/* * drivers/cpufreq/cpufreq_interactive.c * * Copyright (C) 2010 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Author: Mike Chan (mike@android.com) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpufreq_governor.h" #define CREATE_TRACE_POINTS #include static atomic_t active_count = ATOMIC_INIT(0); struct cpufreq_interactive_cpuinfo { struct timer_list cpu_timer; int timer_idlecancel; u64 time_in_idle; u64 idle_exit_time; u64 target_set_time; u64 target_set_time_in_idle; struct cpufreq_policy *policy; struct cpufreq_frequency_table *freq_table; unsigned int target_freq; unsigned int floor_freq; u64 floor_validate_time; u64 hispeed_validate_time; struct rw_semaphore enable_sem; int governor_enabled; }; static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo); /* A realtime thread handles frequency scaling */ static struct task_struct *updown_task; static cpumask_t updown_cpumask; static spinlock_t updown_state_lock; /* * Mapping from loads to CPU frequencies to jump to. When we exceed a * certain load we will immediately jump to the corresponding frequency. * Default: 85% -> max frequency. */ struct hispeed_freq_level { unsigned int load; unsigned int freq; }; #define DEFAULT_GO_HISPEED_LOAD 85 static struct hispeed_freq_level *hispeed_freqs; static int nhispeed_freqs; static spinlock_t hispeed_freqs_lock; /* * The minimum amount of time to spend at a frequency before we can ramp down. */ #define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC) static unsigned long min_sample_time; /* * The sample rate of the timer used to increase frequency */ #define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC) static unsigned long timer_rate; /* * Wait this long before raising speed above hispeed, by default a single * timer interval. */ #define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE static unsigned int default_above_hispeed_delay[] = { DEFAULT_ABOVE_HISPEED_DELAY }; static spinlock_t above_hispeed_delay_lock; static unsigned int *above_hispeed_delay = default_above_hispeed_delay; static int nabove_hispeed_delay = ARRAY_SIZE(default_above_hispeed_delay); /* * Boost pulse to hispeed on touchscreen input. */ static int input_boost_val; /* * Non-zero means longer-term speed boost active. */ static int boost_val; static int cpufreq_governor_interactive(struct cpufreq_policy *policy, unsigned int event); #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE static #endif struct cpufreq_governor cpufreq_gov_interactive = { .name = "interactive", .governor = cpufreq_governor_interactive, .max_transition_latency = 10000000, .owner = THIS_MODULE, }; static void rearm_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu) { pcpu->time_in_idle = get_cpu_idle_time(smp_processor_id(), &pcpu->idle_exit_time, 1); mod_timer_pinned(&pcpu->cpu_timer, jiffies + usecs_to_jiffies(timer_rate)); } static void arm_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu) { pcpu->timer_idlecancel = 0; rearm_idle_timer(pcpu); } static void del_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu) { del_timer(&pcpu->cpu_timer); pcpu->timer_idlecancel = 0; } static unsigned int freq_to_above_hispeed_delay(unsigned int freq) { int i; unsigned int ret; unsigned long flags; spin_lock_irqsave(&above_hispeed_delay_lock, flags); for (i = 0; i < nabove_hispeed_delay - 1 && freq >= above_hispeed_delay[i+1]; i += 2) ; ret = above_hispeed_delay[i]; spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return ret; } static unsigned int next_hispeed_freq(struct cpufreq_interactive_cpuinfo *pcpu) { unsigned int ret = pcpu->policy->max; unsigned long flags; int i; BUG_ON(hispeed_freqs == NULL); spin_lock_irqsave(&hispeed_freqs_lock, flags); for (i = 0; i < nhispeed_freqs; i++) { if (hispeed_freqs[i].freq > pcpu->target_freq) { ret = hispeed_freqs[i].freq; break; } } spin_unlock_irqrestore(&hispeed_freqs_lock, flags); return ret; } static unsigned int load_to_hispeed_freq(unsigned int load) { unsigned int