tegra_nvhdcp_on(nvhdcp);
return 0;
}
void tegra_nvhdcp_suspend(struct tegra_nvhdcp *nvhdcp)
{
if (!nvhdcp)
return;
tegra_nvhdcp_off(nvhdcp);
}
void tegra_nvhdcp_resume(struct tegra_nvhdcp *nvhdcp)
{
if (!nvhdcp)
return;
tegra_nvhdcp_renegotiate(nvhdcp);
}
static long nvhdcp_dev_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct tegra_nvhdcp *nvhdcp = filp->private_data;
struct tegra_nvhdcp_packet *pkt;
int e = -ENOTTY;
switch (cmd) {
case TEGRAIO_NVHDCP_ON:
atomic_set(&nvhdcp->requested, 1);
nvhdcp_set_plugged(nvhdcp, true);
return tegra_nvhdcp_on(nvhdcp);
case TEGRAIO_NVHDCP_OFF:
atomic_set(&nvhdcp->requested, 0);
return tegra_nvhdcp_off(nvhdcp);
case TEGRAIO_NVHDCP_SET_POLICY:
return tegra_nvhdcp_set_policy(nvhdcp, arg);
case TEGRAIO_NVHDCP_READ_M:
pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
if (!pkt)
return -ENOMEM;
if (copy_from_user(pkt, (void __user *)arg, sizeof(*pkt))) {
e = -EFAULT;
goto kfree_pkt;
}
e = get_m_prime(nvhdcp, pkt);
if (copy_to_user((void __user *)arg, pkt, sizeof(*pkt))) {
e = -EFAULT;
goto kfree_pkt;
}
kfree(pkt);
return e;
case TEGRAIO_NVHDCP_READ_S:
pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
if (!pkt)
return -ENOMEM;
if (copy_from_user(pkt, (void __user *)arg, sizeof(*pkt))) {
e = -EFAULT;
goto kfree_pkt;
}
e = get_s_prime(nvhdcp, pkt);
if (copy_to_user((void __user *)arg, pkt, sizeof(*pkt))) {
e = -EFAULT;
goto kfree_pkt;
}
kfree(pkt);
return e;
case TEGRAIO_NVHDCP_RENEGOTIATE:
e = tegra_nvhdcp_renegotiate(nvhdcp);
break;
case TEGRAIO_NVHDCP_HDCP_STATE:
pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
if (!pkt)
return -ENOMEM;
e = get_nvhdcp_state(nvhdcp, pkt);
if (copy_to_user((void __user *)arg, pkt, sizeof(*pkt))) {
e = -EFAULT;
goto kfree_pkt;
}
kfree(pkt);
return e;
}
return e;
kfree_pkt:
kfree(pkt);
return e;
}
static int nvhdcp_dev_open(struct inode *inode, struct file *filp)
{
struct miscdevice *miscdev = filp->private_data;
struct tegra_nvhdcp *nvhdcp =
container_of(miscdev, struct tegra_nvhdcp, miscdev);
filp->private_data = nvhdcp;
return 0;
}
static int nvhdcp_dev_release(struct inode *inode, struct file *filp)
{
filp->private_data = NULL;
return 0;
}
static const struct file_operations nvhdcp_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.unlocked_ioctl = nvhdcp_dev_ioctl,
.open = nvhdcp_dev_open,
.release = nvhdcp_dev_release,
#ifdef CONFIG_COMPAT
.compat_ioctl = nvhdcp_dev_ioctl,
#endif
};
/* we only support one AP right now, so should only call this once. */
struct tegra_nvhdcp *tegra_nvhdcp_create(struct tegra_dc_hdmi_data *hdmi,
int id, int bus)
{
static struct tegra_nvhdcp *nvhdcp; /* prevent multiple calls */
struct i2c_adapter *adapter;
int e;
if (nvhdcp)
return ERR_PTR(-EMFILE);
nvhdcp = kzalloc(sizeof(*nvhdcp), GFP_KERNEL);
if (!nvhdcp)
return ERR_PTR(-ENOMEM);
nvhdcp->id = id;
snprintf(nvhdcp->name, sizeof(nvhdcp->name), "nvhdcp%u", id);
nvhdcp->hdmi = hdmi;
mutex_init(&nvhdcp->lock);
strlcpy(nvhdcp->info.type, nvhdcp->name, sizeof(nvhdcp->info.type));
nvhdcp->bus = bus;
nvhdcp->info.addr = 0x74 >> 1;
nvhdcp->info.platform_data = nvhdcp;
nvhdcp->fail_count = 0;
adapter = i2c_get_adapter(bus);
if (!adapter) {
nvhdcp_err("can't get adapter for bus %d\n", bus);
e = -EBUSY;
goto free_nvhdcp;
}
nvhdcp->client = i2c_new_device(adapter, &nvhdcp->info);
i2c_put_adapter(adapter);
if (!nvhdcp->client) {
nvhdcp_err("can't create new device\n");
e = -EBUSY;
goto free_nvhdcp;
}
nvhdcp->state = STATE_UNAUTHENTICATED;
atomic_set(&nvhdcp->requested, 0);
nvhdcp->downstream_wq = create_singlethread_workqueue(nvhdcp->name);
INIT_DELAYED_WORK(&nvhdcp->work, nvhdcp_downstream_worker);
nvhdcp->miscdev.minor = MISC_DYNAMIC_MINOR;
nvhdcp->miscdev.name = nvhdcp->name;
nvhdcp->miscdev.fops = &nvhdcp_fops;
e = misc_register(&nvhdcp->miscdev);
if (e)
goto free_workqueue;
nvhdcp_vdbg("%s(): created misc device %s\n", __func__, nvhdcp->name);
return nvhdcp;
free_workqueue:
destroy_workqueue(nvhdcp->downstream_wq);
i2c_release_client(nvhdcp->client);
free_nvhdcp:
kfree(nvhdcp);
nvhdcp_err("unable to create device.\n");
return ERR_PTR(e);
}
void tegra_nvhdcp_destroy(struct tegra_nvhdcp *nvhdcp)
{
misc_deregister(&nvhdcp->miscdev);
tegra_nvhdcp_off(nvhdcp);
destroy_workqueue(nvhdcp->downstream_wq);
i2c_release_client(nvhdcp->client);
kfree(nvhdcp);
}