ret; unsigned long flags; int i; BUG_ON(hispeed_freqs == NULL); spin_lock_irqsave(&hispeed_freqs_lock, flags); ret = hispeed_freqs[nhispeed_freqs - 1].freq; for (i = 1; i < nhispeed_freqs; i++) { if (load < hispeed_freqs[i].load) { ret = hispeed_freqs[i - 1].freq; break; } } spin_unlock_irqrestore(&hispeed_freqs_lock, flags); return ret; } static void cpufreq_interactive_timer(unsigned long data) { u64 now; unsigned int delta_idle; unsigned int delta_time; int cpu_load; int load_since_change; int need_wakeup; u64 time_in_idle; u64 idle_exit_time; struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, data); u64 now_idle; unsigned int hispeed_freq; unsigned int new_freq; unsigned int index; unsigned long flags; if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) goto exit; time_in_idle = pcpu->time_in_idle; idle_exit_time = pcpu->idle_exit_time; now_idle = get_cpu_idle_time(data, &now, 1); delta_idle = (unsigned int)(now_idle - time_in_idle); delta_time = (unsigned int)(now - idle_exit_time); /* * If timer ran less than 1ms after short-term sample started, retry. */ if (delta_time < 1000) goto rearm; if (delta_idle > delta_time) cpu_load = 0; else cpu_load = 100 * (delta_time - delta_idle) / delta_time; delta_idle = (unsigned int)(now_idle - pcpu->target_set_time_in_idle); delta_time = (unsigned int)(now - pcpu->target_set_time); if ((delta_time == 0) || (delta_idle > delta_time)) load_since_change = 0; else load_since_change = 100 * (delta_time - delta_idle) / delta_time; /* * Choose greater of short-term load (since last idle timer * started or timer function re-armed itself) or long-term load * (since last frequency change). */ if (load_since_change > cpu_load) cpu_load = load_since_change; /* * The first hispeed_freq level has the lowest load. Only boost if * we excced that value. */ if (cpu_load >= hispeed_freqs[0].load || boost_val) { hispeed_freq = load_to_hispeed_freq(cpu_load); if (pcpu->target_freq < hispeed_freq) { new_freq = hispeed_freq; } else { new_freq = next_hispeed_freq(pcpu) * cpu_load / 100; if (new_freq < hispeed_freq) new_freq = hispeed_freq; } } else { hispeed_freq = next_hispeed_freq(pcpu); new_freq = hispeed_freq * cpu_load / 100; } if (pcpu->target_freq >= hispeed_freqs[0].freq && new_freq > pcpu->target_freq && now - pcpu->hispeed_validate_time < freq_to_above_hispeed_delay(pcpu->target_freq)) { trace_cpufreq_interactive_notyet(data, cpu_load, pcpu->target_freq, new_freq); goto rearm; } pcpu->hispeed_validate_time = now; if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table, new_freq, CPUFREQ_RELATION_H, &index)) { pr_warn_once("timer %d: cpufreq_frequency_table_target error\n", (int) data); goto rearm; } new_freq = pcpu->freq_table[index].frequency; /* * Do not scale below floor_freq unless we have been at or above the * floor frequency for the minimum sample time since last validated. */ if (new_freq < pcpu->floor_freq) { if (now - pcpu->floor_validate_time < min_sample_time) { trace_cpufreq_interactive_notyet(data, cpu_load, pcpu->target_freq, new_freq); goto rearm; } } spin_lock_irqsave(&updown_state_lock, flags); if (pcpu->target_freq != new_freq) { trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq, new_freq); pcpu->target_set_time_in_idle = now_idle; pcpu->target_freq = new_freq; pcpu->target_set_time = now; cpumask_set_cpu(data, &updown_cpumask); need_wakeup = 1; } else { trace_cpufreq_interactive_already(data, cpu_load, pcpu->target_freq, new_freq); need_wakeup = 0; } pcpu->floor_freq = new_freq; pcpu->floor_validate_time = now; spin_unlock_irqrestore(&updown_state_lock, flags); if (need_wakeup) wake_up_process(updown_task); /* * Already set max speed and don't see a need to change that, * wait until next idle to re-evaluate, don't need timer. */ if (pcpu->target_freq == pcpu->policy->max) goto exit; rearm: if (!timer_pending(&pcpu->cpu_timer)) { /* * If already at min, cancel the timer if that CPU goes idle. * We don't need to re-evaluate speed until the next idle exit. */ if (pcpu->target_freq == pcpu->policy->min) pcpu->timer_idlecancel = 1; rearm_idle_timer(pcpu); } exit: up_read(&pcpu->enable_sem); return; } static void cpufreq_interactive_idle_start(void) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); int pending; if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); return; } pending = timer_pending(&pcpu->cpu_timer); if (pcpu->target_freq != pcpu->policy->min) { #ifdef CONFIG_SMP /* * Entering idle while not at lowest speed. On some * platforms this can hold the other CPU(s) at that speed * even though the CPU is idle. Set a timer to re-evaluate * speed so this idle CPU doesn't hold the other CPUs above * min indefinitely. This should probably be a quirk of * the CPUFreq driver. */ if (!pending) arm_idle_timer(pcpu); #endif } else { /* * If at min speed and entering idle after load has * already been evaluated, and a timer has been set just in * case the CPU suddenly goes busy, cancel that timer. The * CPU didn't go busy; we'll recheck things upon idle exit. */ if (pending && pcpu->timer_idlecancel) del_idle_timer(pcpu); } up_read(&pcpu->enable_sem); } static void cpufreq_interactive_idle_end(void) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); return; } /* Arm the timer for 1-2 ticks later if not already. */ if (!timer_pending(&pcpu->cpu_timer)) arm_idle_timer(pcpu); up_read(&pcpu->enable_sem); } static int cpufreq_interactive_updown_task(void *data) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&updown_state_lock, flags); if (cpumask_empty(&updown_cpumask)) { spin_unlock_irqrestore(&updown_state_lock, flags); schedule(); if (kthread_should_stop()) break; spin_lock_irqsave(&updown_state_lock, flags); } set_current_state(TASK_RUNNING); tmp_mask = updown_cpumask; cpumask_clear(&updown_cpumask); spin_unlock_irqrestore(&updown_state_lock, flags); for_each_cpu(cpu, &tmp_mask) { unsigned int j; unsigned int max_freq, cur_freq; pcpu = &per_cpu(cpuinfo, cpu); if (!down_read_trylock(&pcpu->enable_sem)) continue; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); continue; } /* * Calculate the max frequency over all affected cpu's * and use that to set the target frequency. This * handles the case where setting the frequency of one * cpu causes multiple to change. In that case we * never want to down-clock related cpu's just because * one cpu found itself idle and requested a change. * When up-clocking we want that request to go through * and related cpu's will be dragged along. * * NB: this calculation is racey because target_freq is * set under the updown_state_lock (and not held here) */ max_freq = 0; for_each_cpu(j, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, j); if (pjcpu->target_freq > max_freq) max_freq = pjcpu->target_freq; } cur_freq = pcpu->policy->cur; if (max_freq == 0 || max_freq == cur_freq) { up_read(&pcpu->enable_sem); continue; } /* NB: trace before call as it may block for a while */ if (max_freq < cur_freq) trace_cpufreq_interactive_down(cpu, max_freq, cur_freq); else trace_cpufreq_interactive_up(cpu, max_freq, cur_freq); __cpufreq_driver_target(pcpu->policy, max_freq, CPUFREQ_RELATION_H); up_read(&pcpu->enable_sem); } } return 0; } static void cpufreq_interactive_boost(void) { int i; int anyboost = 0; unsigned long flags; unsigned int hispeed_freq; struct cpufreq_interactive_cpuinfo *pcpu; spin_lock_irqsave(&updown_state_lock, flags); for_each_online_cpu(i) { pcpu = &per_cpu(cpuinfo, i); if (!down_read_trylock(&pcpu->enable_sem)) continue; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); continue; } hispeed_freq = next_hispeed_freq(pcpu); if (pcpu->target_freq < hispeed_freq) { pcpu->target_freq = hispeed_freq; cpumask_set_cpu(i, &updown_cpumask); pcpu->target_set_time_in_idle = get_cpu_idle_time(i, &pcpu->target_set_time, 1); pcpu->hispeed_validate_time = pcpu->target_set_time; anyboost = 1; } /* * Set floor freq and (re)start timer for when last * validated. */ pcpu->floor_freq = hispeed_freq; pcpu->floor_validate_time = ktime_to_us(ktime_get()); up_read(&pcpu->enable_sem); } spin_unlock_irqrestore(&updown_state_lock, flags); if (anyboost) wake_up_process(updown_task); } void cpufreq_interactive_set_boost(bool on) { boost_val = on; if (boost_val) { trace_cpufreq_interactive_boost("set"); cpufreq_interactive_boost(); } else { trace_cpufreq_interactive_boost("unset"); } } EXPORT_SYMBOL(cpufreq_interactive_set_boost); /* * Pulsed boost on input event raises CPUs to hispeed_freq and lets * usual algorithm of min_sample_time decide when to allow speed * to drop. */ static void cpufreq_interactive_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { if (input_boost_val && type == EV_SYN && code == SYN_REPORT) { trace_cpufreq_interactive_boost("input"); cpufreq_interactive_boost(); } } static int cpufreq_interactive_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) { pr_warn("%s: no memory to register %s\n", __func__, dev->name); return -ENOMEM; } handle->dev = dev; handle->handler = handler; handle->name = "cpufreq_interactive"; error = input_register_handle(handle); if (error) { pr_warn("%s: failed to register %s, error %d\n", __func__, dev->name, error); goto err; } error = input_open_device(handle); if (error) { pr_warn("%s: open(%s) failed, error %d\n", __func__, handle->dev->name, error); goto err_unregister; } return 0; err_unregister: input_unregister_handle(handle); err: kfree(handle); return error; } static void cpufreq_interactive_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id cpufreq_interactive_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { [BIT_WORD(ABS_MT_POSITION_X)] = BIT_MASK(ABS_MT_POSITION_X) | BIT_MASK(ABS_MT_POSITION_Y) }, }, /* multi-touch touchscreen */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) }, }, /* pointer (e.g. trackpad, mouse) */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(KEY_ESC)] = BIT_MASK(KEY_ESC) }, }, /* keyboard */ { }, }; static struct input_handler cpufreq_interactive_input_handler = { .event = cpufreq_interactive_input_event, .connect = cpufreq_interactive_input_connect, .disconnect = cpufreq_interactive_input_disconnect, .name = "cpufreq_interactive", .id_table = cpufreq_interactive_ids, }; static unsigned int *get_tokenized_data(const char *buf, int *num_tokens) { const char *cp; int i; int ntokens = 1; unsigned int *tokenized_data; int err = -EINVAL; cp = buf; while ((cp = strpbrk(cp + 1, " :"))) ntokens++; tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL); if (!tokenized_data) { err = -ENOMEM; goto err; } cp = buf; i = 0; while (i < ntokens) { if (sscanf(cp, "%u", &tokenized_data[i++]) != 1) goto err_kfree; cp = strpbrk(cp, " :"); if (!cp) break; cp++; } if (i != ntokens) goto err_kfree; *num_tokens = ntokens; return tokenized_data; err_kfree: kfree(tokenized_data); err: return ERR_PTR(err); } static ssize_t show_above_hispeed_delay(struct kobject *kobj, struct attribute *attr, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&above_hispeed_delay_lock, flags); for (i = 0; i < nabove_hispeed_delay; i++) ret += sprintf(buf + ret, "%u%s", above_hispeed_delay[i], i & 0x1 ? ":" : " "); ret += sprintf(buf + ret, "\n"); spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return ret; } static ssize_t store_above_hispeed_delay(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ntokens, i; unsigned int *new_above_hispeed_delay = NULL; unsigned long flags; new_above_hispeed_delay = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_above_hispeed_delay)) return PTR_RET(new_above_hispeed_delay); if (ntokens % 2 != 1) { kfree(new_above_hispeed_delay); return -EINVAL; } /* Make sure frequencies are in ascending order. */ for (i = 3; i < ntokens; i += 2) { if (new_above_hispeed_delay[i] <= new_above_hispeed_delay[i - 2]) { kfree(new_above_hispeed_delay); return -EINVAL; } } spin_lock_irqsave(&above_hispeed_delay_lock, flags); if (above_hispeed_delay != default_above_hispeed_delay) kfree(above_hispeed_delay); above_hispeed_delay = new_above_hispeed_delay; nabove_hispeed_delay = ntokens; spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return count; } static struct global_attr above_hispeed_delay_attr = __ATTR(above_hispeed_delay, S_IRUGO | S_IWUSR, show_above_hispeed_delay, store_above_hispeed_delay); static ssize_t show_hispeed_freq(struct kobject *kobj, struct attribute *attr, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&hispeed_freqs_lock, flags); for (i = 0; i < nhispeed_freqs; i++) { ret += sprintf(buf + ret, "%s%u:%u", i > 0 ? " " : "", hispeed_freqs[i].freq, hispeed_freqs[i].load); } ret += sprintf(buf + ret, "\n"); spin_unlock_irqrestore(&hispeed_freqs_lock, flags); return ret; } static ssize_t store_hispeed_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ntokens, i, ret = count; unsigned int *tokens; unsigned long flags; struct hispeed_freq_level *new_hispeed_freqs; tokens = get_tokenized_data(buf, &ntokens); if (IS_ERR(tokens)) return PTR_RET(tokens); if (ntokens % 2 != 0) { ret = -EINVAL; goto out; } new_hispeed_freqs = kzalloc(sizeof(*new_hispeed_freqs) * ntokens / 2, GFP_KERNEL); if (!new_hispeed_freqs) { ret = -ENOMEM; goto out; } for (i = 0; i < ntokens / 2; i++) { new_hispeed_freqs[i].freq = tokens[2 * i]; new_hispeed_freqs[i].load = tokens[2 * i + 1]; if (new_hispeed_freqs[i].load > 100) { kfree(new_hispeed_freqs); ret = -EINVAL; goto out; } if (i > 0 && (new_hispeed_freqs[i].freq <= new_hispeed_freqs[i - 1].freq || new_hispeed_freqs[i].load <= new_hispeed_freqs[i - 1].load)) { kfree(new_hispeed_freqs); ret = -EINVAL; goto out; } } spin_lock_irqsave(&hispeed_freqs_lock, flags); kfree(hispeed_freqs); hispeed_freqs = new_hispeed_freqs; nhispeed_freqs = ntokens / 2; spin_unlock_irqrestore(&hispeed_freqs_lock, flags); out: kfree(tokens); return ret; } static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644, show_hispeed_freq, store_hispeed_freq); static ssize_t show_min_sample_time(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", min_sample_time); } static ssize_t store_min_sample_time(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; min_sample_time = val; return count; } static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644, show_min_sample_time, store_min_sample_time); static ssize_t show_timer_rate(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", timer_rate); } static ssize_t store_timer_rate(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; timer_rate = val; return count; } static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644, show_timer_rate, store_timer_rate); static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", input_boost_val); } static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; input_boost_val = val; return count; } define_one_global_rw(input_boost); static ssize_t show_boost(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%d\n", boost_val); } static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; boost_val = val; if (boost_val) { trace_cpufreq_interactive_boost("on"); cpufreq_interactive_boost(); } else { trace_cpufreq_interactive_unboost("off"); } return count; } define_one_global_rw(boost); static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; trace_cpufreq_interactive_boost("pulse"); cpufreq_interactive_boost(); return count; } static struct global_attr boostpulse = __ATTR(boostpulse, 0200, NULL, store_boostpulse); static struct attribute *interactive_attributes[] = { &above_hispeed_delay_attr.attr, &hispeed_freq_attr.attr, &min_sample_time_attr.attr, &timer_rate_attr.attr, &input_boost.attr, &boost.attr, &boostpulse.attr, NULL, }; static struct attribute_group interactive_attr_group = { .attrs = interactive_attributes, .name = "interactive", }; static int cpufreq_interactive_idle_notifier(struct notifier_block *nb, unsigned long val, void *data) { switch (val) { case IDLE_START: cpufreq_interactive_idle_start(); break; case IDLE_END: cpufreq_interactive_idle_end(); break; } return 0; } static struct notifier_block cpufreq_interactive_idle_nb = { .notifier_call = cpufreq_interactive_idle_notifier, }; static int cpufreq_governor_interactive(struct cpufreq_policy *policy, unsigned int event) { int rc; unsigned int j; struct cpufreq_interactive_cpuinfo *pcpu; struct cpufreq_frequency_table *freq_table; switch (event) { case CPUFREQ_GOV_POLICY_INIT: if (!hispeed_freqs) { hispeed_freqs = kzalloc(sizeof(*hispeed_freqs), GFP_KERNEL); if (!hispeed_freqs) return -ENOMEM; nhispeed_freqs = 1; hispeed_freqs[0].load = DEFAULT_GO_HISPEED_LOAD; hispeed_freqs[0].freq = policy->max; } /* * Do not register the idle hook and create sysfs * entries if we have already done so. */ if (atomic_inc_return(&active_count) > 1) return 0; rc = sysfs_create_group(cpufreq_global_kobject, &interactive_attr_group); if (rc) return rc; rc = input_register_handler(&cpufreq_interactive_input_handler); if (rc) pr_warn("%s: failed to register input handler\n", __func__); idle_notifier_register(&cpufreq_interactive_idle_nb); break; case CPUFREQ_GOV_POLICY_EXIT: if (atomic_dec_return(&active_count) > 0) return 0; idle_notifier_unregister(&cpufreq_interactive_idle_nb); input_unregister_handler(&cpufreq_interactive_input_handler); sysfs_remove_group(cpufreq_global_kobject, &interactive_attr_group); break; case CPUFREQ_GOV_START: freq_table = cpufreq_frequency_get_table(policy->cpu); for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); pcpu->policy = policy; pcpu->target_freq = policy->cur; pcpu->freq_table = freq_table; pcpu->target_set_time_in_idle = get_cpu_idle_time(j, &pcpu->target_set_time, 1); pcpu->floor_freq = pcpu->target_freq; pcpu->floor_validate_time = pcpu->target_set_time; pcpu->hispeed_validate_time = pcpu->target_set_time; down_write(&pcpu->enable_sem); del_timer_sync(&pcpu->cpu_timer); pcpu->cpu_timer.expires = jiffies + usecs_to_jiffies(timer_rate); add_timer_on(&pcpu->cpu_timer, j); pcpu->governor_enabled = 1; up_write(&pcpu->enable_sem); } break; case CPUFREQ_GOV_STOP: for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); down_write(&pcpu->enable_sem); pcpu->governor_enabled = 0; del_timer_sync(&pcpu->cpu_timer); up_write(&pcpu->enable_sem); } break; case CPUFREQ_GOV_LIMITS: if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); break; } return 0; } static int __init cpufreq_interactive_init(void) { unsigned int i; struct cpufreq_interactive_cpuinfo *pcpu; struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; min_sample_time = DEFAULT_MIN_SAMPLE_TIME; timer_rate = DEFAULT_TIMER_RATE; /* Initalize per-cpu timers */ for_each_possible_cpu(i) { pcpu = &per_cpu(cpuinfo, i); init_timer(&pcpu->cpu_timer); pcpu->cpu_timer.function = cpufreq_interactive_timer; pcpu->cpu_timer.data = i; init_rwsem(&pcpu->enable_sem); } spin_lock_init(&hispeed_freqs_lock); spin_lock_init(&above_hispeed_delay_lock); spin_lock_init(&updown_state_lock); updown_task = kthread_create(cpufreq_interactive_updown_task, NULL, "kinteractive"); if (IS_ERR(updown_task)) return PTR_ERR(updown_task); sched_setscheduler_nocheck(updown_task, SCHED_FIFO, ¶m); get_task_struct(updown_task); /* NB: wake up so the thread does not look hung to the freezer */ wake_up_process(updown_task); return cpufreq_register_governor(&cpufreq_gov_interactive); } #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE fs_initcall(cpufreq_interactive_init); #else module_init(cpufreq_interactive_init); #endif static void __exit cpufreq_interactive_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_interactive); kthread_stop(updown_task); put_task_struct(updown_task); if (above_hispeed_delay != default_above_hispeed_delay) kfree(above_hispeed_delay); kfree(hispeed_freqs); /* TODO(sleffler) cancel inputopen wq request? */ } module_exit(cpufreq_interactive_exit); MODULE_AUTHOR("Mike Chan "); MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for " "Latency sensitive workloads"); MODULE_LICENSE("GPL");